mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 11:56:45 +00:00
Wuerstchen main (#876)
* Wuerstchen main. * More of the wuerstchen cli example. * Paella creation. * Build the prior model. * Fix the weight file names.
This commit is contained in:
@ -1,3 +1,5 @@
|
||||
#![allow(unused)]
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
@ -5,6 +7,7 @@ extern crate accelerate_src;
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
use candle_transformers::models::stable_diffusion;
|
||||
use candle_transformers::models::wuerstchen;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use candle::{DType, Device, IndexOp, Module, Tensor, D};
|
||||
@ -42,17 +45,21 @@ struct Args {
|
||||
#[arg(long)]
|
||||
width: Option<usize>,
|
||||
|
||||
/// The UNet weight file, in .safetensors format.
|
||||
/// The decoder weight file, in .safetensors format.
|
||||
#[arg(long, value_name = "FILE")]
|
||||
unet_weights: Option<String>,
|
||||
decoder_weights: Option<String>,
|
||||
|
||||
/// The CLIP weight file, in .safetensors format.
|
||||
#[arg(long, value_name = "FILE")]
|
||||
clip_weights: Option<String>,
|
||||
|
||||
/// The VAE weight file, in .safetensors format.
|
||||
/// The prior weight file, in .safetensors format.
|
||||
#[arg(long, value_name = "FILE")]
|
||||
vae_weights: Option<String>,
|
||||
prior_weights: Option<String>,
|
||||
|
||||
/// The VQGAN weight file, in .safetensors format.
|
||||
#[arg(long, value_name = "FILE")]
|
||||
vqgan_weights: Option<String>,
|
||||
|
||||
#[arg(long, value_name = "FILE")]
|
||||
/// The file specifying the tokenizer to used for tokenization.
|
||||
@ -73,138 +80,31 @@ struct Args {
|
||||
/// The name of the final image to generate.
|
||||
#[arg(long, value_name = "FILE", default_value = "sd_final.png")]
|
||||
final_image: String,
|
||||
|
||||
#[arg(long, value_enum, default_value = "v2-1")]
|
||||
sd_version: StableDiffusionVersion,
|
||||
|
||||
/// Generate intermediary images at each step.
|
||||
#[arg(long, action)]
|
||||
intermediary_images: bool,
|
||||
|
||||
#[arg(long)]
|
||||
use_flash_attn: bool,
|
||||
|
||||
#[arg(long)]
|
||||
use_f16: bool,
|
||||
|
||||
#[arg(long, value_name = "FILE")]
|
||||
img2img: Option<String>,
|
||||
|
||||
/// The strength, indicates how much to transform the initial image. The
|
||||
/// value must be between 0 and 1, a value of 1 discards the initial image
|
||||
/// information.
|
||||
#[arg(long, default_value_t = 0.8)]
|
||||
img2img_strength: f64,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, clap::ValueEnum)]
|
||||
enum StableDiffusionVersion {
|
||||
V1_5,
|
||||
V2_1,
|
||||
Xl,
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
enum ModelFile {
|
||||
Tokenizer,
|
||||
Tokenizer2,
|
||||
Clip,
|
||||
Clip2,
|
||||
Unet,
|
||||
Vae,
|
||||
}
|
||||
|
||||
impl StableDiffusionVersion {
|
||||
fn repo(&self) -> &'static str {
|
||||
match self {
|
||||
Self::Xl => "stabilityai/stable-diffusion-xl-base-1.0",
|
||||
Self::V2_1 => "stabilityai/stable-diffusion-2-1",
|
||||
Self::V1_5 => "runwayml/stable-diffusion-v1-5",
|
||||
}
|
||||
}
|
||||
|
||||
fn unet_file(&self, use_f16: bool) -> &'static str {
|
||||
match self {
|
||||
Self::V1_5 | Self::V2_1 | Self::Xl => {
|
||||
if use_f16 {
|
||||
"unet/diffusion_pytorch_model.fp16.safetensors"
|
||||
} else {
|
||||
"unet/diffusion_pytorch_model.safetensors"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn vae_file(&self, use_f16: bool) -> &'static str {
|
||||
match self {
|
||||
Self::V1_5 | Self::V2_1 | Self::Xl => {
|
||||
if use_f16 {
|
||||
"vae/diffusion_pytorch_model.fp16.safetensors"
|
||||
} else {
|
||||
"vae/diffusion_pytorch_model.safetensors"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn clip_file(&self, use_f16: bool) -> &'static str {
|
||||
match self {
|
||||
Self::V1_5 | Self::V2_1 | Self::Xl => {
|
||||
if use_f16 {
|
||||
"text_encoder/model.fp16.safetensors"
|
||||
} else {
|
||||
"text_encoder/model.safetensors"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn clip2_file(&self, use_f16: bool) -> &'static str {
|
||||
match self {
|
||||
Self::V1_5 | Self::V2_1 | Self::Xl => {
|
||||
if use_f16 {
|
||||
"text_encoder_2/model.fp16.safetensors"
|
||||
} else {
|
||||
"text_encoder_2/model.safetensors"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Decoder,
|
||||
VqGan,
|
||||
Prior,
|
||||
}
|
||||
|
||||
impl ModelFile {
|
||||
fn get(
|
||||
&self,
|
||||
filename: Option<String>,
|
||||
version: StableDiffusionVersion,
|
||||
use_f16: bool,
|
||||
) -> Result<std::path::PathBuf> {
|
||||
fn get(&self, filename: Option<String>) -> Result<std::path::PathBuf> {
|
||||
use hf_hub::api::sync::Api;
|
||||
match filename {
|
||||
Some(filename) => Ok(std::path::PathBuf::from(filename)),
|
||||
None => {
|
||||
let repo_main = "warp-ai/wuerstchen";
|
||||
let repo_prior = "warp-ai/wuerstchen-prior";
|
||||
let (repo, path) = match self {
|
||||
Self::Tokenizer => {
|
||||
let tokenizer_repo = match version {
|
||||
StableDiffusionVersion::V1_5 | StableDiffusionVersion::V2_1 => {
|
||||
"openai/clip-vit-base-patch32"
|
||||
}
|
||||
StableDiffusionVersion::Xl => {
|
||||
// This seems similar to the patch32 version except some very small
|
||||
// difference in the split regex.
|
||||
"openai/clip-vit-large-patch14"
|
||||
}
|
||||
};
|
||||
(tokenizer_repo, "tokenizer.json")
|
||||
}
|
||||
Self::Tokenizer2 => {
|
||||
("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", "tokenizer.json")
|
||||
}
|
||||
Self::Clip => (version.repo(), version.clip_file(use_f16)),
|
||||
Self::Clip2 => (version.repo(), version.clip2_file(use_f16)),
|
||||
Self::Unet => (version.repo(), version.unet_file(use_f16)),
|
||||
Self::Vae => (version.repo(), version.vae_file(use_f16)),
|
||||
Self::Tokenizer => (repo_main, "tokenizer/tokenizer.json"),
|
||||
Self::Clip => (repo_main, "text_encoder/model.safetensors"),
|
||||
Self::Decoder => (repo_main, "decoder/diffusion_pytorch_model.safetensors"),
|
||||
Self::VqGan => (repo_main, "vqgan/diffusion_pytorch_model.safetensors"),
|
||||
Self::Prior => (repo_prior, "prior/diffusion_pytorch_model.safetensors"),
|
||||
};
|
||||
let filename = Api::new()?.model(repo.to_string()).get(path)?;
|
||||
Ok(filename)
|
||||
@ -240,27 +140,17 @@ fn output_filename(
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn text_embeddings(
|
||||
fn encode_prompt(
|
||||
prompt: &str,
|
||||
uncond_prompt: &str,
|
||||
tokenizer: Option<String>,
|
||||
clip_weights: Option<String>,
|
||||
sd_version: StableDiffusionVersion,
|
||||
sd_config: &stable_diffusion::StableDiffusionConfig,
|
||||
use_f16: bool,
|
||||
clip_config: stable_diffusion::clip::Config,
|
||||
device: &Device,
|
||||
dtype: DType,
|
||||
first: bool,
|
||||
) -> Result<Tensor> {
|
||||
let tokenizer_file = if first {
|
||||
ModelFile::Tokenizer
|
||||
} else {
|
||||
ModelFile::Tokenizer2
|
||||
};
|
||||
let tokenizer = tokenizer_file.get(tokenizer, sd_version, use_f16)?;
|
||||
let tokenizer = ModelFile::Tokenizer.get(tokenizer)?;
|
||||
let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
|
||||
let pad_id = match &sd_config.clip.pad_with {
|
||||
let pad_id = match &clip_config.pad_with {
|
||||
Some(padding) => *tokenizer.get_vocab(true).get(padding.as_str()).unwrap(),
|
||||
None => *tokenizer.get_vocab(true).get("<|endoftext|>").unwrap(),
|
||||
};
|
||||
@ -270,7 +160,7 @@ fn text_embeddings(
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
while tokens.len() < sd_config.clip.max_position_embeddings {
|
||||
while tokens.len() < clip_config.max_position_embeddings {
|
||||
tokens.push(pad_id)
|
||||
}
|
||||
let tokens = Tensor::new(tokens.as_slice(), device)?.unsqueeze(0)?;
|
||||
@ -280,51 +170,21 @@ fn text_embeddings(
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
while uncond_tokens.len() < sd_config.clip.max_position_embeddings {
|
||||
while uncond_tokens.len() < clip_config.max_position_embeddings {
|
||||
uncond_tokens.push(pad_id)
|
||||
}
|
||||
let uncond_tokens = Tensor::new(uncond_tokens.as_slice(), device)?.unsqueeze(0)?;
|
||||
|
||||
println!("Building the Clip transformer.");
|
||||
let clip_weights_file = if first {
|
||||
ModelFile::Clip
|
||||
} else {
|
||||
ModelFile::Clip2
|
||||
};
|
||||
let clip_weights = clip_weights_file.get(clip_weights, sd_version, false)?;
|
||||
let clip_config = if first {
|
||||
&sd_config.clip
|
||||
} else {
|
||||
sd_config.clip2.as_ref().unwrap()
|
||||
};
|
||||
let clip_weights = ModelFile::Clip.get(clip_weights)?;
|
||||
let text_model =
|
||||
stable_diffusion::build_clip_transformer(clip_config, clip_weights, device, DType::F32)?;
|
||||
stable_diffusion::build_clip_transformer(&clip_config, clip_weights, device, DType::F32)?;
|
||||
let text_embeddings = text_model.forward(&tokens)?;
|
||||
let uncond_embeddings = text_model.forward(&uncond_tokens)?;
|
||||
let text_embeddings = Tensor::cat(&[uncond_embeddings, text_embeddings], 0)?.to_dtype(dtype)?;
|
||||
let text_embeddings = Tensor::cat(&[uncond_embeddings, text_embeddings], 0)?;
|
||||
Ok(text_embeddings)
|
||||
}
|
||||
|
||||
fn image_preprocess<T: AsRef<std::path::Path>>(path: T) -> anyhow::Result<Tensor> {
|
||||
let img = image::io::Reader::open(path)?.decode()?;
|
||||
let (height, width) = (img.height() as usize, img.width() as usize);
|
||||
let height = height - height % 32;
|
||||
let width = width - width % 32;
|
||||
let img = img.resize_to_fill(
|
||||
width as u32,
|
||||
height as u32,
|
||||
image::imageops::FilterType::CatmullRom,
|
||||
);
|
||||
let img = img.to_rgb8();
|
||||
let img = img.into_raw();
|
||||
let img = Tensor::from_vec(img, (height, width, 3), &Device::Cpu)?
|
||||
.permute((2, 0, 1))?
|
||||
.to_dtype(DType::F32)?
|
||||
.affine(2. / 255., -1.)?
|
||||
.unsqueeze(0)?;
|
||||
Ok(img)
|
||||
}
|
||||
|
||||
fn run(args: Args) -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
@ -340,22 +200,14 @@ fn run(args: Args) -> Result<()> {
|
||||
final_image,
|
||||
sliced_attention_size,
|
||||
num_samples,
|
||||
sd_version,
|
||||
clip_weights,
|
||||
vae_weights,
|
||||
unet_weights,
|
||||
prior_weights,
|
||||
vqgan_weights,
|
||||
decoder_weights,
|
||||
tracing,
|
||||
use_f16,
|
||||
use_flash_attn,
|
||||
img2img,
|
||||
img2img_strength,
|
||||
..
|
||||
} = args;
|
||||
|
||||
if !(0. ..=1.).contains(&img2img_strength) {
|
||||
anyhow::bail!("img2img-strength should be between 0 and 1, got {img2img_strength}")
|
||||
}
|
||||
|
||||
let _guard = if tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
@ -364,102 +216,75 @@ fn run(args: Args) -> Result<()> {
|
||||
None
|
||||
};
|
||||
|
||||
let dtype = if use_f16 { DType::F16 } else { DType::F32 };
|
||||
let sd_config = match sd_version {
|
||||
StableDiffusionVersion::V1_5 => {
|
||||
stable_diffusion::StableDiffusionConfig::v1_5(sliced_attention_size, height, width)
|
||||
}
|
||||
StableDiffusionVersion::V2_1 => {
|
||||
stable_diffusion::StableDiffusionConfig::v2_1(sliced_attention_size, height, width)
|
||||
}
|
||||
StableDiffusionVersion::Xl => {
|
||||
stable_diffusion::StableDiffusionConfig::sdxl(sliced_attention_size, height, width)
|
||||
}
|
||||
};
|
||||
|
||||
let scheduler = sd_config.build_scheduler(n_steps)?;
|
||||
let device = candle_examples::device(cpu)?;
|
||||
|
||||
let which = match sd_version {
|
||||
StableDiffusionVersion::Xl => vec![true, false],
|
||||
_ => vec![true],
|
||||
};
|
||||
let text_embeddings = which
|
||||
.iter()
|
||||
.map(|first| {
|
||||
text_embeddings(
|
||||
&prompt,
|
||||
&uncond_prompt,
|
||||
tokenizer.clone(),
|
||||
clip_weights.clone(),
|
||||
sd_version,
|
||||
&sd_config,
|
||||
use_f16,
|
||||
&device,
|
||||
dtype,
|
||||
*first,
|
||||
)
|
||||
})
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
let text_embeddings = Tensor::cat(&text_embeddings, D::Minus1)?;
|
||||
let text_embeddings = encode_prompt(
|
||||
&prompt,
|
||||
&uncond_prompt,
|
||||
tokenizer.clone(),
|
||||
clip_weights.clone(),
|
||||
stable_diffusion::clip::Config::wuerstchen(),
|
||||
&device,
|
||||
);
|
||||
println!("{text_embeddings:?}");
|
||||
|
||||
println!("Building the autoencoder.");
|
||||
let vae_weights = ModelFile::Vae.get(vae_weights, sd_version, use_f16)?;
|
||||
let vae = sd_config.build_vae(&vae_weights, &device, dtype)?;
|
||||
let init_latent_dist = match &img2img {
|
||||
None => None,
|
||||
Some(image) => {
|
||||
let image = image_preprocess(image)?.to_device(&device)?;
|
||||
Some(vae.encode(&image)?)
|
||||
}
|
||||
println!("Building the prior.");
|
||||
// https://huggingface.co/warp-ai/wuerstchen-prior/blob/main/prior/config.json
|
||||
let _prior = {
|
||||
let prior_weights = ModelFile::Prior.get(prior_weights)?;
|
||||
let weights = unsafe { candle::safetensors::MmapedFile::new(prior_weights)? };
|
||||
let weights = weights.deserialize()?;
|
||||
let vb = candle_nn::VarBuilder::from_safetensors(vec![weights], DType::F32, &device);
|
||||
wuerstchen::prior::WPrior::new(
|
||||
/* c_in */ 16, /* c */ 1536, /* c_cond */ 1280, /* c_r */ 64,
|
||||
/* depth */ 32, /* nhead */ 24, vb,
|
||||
)
|
||||
};
|
||||
println!("Building the unet.");
|
||||
let unet_weights = ModelFile::Unet.get(unet_weights, sd_version, use_f16)?;
|
||||
let unet = sd_config.build_unet(&unet_weights, &device, 4, use_flash_attn, dtype)?;
|
||||
|
||||
let t_start = if img2img.is_some() {
|
||||
n_steps - (n_steps as f64 * img2img_strength) as usize
|
||||
} else {
|
||||
0
|
||||
println!("Building the vqgan.");
|
||||
let _vqgan = {
|
||||
let vqgan_weights = ModelFile::VqGan.get(vqgan_weights)?;
|
||||
let weights = unsafe { candle::safetensors::MmapedFile::new(vqgan_weights)? };
|
||||
let weights = weights.deserialize()?;
|
||||
let vb = candle_nn::VarBuilder::from_safetensors(vec![weights], DType::F32, &device);
|
||||
wuerstchen::paella_vq::PaellaVQ::new(vb)?
|
||||
};
|
||||
let bsize = 1;
|
||||
|
||||
println!("Building the decoder.");
|
||||
|
||||
// https://huggingface.co/warp-ai/wuerstchen/blob/main/decoder/config.json
|
||||
let _decoder = {
|
||||
let decoder_weights = ModelFile::Decoder.get(decoder_weights)?;
|
||||
let weights = unsafe { candle::safetensors::MmapedFile::new(decoder_weights)? };
|
||||
let weights = weights.deserialize()?;
|
||||
let vb = candle_nn::VarBuilder::from_safetensors(vec![weights], DType::F32, &device);
|
||||
wuerstchen::diffnext::WDiffNeXt::new(
|
||||
/* c_in */ 4, /* c_out */ 4, /* c_r */ 64, /* c_cond */ 1024,
|
||||
/* clip_embd */ 1024, /* patch_size */ 2, vb,
|
||||
)?
|
||||
};
|
||||
|
||||
let _bsize = 1;
|
||||
for idx in 0..num_samples {
|
||||
/*
|
||||
let timesteps = scheduler.timesteps();
|
||||
let latents = match &init_latent_dist {
|
||||
Some(init_latent_dist) => {
|
||||
let latents = (init_latent_dist.sample()? * 0.18215)?.to_device(&device)?;
|
||||
if t_start < timesteps.len() {
|
||||
let noise = latents.randn_like(0f64, 1f64)?;
|
||||
scheduler.add_noise(&latents, noise, timesteps[t_start])?
|
||||
} else {
|
||||
latents
|
||||
}
|
||||
}
|
||||
None => {
|
||||
let latents = Tensor::randn(
|
||||
0f32,
|
||||
1f32,
|
||||
(bsize, 4, sd_config.height / 8, sd_config.width / 8),
|
||||
&device,
|
||||
)?;
|
||||
// scale the initial noise by the standard deviation required by the scheduler
|
||||
(latents * scheduler.init_noise_sigma())?
|
||||
}
|
||||
};
|
||||
let mut latents = latents.to_dtype(dtype)?;
|
||||
let latents = Tensor::randn(
|
||||
0f32,
|
||||
1f32,
|
||||
(bsize, 4, sd_config.height / 8, sd_config.width / 8),
|
||||
&device,
|
||||
)?;
|
||||
// scale the initial noise by the standard deviation required by the scheduler
|
||||
let mut latents = latents * scheduler.init_noise_sigma()?;
|
||||
|
||||
println!("starting sampling");
|
||||
for (timestep_index, ×tep) in timesteps.iter().enumerate() {
|
||||
if timestep_index < t_start {
|
||||
continue;
|
||||
}
|
||||
let start_time = std::time::Instant::now();
|
||||
let latent_model_input = Tensor::cat(&[&latents, &latents], 0)?;
|
||||
|
||||
let latent_model_input = scheduler.scale_model_input(latent_model_input, timestep)?;
|
||||
let noise_pred =
|
||||
unet.forward(&latent_model_input, timestep as f64, &text_embeddings)?;
|
||||
decoder.forward(&latent_model_input, timestep as f64, &text_embeddings)?;
|
||||
let noise_pred = noise_pred.chunk(2, 0)?;
|
||||
let (noise_pred_uncond, noise_pred_text) = (&noise_pred[0], &noise_pred[1]);
|
||||
let noise_pred =
|
||||
@ -467,28 +292,22 @@ fn run(args: Args) -> Result<()> {
|
||||
latents = scheduler.step(&noise_pred, timestep, &latents)?;
|
||||
let dt = start_time.elapsed().as_secs_f32();
|
||||
println!("step {}/{n_steps} done, {:.2}s", timestep_index + 1, dt);
|
||||
|
||||
if args.intermediary_images {
|
||||
let image = vae.decode(&(&latents / 0.18215)?)?;
|
||||
let image = ((image / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
|
||||
let image = (image * 255.)?.to_dtype(DType::U8)?.i(0)?;
|
||||
let image_filename =
|
||||
output_filename(&final_image, idx + 1, num_samples, Some(timestep_index + 1));
|
||||
candle_examples::save_image(&image, image_filename)?
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
println!(
|
||||
"Generating the final image for sample {}/{}.",
|
||||
idx + 1,
|
||||
num_samples
|
||||
);
|
||||
/*
|
||||
let image = vae.decode(&(&latents / 0.18215)?)?;
|
||||
// TODO: Add the clamping between 0 and 1.
|
||||
let image = ((image / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
|
||||
let image = (image * 255.)?.to_dtype(DType::U8)?.i(0)?;
|
||||
let image_filename = output_filename(&final_image, idx + 1, num_samples, None);
|
||||
candle_examples::save_image(&image, image_filename)?
|
||||
*/
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
@ -99,6 +99,21 @@ impl Config {
|
||||
activation: Activation::Gelu,
|
||||
}
|
||||
}
|
||||
|
||||
// https://huggingface.co/warp-ai/wuerstchen/blob/main/text_encoder/config.json
|
||||
pub fn wuerstchen() -> Self {
|
||||
Self {
|
||||
vocab_size: 49408,
|
||||
embed_dim: 1024,
|
||||
intermediate_size: 4096,
|
||||
max_position_embeddings: 77,
|
||||
pad_with: Some("!".to_string()),
|
||||
num_hidden_layers: 24,
|
||||
num_attention_heads: 16,
|
||||
projection_dim: 1024,
|
||||
activation: Activation::Gelu,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// CLIP Text Model
|
||||
|
@ -65,17 +65,121 @@ impl Module for MixingResidualBlock {
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct PaellaVQ {
|
||||
pub struct PaellaVQ {
|
||||
in_block_conv: candle_nn::Conv2d,
|
||||
out_block_conv: candle_nn::Conv2d,
|
||||
down_blocks: Vec<(Option<candle_nn::Conv2d>, MixingResidualBlock)>,
|
||||
down_blocks_conv: candle_nn::Conv2d,
|
||||
down_blocks_bn: candle_nn::BatchNorm,
|
||||
up_blocks_conv: candle_nn::Conv2d,
|
||||
up_blocks: Vec<(MixingResidualBlock, Option<candle_nn::ConvTranspose2d>)>,
|
||||
up_blocks: Vec<(Vec<MixingResidualBlock>, Option<candle_nn::ConvTranspose2d>)>,
|
||||
}
|
||||
|
||||
impl PaellaVQ {
|
||||
pub fn new(vb: VarBuilder) -> Result<Self> {
|
||||
const IN_CHANNELS: usize = 3;
|
||||
const OUT_CHANNELS: usize = 3;
|
||||
const LATENT_CHANNELS: usize = 4;
|
||||
const EMBED_DIM: usize = 384;
|
||||
const BOTTLENECK_BLOCKS: usize = 12;
|
||||
const C_LEVELS: [usize; 2] = [EMBED_DIM / 2, EMBED_DIM];
|
||||
|
||||
let in_block_conv = candle_nn::conv2d(
|
||||
IN_CHANNELS * 4,
|
||||
C_LEVELS[0],
|
||||
1,
|
||||
Default::default(),
|
||||
vb.pp("in_block.1"),
|
||||
)?;
|
||||
let out_block_conv = candle_nn::conv2d(
|
||||
C_LEVELS[0],
|
||||
OUT_CHANNELS * 4,
|
||||
1,
|
||||
Default::default(),
|
||||
vb.pp("out_block.0"),
|
||||
)?;
|
||||
|
||||
let mut down_blocks = Vec::new();
|
||||
let vb_d = vb.pp("down_blocks");
|
||||
let mut d_idx = 0;
|
||||
for (i, &c_level) in C_LEVELS.iter().enumerate() {
|
||||
let conv_block = if i > 0 {
|
||||
let cfg = candle_nn::Conv2dConfig {
|
||||
padding: 1,
|
||||
stride: 2,
|
||||
..Default::default()
|
||||
};
|
||||
let block =
|
||||
candle_nn::conv2d_no_bias(C_LEVELS[i - 1], c_level, 4, cfg, vb_d.pp(d_idx))?;
|
||||
d_idx += 1;
|
||||
Some(block)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
let res_block = MixingResidualBlock::new(c_level, c_level * 4, vb_d.pp(d_idx))?;
|
||||
d_idx += 1;
|
||||
down_blocks.push((conv_block, res_block))
|
||||
}
|
||||
let down_blocks_conv = candle_nn::conv2d_no_bias(
|
||||
C_LEVELS[1],
|
||||
LATENT_CHANNELS,
|
||||
1,
|
||||
Default::default(),
|
||||
vb_d.pp(d_idx),
|
||||
)?;
|
||||
d_idx += 1;
|
||||
let down_blocks_bn = candle_nn::batch_norm(LATENT_CHANNELS, 1e-5, vb_d.pp(d_idx))?;
|
||||
|
||||
let mut up_blocks = Vec::new();
|
||||
let vb_u = vb.pp("up_blocks");
|
||||
let mut u_idx = 0;
|
||||
let up_blocks_conv = candle_nn::conv2d_no_bias(
|
||||
LATENT_CHANNELS,
|
||||
C_LEVELS[1],
|
||||
1,
|
||||
Default::default(),
|
||||
vb_u.pp(u_idx),
|
||||
)?;
|
||||
u_idx += 1;
|
||||
for (i, &c_level) in C_LEVELS.iter().rev().enumerate() {
|
||||
let mut res_blocks = Vec::new();
|
||||
let n_bottleneck_blocks = if i == 0 { BOTTLENECK_BLOCKS } else { 1 };
|
||||
for _j in 0..n_bottleneck_blocks {
|
||||
let res_block = MixingResidualBlock::new(c_level, c_level * 4, vb_u.pp(u_idx))?;
|
||||
u_idx += 1;
|
||||
res_blocks.push(res_block)
|
||||
}
|
||||
let conv_block = if i < C_LEVELS.len() - 1 {
|
||||
let cfg = candle_nn::ConvTranspose2dConfig {
|
||||
padding: 1,
|
||||
stride: 2,
|
||||
..Default::default()
|
||||
};
|
||||
let block = candle_nn::conv_transpose2d_no_bias(
|
||||
c_level,
|
||||
C_LEVELS[i - 1],
|
||||
4,
|
||||
cfg,
|
||||
vb_u.pp(u_idx),
|
||||
)?;
|
||||
u_idx += 1;
|
||||
Some(block)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
up_blocks.push((res_blocks, conv_block))
|
||||
}
|
||||
Ok(Self {
|
||||
in_block_conv,
|
||||
down_blocks,
|
||||
down_blocks_conv,
|
||||
down_blocks_bn,
|
||||
up_blocks,
|
||||
up_blocks_conv,
|
||||
out_block_conv,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn encode(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let mut xs = candle_nn::ops::pixel_unshuffle(xs, 2)?.apply(&self.in_block_conv)?;
|
||||
for down_block in self.down_blocks.iter() {
|
||||
@ -92,7 +196,9 @@ impl PaellaVQ {
|
||||
// TODO: quantizer if we want to support `force_not_quantize=False`.
|
||||
let mut xs = xs.apply(&self.up_blocks_conv)?;
|
||||
for up_block in self.up_blocks.iter() {
|
||||
xs = xs.apply(&up_block.0)?;
|
||||
for b in up_block.0.iter() {
|
||||
xs = xs.apply(b)?;
|
||||
}
|
||||
if let Some(conv) = &up_block.1 {
|
||||
xs = xs.apply(conv)?
|
||||
}
|
||||
|
Reference in New Issue
Block a user