Better training+hub

This commit is contained in:
Nicolas Patry
2023-08-14 11:09:48 +02:00
parent 7602323667
commit dd02f589c0
3 changed files with 52 additions and 5 deletions

View File

@ -6,12 +6,36 @@ start with the Hello world dataset of machine learning, MNIST.
Let's start with downloading `MNIST` from [huggingface](https://huggingface.co/datasets/mnist).
```rust
use candle_datasets::from_hub;
This requires `candle-datasets` with the `hub` feature.
```bash
cargo add candle-datasets --features hub
cargo add hf-hub
```
let dataset = from_hub("mnist")?;
```rust,ignore
{{#include ../../../candle-examples/src/lib.rs:book_training_1}}
```
This uses the standardized `parquet` files from the `refs/convert/parquet` branch on every dataset.
`files` is now a `Vec` of [`parquet::file::serialized_reader::SerializedFileReader`].
We can inspect the content of the files with:
```rust,ignore
{{#include ../../../candle-examples/src/lib.rs:book_training_2}}
```
You should see something like:
```bash
Column id 1, name label, value 6
Column id 0, name image, value {bytes: [137, ....]
Column id 1, name label, value 8
Column id 0, name image, value {bytes: [137, ....]
```
So each row contains 2 columns (image, label) with image being saved as bytes.
Let's put them into a useful struct.

View File

@ -22,7 +22,7 @@ fn sibling_to_parquet(
repo: &ApiRepo,
) -> Result<SerializedFileReader<File>, Error> {
let local = repo.get(rfilename)?;
let file = File::open(&local)?;
let file = File::open(local)?;
let reader = SerializedFileReader::new(file)?;
Ok(reader)
}

View File

@ -55,6 +55,8 @@ pub fn save_image<P: AsRef<std::path::Path>>(img: &Tensor, p: P) -> Result<()> {
#[cfg(test)]
mod tests {
use anyhow::Result;
// NOTE: Waiting on https://github.com/rust-lang/mdBook/pull/1856
#[rustfmt::skip]
#[tokio::test]
@ -150,4 +152,25 @@ let tp_tensor = Tensor::from_raw_buffer(&raw, dtype, &tp_shape, &Device::Cpu).un
assert_eq!(view.shape(), &[768, 768]);
assert_eq!(tp_tensor.dims(), &[192, 768]);
}
#[rustfmt::skip]
#[test]
fn book_training_1() -> Result<()>{
// ANCHOR: book_training_1
use candle_datasets::hub::from_hub;
use hf_hub::api::sync::Api;
let api = Api::new()?;
let files = from_hub(&api, "mnist".to_string())?;
// ANCHOR_END: book_training_1
// ANCHOR: book_training_2
let rows = files.into_iter().flat_map(|r| r.into_iter()).flatten();
for row in rows {
for (idx, (name, field)) in row.get_column_iter().enumerate() {
println!("Column id {idx}, name {name}, value {field}");
}
}
// ANCHOR_END: book_training_2
Ok(())
}
}