mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00
Add yolo v8 as an example (#541)
* Sketching yolo-v8. * Get the model to load. * yolo-v8 forward pass. * Complete(?) the forward pass. * Fix some shape issues. * Add the missing padding. * Process the predictions.
This commit is contained in:
@ -199,6 +199,7 @@ pub fn main() -> Result<()> {
|
||||
};
|
||||
let image = (image.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
|
||||
let predictions = model.forward(&image)?.squeeze(0)?;
|
||||
println!("generated predictions {predictions:?}");
|
||||
let image = report(&predictions, original_image, net_width, net_height)?;
|
||||
image_name.set_extension("pp.jpg");
|
||||
println!("writing {image_name:?}");
|
||||
|
82
candle-examples/examples/yolo-v8/coco_classes.rs
Normal file
82
candle-examples/examples/yolo-v8/coco_classes.rs
Normal file
@ -0,0 +1,82 @@
|
||||
pub const NAMES: [&str; 80] = [
|
||||
"person",
|
||||
"bicycle",
|
||||
"car",
|
||||
"motorbike",
|
||||
"aeroplane",
|
||||
"bus",
|
||||
"train",
|
||||
"truck",
|
||||
"boat",
|
||||
"traffic light",
|
||||
"fire hydrant",
|
||||
"stop sign",
|
||||
"parking meter",
|
||||
"bench",
|
||||
"bird",
|
||||
"cat",
|
||||
"dog",
|
||||
"horse",
|
||||
"sheep",
|
||||
"cow",
|
||||
"elephant",
|
||||
"bear",
|
||||
"zebra",
|
||||
"giraffe",
|
||||
"backpack",
|
||||
"umbrella",
|
||||
"handbag",
|
||||
"tie",
|
||||
"suitcase",
|
||||
"frisbee",
|
||||
"skis",
|
||||
"snowboard",
|
||||
"sports ball",
|
||||
"kite",
|
||||
"baseball bat",
|
||||
"baseball glove",
|
||||
"skateboard",
|
||||
"surfboard",
|
||||
"tennis racket",
|
||||
"bottle",
|
||||
"wine glass",
|
||||
"cup",
|
||||
"fork",
|
||||
"knife",
|
||||
"spoon",
|
||||
"bowl",
|
||||
"banana",
|
||||
"apple",
|
||||
"sandwich",
|
||||
"orange",
|
||||
"broccoli",
|
||||
"carrot",
|
||||
"hot dog",
|
||||
"pizza",
|
||||
"donut",
|
||||
"cake",
|
||||
"chair",
|
||||
"sofa",
|
||||
"pottedplant",
|
||||
"bed",
|
||||
"diningtable",
|
||||
"toilet",
|
||||
"tvmonitor",
|
||||
"laptop",
|
||||
"mouse",
|
||||
"remote",
|
||||
"keyboard",
|
||||
"cell phone",
|
||||
"microwave",
|
||||
"oven",
|
||||
"toaster",
|
||||
"sink",
|
||||
"refrigerator",
|
||||
"book",
|
||||
"clock",
|
||||
"vase",
|
||||
"scissors",
|
||||
"teddy bear",
|
||||
"hair drier",
|
||||
"toothbrush",
|
||||
];
|
779
candle-examples/examples/yolo-v8/main.rs
Normal file
779
candle-examples/examples/yolo-v8/main.rs
Normal file
@ -0,0 +1,779 @@
|
||||
#![allow(dead_code)]
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
mod coco_classes;
|
||||
|
||||
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{batch_norm, conv2d_no_bias, BatchNorm, Conv2d, Conv2dConfig, Module, VarBuilder};
|
||||
use clap::Parser;
|
||||
use image::{DynamicImage, ImageBuffer};
|
||||
|
||||
const CONFIDENCE_THRESHOLD: f32 = 0.5;
|
||||
const NMS_THRESHOLD: f32 = 0.4;
|
||||
|
||||
// Model architecture from https://github.com/ultralytics/ultralytics/issues/189
|
||||
// https://github.com/tinygrad/tinygrad/blob/master/examples/yolov8.py
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Debug)]
|
||||
struct Multiples {
|
||||
depth: f64,
|
||||
width: f64,
|
||||
ratio: f64,
|
||||
}
|
||||
|
||||
impl Multiples {
|
||||
fn n() -> Self {
|
||||
Self {
|
||||
depth: 0.33,
|
||||
width: 0.25,
|
||||
ratio: 2.0,
|
||||
}
|
||||
}
|
||||
fn s() -> Self {
|
||||
Self {
|
||||
depth: 0.33,
|
||||
width: 0.50,
|
||||
ratio: 2.0,
|
||||
}
|
||||
}
|
||||
fn m() -> Self {
|
||||
Self {
|
||||
depth: 0.67,
|
||||
width: 0.75,
|
||||
ratio: 1.5,
|
||||
}
|
||||
}
|
||||
fn l() -> Self {
|
||||
Self {
|
||||
depth: 1.00,
|
||||
width: 1.00,
|
||||
ratio: 1.0,
|
||||
}
|
||||
}
|
||||
fn x() -> Self {
|
||||
Self {
|
||||
depth: 1.00,
|
||||
width: 1.25,
|
||||
ratio: 1.0,
|
||||
}
|
||||
}
|
||||
|
||||
fn filters(&self) -> (usize, usize, usize) {
|
||||
let f1 = (256. * self.width) as usize;
|
||||
let f2 = (512. * self.width) as usize;
|
||||
let f3 = (512. * self.width * self.ratio) as usize;
|
||||
(f1, f2, f3)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct Upsample {
|
||||
scale_factor: usize,
|
||||
}
|
||||
|
||||
impl Upsample {
|
||||
fn new(scale_factor: usize) -> Result<Self> {
|
||||
Ok(Upsample { scale_factor })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Upsample {
|
||||
fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
|
||||
let (_b_size, _channels, h, w) = xs.dims4()?;
|
||||
xs.upsample_nearest2d(self.scale_factor * h, self.scale_factor * w)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct ConvBlock {
|
||||
conv: Conv2d,
|
||||
bn: BatchNorm,
|
||||
}
|
||||
|
||||
impl ConvBlock {
|
||||
fn load(
|
||||
vb: VarBuilder,
|
||||
c1: usize,
|
||||
c2: usize,
|
||||
k: usize,
|
||||
stride: usize,
|
||||
padding: Option<usize>,
|
||||
) -> Result<Self> {
|
||||
let padding = padding.unwrap_or(k / 2);
|
||||
let cfg = Conv2dConfig { padding, stride };
|
||||
let conv = conv2d_no_bias(c1, c2, k, cfg, vb.pp("conv"))?;
|
||||
let bn = batch_norm(c2, 1e-3, vb.pp("bn"))?;
|
||||
Ok(Self { conv, bn })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for ConvBlock {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let xs = self.conv.forward(xs)?;
|
||||
let xs = self.bn.forward(&xs)?;
|
||||
candle_nn::ops::silu(&xs)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct Bottleneck {
|
||||
cv1: ConvBlock,
|
||||
cv2: ConvBlock,
|
||||
residual: bool,
|
||||
}
|
||||
|
||||
impl Bottleneck {
|
||||
fn load(vb: VarBuilder, c1: usize, c2: usize, shortcut: bool) -> Result<Self> {
|
||||
let channel_factor = 1.;
|
||||
let c_ = (c2 as f64 * channel_factor) as usize;
|
||||
let cv1 = ConvBlock::load(vb.pp("cv1"), c1, c_, 3, 1, None)?;
|
||||
let cv2 = ConvBlock::load(vb.pp("cv2"), c_, c2, 3, 1, None)?;
|
||||
let residual = c1 == c2 && shortcut;
|
||||
Ok(Self { cv1, cv2, residual })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Bottleneck {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let ys = self.cv2.forward(&self.cv1.forward(xs)?)?;
|
||||
if self.residual {
|
||||
xs + ys
|
||||
} else {
|
||||
Ok(ys)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct C2f {
|
||||
cv1: ConvBlock,
|
||||
cv2: ConvBlock,
|
||||
bottleneck: Vec<Bottleneck>,
|
||||
c: usize,
|
||||
}
|
||||
|
||||
impl C2f {
|
||||
fn load(vb: VarBuilder, c1: usize, c2: usize, n: usize, shortcut: bool) -> Result<Self> {
|
||||
let c = (c2 as f64 * 0.5) as usize;
|
||||
let cv1 = ConvBlock::load(vb.pp("cv1"), c1, 2 * c, 1, 1, None)?;
|
||||
let cv2 = ConvBlock::load(vb.pp("cv2"), (2 + n) * c, c2, 1, 1, None)?;
|
||||
let mut bottleneck = Vec::with_capacity(n);
|
||||
for idx in 0..n {
|
||||
let b = Bottleneck::load(vb.pp(&format!("bottleneck.{idx}")), c, c, shortcut)?;
|
||||
bottleneck.push(b)
|
||||
}
|
||||
Ok(Self {
|
||||
cv1,
|
||||
cv2,
|
||||
bottleneck,
|
||||
c,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for C2f {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let ys = self.cv1.forward(xs)?;
|
||||
let ys_1 = ys.dim(1)?;
|
||||
let mut ys = vec![ys.i((.., 0..ys_1 / 2))?, ys.i((.., ys_1 / 2..))?];
|
||||
for m in self.bottleneck.iter() {
|
||||
ys.push(m.forward(ys.last().unwrap())?)
|
||||
}
|
||||
let zs = Tensor::cat(ys.as_slice(), 1)?;
|
||||
self.cv2.forward(&zs)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct Sppf {
|
||||
cv1: ConvBlock,
|
||||
cv2: ConvBlock,
|
||||
k: usize,
|
||||
}
|
||||
|
||||
impl Sppf {
|
||||
fn load(vb: VarBuilder, c1: usize, c2: usize, k: usize) -> Result<Self> {
|
||||
let c_ = c1 / 2;
|
||||
let cv1 = ConvBlock::load(vb.pp("cv1"), c1, c_, 1, 1, None)?;
|
||||
let cv2 = ConvBlock::load(vb.pp("cv2"), c_ * 4, c2, 1, 1, None)?;
|
||||
Ok(Self { cv1, cv2, k })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Sppf {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let (_, _, _, _) = xs.dims4()?;
|
||||
let xs = self.cv1.forward(xs)?;
|
||||
let xs2 = xs
|
||||
.pad_with_zeros(2, self.k / 2, self.k / 2)?
|
||||
.pad_with_zeros(3, self.k / 2, self.k / 2)?
|
||||
.max_pool2d((self.k, self.k), (1, 1))?;
|
||||
let xs3 = xs2
|
||||
.pad_with_zeros(2, self.k / 2, self.k / 2)?
|
||||
.pad_with_zeros(3, self.k / 2, self.k / 2)?
|
||||
.max_pool2d((self.k, self.k), (1, 1))?;
|
||||
let xs4 = xs3
|
||||
.pad_with_zeros(2, self.k / 2, self.k / 2)?
|
||||
.pad_with_zeros(3, self.k / 2, self.k / 2)?
|
||||
.max_pool2d((self.k, self.k), (1, 1))?;
|
||||
self.cv2.forward(&Tensor::cat(&[&xs, &xs2, &xs3, &xs4], 1)?)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct Dfl {
|
||||
conv: Conv2d,
|
||||
num_classes: usize,
|
||||
}
|
||||
|
||||
impl Dfl {
|
||||
fn load(vb: VarBuilder, num_classes: usize) -> Result<Self> {
|
||||
let conv = conv2d_no_bias(num_classes, 1, 1, Default::default(), vb.pp("conv"))?;
|
||||
Ok(Self { conv, num_classes })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Dfl {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let (b_sz, _channels, anchors) = xs.dims3()?;
|
||||
let xs = xs
|
||||
.reshape((b_sz, 4, self.num_classes, anchors))?
|
||||
.transpose(2, 1)?;
|
||||
let xs = candle_nn::ops::softmax(&xs, 1)?;
|
||||
self.conv.forward(&xs)?.reshape((b_sz, 4, anchors))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct DarkNet {
|
||||
b1_0: ConvBlock,
|
||||
b1_1: ConvBlock,
|
||||
b2_0: C2f,
|
||||
b2_1: ConvBlock,
|
||||
b2_2: C2f,
|
||||
b3_0: ConvBlock,
|
||||
b3_1: C2f,
|
||||
b4_0: ConvBlock,
|
||||
b4_1: C2f,
|
||||
b5: Sppf,
|
||||
}
|
||||
|
||||
impl DarkNet {
|
||||
fn load(vb: VarBuilder, m: Multiples) -> Result<Self> {
|
||||
let (w, r, d) = (m.width, m.ratio, m.depth);
|
||||
let b1_0 = ConvBlock::load(vb.pp("b1.0"), 3, (64. * w) as usize, 3, 2, Some(1))?;
|
||||
let b1_1 = ConvBlock::load(
|
||||
vb.pp("b1.1"),
|
||||
(64. * w) as usize,
|
||||
(128. * w) as usize,
|
||||
3,
|
||||
2,
|
||||
Some(1),
|
||||
)?;
|
||||
let b2_0 = C2f::load(
|
||||
vb.pp("b2.0"),
|
||||
(128. * w) as usize,
|
||||
(128. * w) as usize,
|
||||
(3. * d).round() as usize,
|
||||
true,
|
||||
)?;
|
||||
let b2_1 = ConvBlock::load(
|
||||
vb.pp("b2.1"),
|
||||
(128. * w) as usize,
|
||||
(256. * w) as usize,
|
||||
3,
|
||||
2,
|
||||
Some(1),
|
||||
)?;
|
||||
let b2_2 = C2f::load(
|
||||
vb.pp("b2.2"),
|
||||
(256. * w) as usize,
|
||||
(256. * w) as usize,
|
||||
(6. * d).round() as usize,
|
||||
true,
|
||||
)?;
|
||||
let b3_0 = ConvBlock::load(
|
||||
vb.pp("b3.0"),
|
||||
(256. * w) as usize,
|
||||
(512. * w) as usize,
|
||||
3,
|
||||
2,
|
||||
Some(1),
|
||||
)?;
|
||||
let b3_1 = C2f::load(
|
||||
vb.pp("b3.1"),
|
||||
(512. * w) as usize,
|
||||
(512. * w) as usize,
|
||||
(6. * d).round() as usize,
|
||||
true,
|
||||
)?;
|
||||
let b4_0 = ConvBlock::load(
|
||||
vb.pp("b4.0"),
|
||||
(512. * w) as usize,
|
||||
(512. * w * r) as usize,
|
||||
3,
|
||||
2,
|
||||
Some(1),
|
||||
)?;
|
||||
let b4_1 = C2f::load(
|
||||
vb.pp("b4.1"),
|
||||
(512. * w * r) as usize,
|
||||
(512. * w * r) as usize,
|
||||
(3. * d).round() as usize,
|
||||
true,
|
||||
)?;
|
||||
let b5 = Sppf::load(
|
||||
vb.pp("b5.0"),
|
||||
(512. * w * r) as usize,
|
||||
(512. * w * r) as usize,
|
||||
5,
|
||||
)?;
|
||||
Ok(Self {
|
||||
b1_0,
|
||||
b1_1,
|
||||
b2_0,
|
||||
b2_1,
|
||||
b2_2,
|
||||
b3_0,
|
||||
b3_1,
|
||||
b4_0,
|
||||
b4_1,
|
||||
b5,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, xs: &Tensor) -> Result<(Tensor, Tensor, Tensor)> {
|
||||
let x1 = self.b1_1.forward(&self.b1_0.forward(xs)?)?;
|
||||
let x2 = self.b2_1.forward(&self.b2_0.forward(&x1)?)?;
|
||||
let x3 = self.b3_1.forward(&self.b3_0.forward(&x2)?)?;
|
||||
let x4 = self.b4_1.forward(&self.b4_0.forward(&x3)?)?;
|
||||
let x5 = self.b5.forward(&x4)?;
|
||||
Ok((x2, x3, x5))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct YoloV8Neck {
|
||||
up: Upsample,
|
||||
n1: C2f,
|
||||
n2: C2f,
|
||||
n3: ConvBlock,
|
||||
n4: C2f,
|
||||
n5: ConvBlock,
|
||||
n6: C2f,
|
||||
}
|
||||
|
||||
impl YoloV8Neck {
|
||||
fn load(vb: VarBuilder, m: Multiples) -> Result<Self> {
|
||||
let up = Upsample::new(2)?;
|
||||
let (w, r, d) = (m.width, m.ratio, m.depth);
|
||||
let n = (3. * d).round() as usize;
|
||||
let n1 = C2f::load(
|
||||
vb.pp("n1"),
|
||||
(512. * w * (1. + r)) as usize,
|
||||
(512. * w) as usize,
|
||||
n,
|
||||
false,
|
||||
)?;
|
||||
let n2 = C2f::load(
|
||||
vb.pp("n2"),
|
||||
(768. * w) as usize,
|
||||
(256. * w) as usize,
|
||||
n,
|
||||
false,
|
||||
)?;
|
||||
let n3 = ConvBlock::load(
|
||||
vb.pp("n3"),
|
||||
(256. * w) as usize,
|
||||
(256. * w) as usize,
|
||||
3,
|
||||
2,
|
||||
Some(1),
|
||||
)?;
|
||||
let n4 = C2f::load(
|
||||
vb.pp("n4"),
|
||||
(768. * w) as usize,
|
||||
(512. * w) as usize,
|
||||
n,
|
||||
false,
|
||||
)?;
|
||||
let n5 = ConvBlock::load(
|
||||
vb.pp("n5"),
|
||||
(512. * w) as usize,
|
||||
(512. * w) as usize,
|
||||
3,
|
||||
2,
|
||||
Some(1),
|
||||
)?;
|
||||
let n6 = C2f::load(
|
||||
vb.pp("n6"),
|
||||
(512. * w * (1. + r)) as usize,
|
||||
(512. * w * r) as usize,
|
||||
n,
|
||||
false,
|
||||
)?;
|
||||
Ok(Self {
|
||||
up,
|
||||
n1,
|
||||
n2,
|
||||
n3,
|
||||
n4,
|
||||
n5,
|
||||
n6,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, p3: &Tensor, p4: &Tensor, p5: &Tensor) -> Result<(Tensor, Tensor, Tensor)> {
|
||||
let x = self
|
||||
.n1
|
||||
.forward(&Tensor::cat(&[&self.up.forward(p5)?, p4], 1)?)?;
|
||||
let head_1 = self
|
||||
.n2
|
||||
.forward(&Tensor::cat(&[&self.up.forward(&x)?, p3], 1)?)?;
|
||||
let head_2 = self
|
||||
.n4
|
||||
.forward(&Tensor::cat(&[&self.n3.forward(&head_1)?, &x], 1)?)?;
|
||||
let head_3 = self
|
||||
.n6
|
||||
.forward(&Tensor::cat(&[&self.n5.forward(&head_2)?, p5], 1)?)?;
|
||||
Ok((head_1, head_2, head_3))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct DetectionHead {
|
||||
dfl: Dfl,
|
||||
cv2: [(ConvBlock, ConvBlock, Conv2d); 3],
|
||||
cv3: [(ConvBlock, ConvBlock, Conv2d); 3],
|
||||
ch: usize,
|
||||
no: usize,
|
||||
}
|
||||
|
||||
fn make_anchors(
|
||||
xs0: &Tensor,
|
||||
xs1: &Tensor,
|
||||
xs2: &Tensor,
|
||||
(s0, s1, s2): (usize, usize, usize),
|
||||
grid_cell_offset: f64,
|
||||
) -> Result<(Tensor, Tensor)> {
|
||||
let dev = xs0.device();
|
||||
let mut anchor_points = vec![];
|
||||
let mut stride_tensor = vec![];
|
||||
for (xs, stride) in [(xs0, s0), (xs1, s1), (xs2, s2)] {
|
||||
// xs is only used to extract the h and w dimensions.
|
||||
let (_, _, h, w) = xs.dims4()?;
|
||||
let sx = (Tensor::arange(0, w as u32, dev)?.to_dtype(DType::F32)? + grid_cell_offset)?;
|
||||
let sy = (Tensor::arange(0, h as u32, dev)?.to_dtype(DType::F32)? + grid_cell_offset)?;
|
||||
let sx = sx
|
||||
.reshape((1, sx.elem_count()))?
|
||||
.repeat((h, 1))?
|
||||
.flatten_all()?;
|
||||
let sy = sy
|
||||
.reshape((sy.elem_count(), 1))?
|
||||
.repeat((1, w))?
|
||||
.flatten_all()?;
|
||||
anchor_points.push(Tensor::stack(&[&sx, &sy], D::Minus1)?);
|
||||
stride_tensor.push((Tensor::ones(h * w, DType::F32, dev)? * stride as f64)?);
|
||||
}
|
||||
let anchor_points = Tensor::cat(anchor_points.as_slice(), 0)?;
|
||||
let stride_tensor = Tensor::cat(stride_tensor.as_slice(), 0)?.unsqueeze(1)?;
|
||||
Ok((anchor_points, stride_tensor))
|
||||
}
|
||||
fn dist2bbox(distance: &Tensor, anchor_points: &Tensor) -> Result<Tensor> {
|
||||
let chunks = distance.chunk(2, 1)?;
|
||||
let lt = &chunks[0];
|
||||
let rb = &chunks[1];
|
||||
let x1y1 = anchor_points.sub(lt)?;
|
||||
let x2y2 = anchor_points.add(rb)?;
|
||||
let c_xy = ((&x1y1 + &x2y2)? * 0.5)?;
|
||||
let wh = (&x2y2 - &x1y1)?;
|
||||
Tensor::cat(&[c_xy, wh], 1)
|
||||
}
|
||||
|
||||
impl DetectionHead {
|
||||
fn load(vb: VarBuilder, nc: usize, filters: (usize, usize, usize)) -> Result<Self> {
|
||||
let ch = 16;
|
||||
let dfl = Dfl::load(vb.pp("dfl"), ch)?;
|
||||
let c1 = usize::max(filters.0, nc);
|
||||
let c2 = usize::max(filters.0 / 4, ch * 4);
|
||||
let cv3 = [
|
||||
Self::load_cv3(vb.pp("cv3.0"), c1, nc, filters.0)?,
|
||||
Self::load_cv3(vb.pp("cv3.1"), c1, nc, filters.1)?,
|
||||
Self::load_cv3(vb.pp("cv3.2"), c1, nc, filters.2)?,
|
||||
];
|
||||
let cv2 = [
|
||||
Self::load_cv2(vb.pp("cv2.0"), c2, ch, filters.0)?,
|
||||
Self::load_cv2(vb.pp("cv2.1"), c2, ch, filters.1)?,
|
||||
Self::load_cv2(vb.pp("cv2.2"), c2, ch, filters.2)?,
|
||||
];
|
||||
let no = nc + ch * 4;
|
||||
Ok(Self {
|
||||
dfl,
|
||||
cv2,
|
||||
cv3,
|
||||
ch,
|
||||
no,
|
||||
})
|
||||
}
|
||||
|
||||
fn load_cv3(
|
||||
vb: VarBuilder,
|
||||
c1: usize,
|
||||
nc: usize,
|
||||
filter: usize,
|
||||
) -> Result<(ConvBlock, ConvBlock, Conv2d)> {
|
||||
let block0 = ConvBlock::load(vb.pp("0"), filter, c1, 3, 1, None)?;
|
||||
let block1 = ConvBlock::load(vb.pp("1"), c1, c1, 3, 1, None)?;
|
||||
let conv = conv2d_no_bias(c1, nc, 1, Default::default(), vb.pp("2"))?;
|
||||
Ok((block0, block1, conv))
|
||||
}
|
||||
|
||||
fn load_cv2(
|
||||
vb: VarBuilder,
|
||||
c2: usize,
|
||||
ch: usize,
|
||||
filter: usize,
|
||||
) -> Result<(ConvBlock, ConvBlock, Conv2d)> {
|
||||
let block0 = ConvBlock::load(vb.pp("0"), filter, c2, 3, 1, None)?;
|
||||
let block1 = ConvBlock::load(vb.pp("1"), c2, c2, 3, 1, None)?;
|
||||
let conv = conv2d_no_bias(c2, 4 * ch, 1, Default::default(), vb.pp("2"))?;
|
||||
Ok((block0, block1, conv))
|
||||
}
|
||||
|
||||
fn forward(&self, xs0: &Tensor, xs1: &Tensor, xs2: &Tensor) -> Result<Tensor> {
|
||||
let forward_cv = |xs, i: usize| {
|
||||
let xs_2 = self.cv2[i].0.forward(xs)?;
|
||||
let xs_2 = self.cv2[i].1.forward(&xs_2)?;
|
||||
let xs_2 = self.cv2[i].2.forward(&xs_2)?;
|
||||
|
||||
let xs_3 = self.cv3[i].0.forward(xs)?;
|
||||
let xs_3 = self.cv3[i].1.forward(&xs_3)?;
|
||||
let xs_3 = self.cv3[i].2.forward(&xs_3)?;
|
||||
Tensor::cat(&[&xs_2, &xs_3], 1)
|
||||
};
|
||||
let xs0 = forward_cv(xs0, 0)?;
|
||||
let xs1 = forward_cv(xs1, 1)?;
|
||||
let xs2 = forward_cv(xs2, 2)?;
|
||||
|
||||
let (anchors, strides) = make_anchors(&xs0, &xs1, &xs2, (8, 16, 32), 0.5)?;
|
||||
let anchors = anchors.transpose(0, 1)?;
|
||||
let strides = strides.transpose(0, 1)?;
|
||||
|
||||
let reshape = |xs: &Tensor| {
|
||||
let d = xs.dim(0)?;
|
||||
let el = xs.elem_count();
|
||||
xs.reshape((d, self.no, el / (d * self.no)))
|
||||
};
|
||||
let ys0 = reshape(&xs0)?;
|
||||
let ys1 = reshape(&xs1)?;
|
||||
let ys2 = reshape(&xs2)?;
|
||||
|
||||
let x_cat = Tensor::cat(&[ys0, ys1, ys2], 2)?;
|
||||
let box_ = x_cat.i((.., ..self.ch * 4))?;
|
||||
let cls = x_cat.i((.., self.ch * 4..))?;
|
||||
|
||||
let dbox = dist2bbox(&self.dfl.forward(&box_)?, &anchors.unsqueeze(0)?)?;
|
||||
let dbox = dbox.broadcast_mul(&strides)?;
|
||||
|
||||
Tensor::cat(&[dbox, candle_nn::ops::sigmoid(&cls)?], 1)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct YoloV8 {
|
||||
net: DarkNet,
|
||||
fpn: YoloV8Neck,
|
||||
head: DetectionHead,
|
||||
}
|
||||
|
||||
impl YoloV8 {
|
||||
fn load(vb: VarBuilder, m: Multiples, num_classes: usize) -> Result<Self> {
|
||||
let net = DarkNet::load(vb.pp("net"), m)?;
|
||||
let fpn = YoloV8Neck::load(vb.pp("fpn"), m)?;
|
||||
let head = DetectionHead::load(vb.pp("head"), num_classes, m.filters())?;
|
||||
Ok(Self { net, fpn, head })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for YoloV8 {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let (xs1, xs2, xs3) = self.net.forward(xs)?;
|
||||
let (xs1, xs2, xs3) = self.fpn.forward(&xs1, &xs2, &xs3)?;
|
||||
self.head.forward(&xs1, &xs2, &xs3)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct Bbox {
|
||||
xmin: f32,
|
||||
ymin: f32,
|
||||
xmax: f32,
|
||||
ymax: f32,
|
||||
confidence: f32,
|
||||
}
|
||||
|
||||
// Intersection over union of two bounding boxes.
|
||||
fn iou(b1: &Bbox, b2: &Bbox) -> f32 {
|
||||
let b1_area = (b1.xmax - b1.xmin + 1.) * (b1.ymax - b1.ymin + 1.);
|
||||
let b2_area = (b2.xmax - b2.xmin + 1.) * (b2.ymax - b2.ymin + 1.);
|
||||
let i_xmin = b1.xmin.max(b2.xmin);
|
||||
let i_xmax = b1.xmax.min(b2.xmax);
|
||||
let i_ymin = b1.ymin.max(b2.ymin);
|
||||
let i_ymax = b1.ymax.min(b2.ymax);
|
||||
let i_area = (i_xmax - i_xmin + 1.).max(0.) * (i_ymax - i_ymin + 1.).max(0.);
|
||||
i_area / (b1_area + b2_area - i_area)
|
||||
}
|
||||
|
||||
// Assumes x1 <= x2 and y1 <= y2
|
||||
pub fn draw_rect(
|
||||
img: &mut ImageBuffer<image::Rgb<u8>, Vec<u8>>,
|
||||
x1: u32,
|
||||
x2: u32,
|
||||
y1: u32,
|
||||
y2: u32,
|
||||
) {
|
||||
for x in x1..=x2 {
|
||||
let pixel = img.get_pixel_mut(x, y1);
|
||||
*pixel = image::Rgb([255, 0, 0]);
|
||||
let pixel = img.get_pixel_mut(x, y2);
|
||||
*pixel = image::Rgb([255, 0, 0]);
|
||||
}
|
||||
for y in y1..=y2 {
|
||||
let pixel = img.get_pixel_mut(x1, y);
|
||||
*pixel = image::Rgb([255, 0, 0]);
|
||||
let pixel = img.get_pixel_mut(x2, y);
|
||||
*pixel = image::Rgb([255, 0, 0]);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn report(pred: &Tensor, img: DynamicImage, w: usize, h: usize) -> Result<DynamicImage> {
|
||||
let (npreds, pred_size) = pred.dims2()?;
|
||||
let nclasses = pred_size - 5;
|
||||
// The bounding boxes grouped by (maximum) class index.
|
||||
let mut bboxes: Vec<Vec<Bbox>> = (0..nclasses).map(|_| vec![]).collect();
|
||||
// Extract the bounding boxes for which confidence is above the threshold.
|
||||
for index in 0..npreds {
|
||||
let pred = Vec::<f32>::try_from(pred.get(index)?)?;
|
||||
let confidence = pred[4];
|
||||
if confidence > CONFIDENCE_THRESHOLD {
|
||||
let mut class_index = 0;
|
||||
for i in 0..nclasses {
|
||||
if pred[5 + i] > pred[5 + class_index] {
|
||||
class_index = i
|
||||
}
|
||||
}
|
||||
if pred[class_index + 5] > 0. {
|
||||
let bbox = Bbox {
|
||||
xmin: pred[0] - pred[2] / 2.,
|
||||
ymin: pred[1] - pred[3] / 2.,
|
||||
xmax: pred[0] + pred[2] / 2.,
|
||||
ymax: pred[1] + pred[3] / 2.,
|
||||
confidence,
|
||||
};
|
||||
bboxes[class_index].push(bbox)
|
||||
}
|
||||
}
|
||||
}
|
||||
// Perform non-maximum suppression.
|
||||
for bboxes_for_class in bboxes.iter_mut() {
|
||||
bboxes_for_class.sort_by(|b1, b2| b2.confidence.partial_cmp(&b1.confidence).unwrap());
|
||||
let mut current_index = 0;
|
||||
for index in 0..bboxes_for_class.len() {
|
||||
let mut drop = false;
|
||||
for prev_index in 0..current_index {
|
||||
let iou = iou(&bboxes_for_class[prev_index], &bboxes_for_class[index]);
|
||||
if iou > NMS_THRESHOLD {
|
||||
drop = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if !drop {
|
||||
bboxes_for_class.swap(current_index, index);
|
||||
current_index += 1;
|
||||
}
|
||||
}
|
||||
bboxes_for_class.truncate(current_index);
|
||||
}
|
||||
// Annotate the original image and print boxes information.
|
||||
let (initial_h, initial_w) = (img.height(), img.width());
|
||||
let w_ratio = initial_w as f32 / w as f32;
|
||||
let h_ratio = initial_h as f32 / h as f32;
|
||||
let mut img = img.to_rgb8();
|
||||
for (class_index, bboxes_for_class) in bboxes.iter().enumerate() {
|
||||
for b in bboxes_for_class.iter() {
|
||||
println!("{}: {:?}", coco_classes::NAMES[class_index], b);
|
||||
let xmin = ((b.xmin * w_ratio) as u32).clamp(0, initial_w - 1);
|
||||
let ymin = ((b.ymin * h_ratio) as u32).clamp(0, initial_h - 1);
|
||||
let xmax = ((b.xmax * w_ratio) as u32).clamp(0, initial_w - 1);
|
||||
let ymax = ((b.ymax * h_ratio) as u32).clamp(0, initial_h - 1);
|
||||
draw_rect(&mut img, xmin, xmax, ymin, ymax);
|
||||
}
|
||||
}
|
||||
Ok(DynamicImage::ImageRgb8(img))
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Model weights, in safetensors format.
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
images: Vec<String>,
|
||||
}
|
||||
|
||||
impl Args {
|
||||
fn model(&self) -> anyhow::Result<std::path::PathBuf> {
|
||||
let path = match &self.model {
|
||||
Some(model) => std::path::PathBuf::from(model),
|
||||
None => {
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model("lmz/candle-yolo-v3".to_string());
|
||||
api.get("yolo-v3.safetensors")?
|
||||
}
|
||||
};
|
||||
Ok(path)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
|
||||
// Create the model and load the weights from the file.
|
||||
let model = args.model()?;
|
||||
let weights = unsafe { candle::safetensors::MmapedFile::new(model)? };
|
||||
let weights = weights.deserialize()?;
|
||||
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &Device::Cpu);
|
||||
let multiples = Multiples::s();
|
||||
let model = YoloV8::load(vb, multiples, /* num_classes=*/ 80)?;
|
||||
println!("model loaded");
|
||||
for image_name in args.images.iter() {
|
||||
println!("processing {image_name}");
|
||||
let mut image_name = std::path::PathBuf::from(image_name);
|
||||
let original_image = image::io::Reader::open(&image_name)?
|
||||
.decode()
|
||||
.map_err(candle::Error::wrap)?;
|
||||
let image = {
|
||||
let data = original_image
|
||||
.resize_exact(640, 640, image::imageops::FilterType::Triangle)
|
||||
.to_rgb8()
|
||||
.into_raw();
|
||||
Tensor::from_vec(data, (640, 640, 3), &Device::Cpu)?.permute((2, 0, 1))?
|
||||
};
|
||||
let image = (image.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
|
||||
let predictions = model.forward(&image)?.squeeze(0)?;
|
||||
let predictions = predictions.t()?;
|
||||
println!("generated predictions {predictions:?}");
|
||||
let image = report(&predictions, original_image, 640, 640)?;
|
||||
image_name.set_extension("pp.jpg");
|
||||
println!("writing {image_name:?}");
|
||||
image.save(image_name)?
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
Reference in New Issue
Block a user