mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 19:58:35 +00:00
Add the SGD optimizer (#160)
* Add the nn::optim and some conversion traits. * Add the backward_step function for SGD. * Get the SGD optimizer to work and add a test. * Make the test slighly simpler.
This commit is contained in:
96
candle-core/src/convert.rs
Normal file
96
candle-core/src/convert.rs
Normal file
@ -0,0 +1,96 @@
|
||||
//! Implement conversion traits for tensors
|
||||
use crate::{Device, Error, Tensor, WithDType};
|
||||
use half::{bf16, f16};
|
||||
use std::convert::TryFrom;
|
||||
|
||||
impl<T: WithDType> TryFrom<&Tensor> for Vec<T> {
|
||||
type Error = Error;
|
||||
fn try_from(tensor: &Tensor) -> Result<Self, Self::Error> {
|
||||
tensor.to_vec1::<T>()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: WithDType> TryFrom<&Tensor> for Vec<Vec<T>> {
|
||||
type Error = Error;
|
||||
fn try_from(tensor: &Tensor) -> Result<Self, Self::Error> {
|
||||
tensor.to_vec2::<T>()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: WithDType> TryFrom<&Tensor> for Vec<Vec<Vec<T>>> {
|
||||
type Error = Error;
|
||||
fn try_from(tensor: &Tensor) -> Result<Self, Self::Error> {
|
||||
tensor.to_vec3::<T>()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: WithDType> TryFrom<Tensor> for Vec<T> {
|
||||
type Error = Error;
|
||||
fn try_from(tensor: Tensor) -> Result<Self, Self::Error> {
|
||||
Vec::<T>::try_from(&tensor)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: WithDType> TryFrom<Tensor> for Vec<Vec<T>> {
|
||||
type Error = Error;
|
||||
fn try_from(tensor: Tensor) -> Result<Self, Self::Error> {
|
||||
Vec::<Vec<T>>::try_from(&tensor)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: WithDType> TryFrom<Tensor> for Vec<Vec<Vec<T>>> {
|
||||
type Error = Error;
|
||||
fn try_from(tensor: Tensor) -> Result<Self, Self::Error> {
|
||||
Vec::<Vec<Vec<T>>>::try_from(&tensor)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: WithDType> TryFrom<&[T]> for Tensor {
|
||||
type Error = Error;
|
||||
fn try_from(v: &[T]) -> Result<Self, Self::Error> {
|
||||
Tensor::from_slice(v, v.len(), &Device::Cpu)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: WithDType> TryFrom<Vec<T>> for Tensor {
|
||||
type Error = Error;
|
||||
fn try_from(v: Vec<T>) -> Result<Self, Self::Error> {
|
||||
let len = v.len();
|
||||
Tensor::from_vec(v, len, &Device::Cpu)
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! from_tensor {
|
||||
($typ:ident) => {
|
||||
impl TryFrom<&Tensor> for $typ {
|
||||
type Error = Error;
|
||||
|
||||
fn try_from(tensor: &Tensor) -> Result<Self, Self::Error> {
|
||||
tensor.to_scalar::<$typ>()
|
||||
}
|
||||
}
|
||||
|
||||
impl TryFrom<Tensor> for $typ {
|
||||
type Error = Error;
|
||||
|
||||
fn try_from(tensor: Tensor) -> Result<Self, Self::Error> {
|
||||
$typ::try_from(&tensor)
|
||||
}
|
||||
}
|
||||
|
||||
impl TryFrom<$typ> for Tensor {
|
||||
type Error = Error;
|
||||
|
||||
fn try_from(v: $typ) -> Result<Self, Self::Error> {
|
||||
Tensor::new(v, &Device::Cpu)
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
from_tensor!(f64);
|
||||
from_tensor!(f32);
|
||||
from_tensor!(f16);
|
||||
from_tensor!(bf16);
|
||||
from_tensor!(u32);
|
||||
from_tensor!(u8);
|
@ -36,6 +36,7 @@
|
||||
mod backend;
|
||||
mod backprop;
|
||||
mod conv;
|
||||
mod convert;
|
||||
mod cpu_backend;
|
||||
#[cfg(feature = "cuda")]
|
||||
mod cuda_backend;
|
||||
|
@ -1,13 +1,12 @@
|
||||
// Variables are wrappers around tensors that can be modified, they are typically used for holding
|
||||
// weights and being modified by gradient descent.
|
||||
// They are not cloneable by default to avoid having too many potential writers on the data.
|
||||
// We also do not expose a public way to create variables as this would break the invariant that
|
||||
// the tensor within a variable is actually with `is_variable` set to `true`.
|
||||
// We do not expose a public way to create variables as this would break the invariant that the
|
||||
// tensor within a variable is actually with `is_variable` set to `true`.
|
||||
use crate::{DType, Device, Error, Result, Shape, Tensor};
|
||||
|
||||
/// A variable is a wrapper around a tensor, however variables can have their content modified
|
||||
/// whereas tensors are immutable.
|
||||
#[derive(Debug)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Var(Tensor);
|
||||
|
||||
impl std::ops::Deref for Var {
|
||||
|
Reference in New Issue
Block a user