mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
Add some tracing to llama. (#318)
This commit is contained in:
@ -1,5 +1,5 @@
|
||||
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{Embedding, Linear, VarBuilder};
|
||||
use candle_nn::{Embedding, VarBuilder};
|
||||
use std::collections::HashMap;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
@ -47,6 +47,21 @@ impl Config {
|
||||
}
|
||||
}
|
||||
|
||||
// We wrap the `Linear` layer here to add some tracing so that it's easier to profile the resulting
|
||||
// model.
|
||||
#[derive(Debug)]
|
||||
pub struct Linear {
|
||||
inner: candle_nn::Linear,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl Linear {
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
self.inner.forward(x)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Cache {
|
||||
masks: Arc<Mutex<HashMap<usize, Tensor>>>,
|
||||
@ -106,8 +121,9 @@ fn silu(xs: &Tensor) -> Result<Tensor> {
|
||||
}
|
||||
|
||||
fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
|
||||
let weight = vb.get((size2, size1), "weight")?;
|
||||
Ok(Linear::new(weight, None))
|
||||
let span = tracing::span!(tracing::Level::TRACE, "linear");
|
||||
let inner = candle_nn::linear_no_bias(size1, size2, vb)?;
|
||||
Ok(Linear { inner, span })
|
||||
}
|
||||
|
||||
fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
|
||||
@ -118,15 +134,18 @@ fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
|
||||
struct RmsNorm {
|
||||
scale: Tensor,
|
||||
eps: f64,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl RmsNorm {
|
||||
fn load(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
|
||||
let scale = vb.get(size, "weight")?;
|
||||
Ok(Self { scale, eps })
|
||||
Ok(Self { scale, eps, span })
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let in_dtype = x.dtype();
|
||||
// This is a no-op if x's dtype is already f32.
|
||||
let x = x.to_dtype(DType::F32)?;
|
||||
@ -155,6 +174,8 @@ struct CausalSelfAttention {
|
||||
head_dim: usize,
|
||||
cache: Cache,
|
||||
use_flash_attn: bool,
|
||||
span: tracing::Span,
|
||||
span_rot: tracing::Span,
|
||||
}
|
||||
|
||||
#[cfg(feature = "flash-attn")]
|
||||
@ -175,6 +196,7 @@ fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Ten
|
||||
|
||||
impl CausalSelfAttention {
|
||||
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||
let _enter = self.span_rot.enter();
|
||||
let (b_sz, _, seq_len, n_embd) = x.dims4()?;
|
||||
let cos = self.cache.cos.narrow(0, index_pos, seq_len)?;
|
||||
let sin = self.cache.sin.narrow(0, index_pos, seq_len)?;
|
||||
@ -188,6 +210,7 @@ impl CausalSelfAttention {
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let (b_sz, seq_len, n_embd) = x.dims3()?;
|
||||
let q = self.q_proj.forward(x)?;
|
||||
let k = self.k_proj.forward(x)?;
|
||||
@ -269,6 +292,8 @@ impl CausalSelfAttention {
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "attn");
|
||||
let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
|
||||
let size_in = cfg.hidden_size;
|
||||
let size_q = (cfg.hidden_size / cfg.n_head) * cfg.n_head;
|
||||
let size_kv = (cfg.hidden_size / cfg.n_head) * cfg.n_key_value_head;
|
||||
@ -286,6 +311,8 @@ impl CausalSelfAttention {
|
||||
head_dim: cfg.hidden_size / cfg.n_head,
|
||||
cache: cache.clone(),
|
||||
use_flash_attn: cfg.use_flash_attn,
|
||||
span,
|
||||
span_rot,
|
||||
})
|
||||
}
|
||||
}
|
||||
@ -301,15 +328,18 @@ struct Mlp {
|
||||
c_fc1: Linear,
|
||||
c_fc2: Linear,
|
||||
c_proj: Linear,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl Mlp {
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
|
||||
self.c_proj.forward(&x)
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "mlp");
|
||||
let h_size = cfg.hidden_size;
|
||||
let i_size = cfg.intermediate_size;
|
||||
let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?;
|
||||
@ -319,6 +349,7 @@ impl Mlp {
|
||||
c_fc1,
|
||||
c_fc2,
|
||||
c_proj,
|
||||
span,
|
||||
})
|
||||
}
|
||||
}
|
||||
@ -328,10 +359,12 @@ struct Block {
|
||||
attn: CausalSelfAttention,
|
||||
rms_2: RmsNorm,
|
||||
mlp: Mlp,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl Block {
|
||||
fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let residual = x;
|
||||
let x = self.rms_1.forward(x)?;
|
||||
let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?;
|
||||
@ -341,6 +374,7 @@ impl Block {
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "block");
|
||||
let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?;
|
||||
let mlp = Mlp::load(vb.pp("mlp"), cfg)?;
|
||||
let rms_1 = RmsNorm::load(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
|
||||
@ -354,6 +388,7 @@ impl Block {
|
||||
attn,
|
||||
rms_2,
|
||||
mlp,
|
||||
span,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user