Add the batcher. (#293)

This commit is contained in:
Laurent Mazare
2023-08-01 09:16:10 +01:00
committed by GitHub
parent fa98ca0c35
commit e1e8127f15
3 changed files with 111 additions and 18 deletions

View File

@ -319,26 +319,22 @@ fn run_eval(args: &EvaluationCmd, common_args: &Args) -> Result<()> {
println!("dataset loaded and encoded: {} tokens", tokens.len());
let seq_len = model.config.seq_len;
let mut inputs = vec![];
let mut targets = vec![];
for start_idx in (0..tokens.len()).step_by(seq_len) {
let iter = (0..tokens.len()).step_by(seq_len).flat_map(|start_idx| {
if start_idx + seq_len + 1 > tokens.len() {
break;
}
None
} else {
let tokens = &tokens[start_idx..start_idx + seq_len + 1];
let inputs_ = Tensor::new(&tokens[..seq_len], &device)?;
let targets_ = Tensor::new(&tokens[1..], &device)?;
inputs.push(inputs_);
targets.push(targets_);
if inputs.len() >= args.batch_size {
let inp = Tensor::stack(&inputs, 0)?;
let tgt = Tensor::stack(&targets, 0)?;
let inputs = Tensor::new(&tokens[..seq_len], &device).ok();
let targets = Tensor::new(&tokens[1..], &device).ok();
inputs.zip(targets)
}
});
let batch_iter = candle_nn::dataset::Batcher::new2(iter).batch_size(args.batch_size);
for inp_tgt in batch_iter {
let (inp, tgt) = inp_tgt?;
let logits = model.forward(&inp, 0)?;
let loss = candle_nn::loss::cross_entropy(&logits.flatten_to(1)?, &tgt.flatten_to(1)?)?;
println!("{}", loss.to_vec0::<f32>()?);
inputs.clear();
targets.clear();
}
}
Ok(())
}

96
candle-nn/src/dataset.rs Normal file
View File

@ -0,0 +1,96 @@
use candle::{Result, Tensor};
pub struct Batcher<I> {
inner: I,
batch_size: usize,
return_last_incomplete_batch: bool,
}
impl<I> Batcher<I> {
fn new(inner: I) -> Self {
Self {
inner,
batch_size: 16,
return_last_incomplete_batch: false,
}
}
pub fn batch_size(mut self, batch_size: usize) -> Self {
self.batch_size = batch_size;
self
}
pub fn return_last_incomplete_batch(mut self, r: bool) -> Self {
self.return_last_incomplete_batch = r;
self
}
}
pub struct Iter1<I: Iterator<Item = Tensor>> {
inner: I,
}
pub struct Iter2<I: Iterator<Item = (Tensor, Tensor)>> {
inner: I,
}
impl<I: Iterator<Item = Tensor>> Batcher<Iter1<I>> {
pub fn new1(inner: I) -> Self {
Self::new(Iter1 { inner })
}
}
impl<I: Iterator<Item = (Tensor, Tensor)>> Batcher<Iter2<I>> {
pub fn new2(inner: I) -> Self {
Self::new(Iter2 { inner })
}
}
impl<I: Iterator<Item = Tensor>> Iterator for Batcher<Iter1<I>> {
type Item = Result<Tensor>;
fn next(&mut self) -> Option<Self::Item> {
let mut items = Vec::with_capacity(self.batch_size);
for _i in 0..self.batch_size {
// We have two levels of inner here so that we can have two implementations of the
// Iterator trait that are different for Iter1 and Iter2. If rust gets better
// specialization at some point we can get rid of this.
match self.inner.inner.next() {
Some(item) => items.push(item),
None => {
if self.return_last_incomplete_batch {
break;
}
return None;
}
}
}
Some(Tensor::stack(&items, 0))
}
}
impl<I: Iterator<Item = (Tensor, Tensor)>> Iterator for Batcher<Iter2<I>> {
type Item = Result<(Tensor, Tensor)>;
fn next(&mut self) -> Option<Self::Item> {
let mut xs = Vec::with_capacity(self.batch_size);
let mut ys = Vec::with_capacity(self.batch_size);
for _i in 0..self.batch_size {
match self.inner.inner.next() {
Some((x, y)) => {
xs.push(x);
ys.push(y)
}
None => {
if self.return_last_incomplete_batch {
break;
}
return None;
}
}
}
let xs = Tensor::stack(&xs, 0);
let ys = Tensor::stack(&ys, 0);
Some(xs.and_then(|xs| ys.map(|ys| (xs, ys))))
}
}

View File

@ -2,6 +2,7 @@
// error type if needed or add some specialized cases on the candle-core side.
pub mod activation;
pub mod conv;
pub mod dataset;
pub mod embedding;
pub mod init;
pub mod layer_norm;