Add DINOv2Reg4 + PlantCLEF2024 (#2293)

* Add: DINOv2Reg4 with PlantCLEF2024 weights and example ( See https://arxiv.org/abs/2309.16588 and https://zenodo.org/records/10848263 )

* Remove extra files + update README to download them + remove extra lines

* minor fix (README remove extra spaces)

* minor fix (README: Fix image url)

* Modif: Add back interpolate_pos_encoding() + fix when no interpolation + remove extra comments + Update README ( source image changed and so the predictions )

* Fix: Improve code lisibility with '$ cargo clippy' and '$ cargo fmt'

* Another clippy fix.

---------

Co-authored-by: x-VEspit <vincent.espitalier@cirad.fr>
Co-authored-by: laurent <laurent.mazare@gmail.com>
This commit is contained in:
v-espitalier
2024-06-29 11:49:15 +02:00
committed by GitHub
parent a3dd87f15e
commit e27aac0a06
5 changed files with 395 additions and 0 deletions

View File

@ -0,0 +1,25 @@
# candle-dinov2-reg4
[DINOv2-reg4](https://arxiv.org/abs/2309.16588) is the lastest version of DINOv2 with registers.
In this example, it is used as an plant species classifier: the model returns the
probability for the image to belong to each of the 7806 PlantCLEF2024 categories.
## Running some example
```bash
# Download classes names and a plant picture to identify
curl https://huggingface.co/vincent-espitalier/dino-v2-reg4-with-plantclef2024-weights/raw/main/species_id_mapping.txt --output candle-examples/examples/dinov2reg4/species_id_mapping.txt
curl https://bs.plantnet.org/image/o/bd2d3830ac3270218ba82fd24e2290becd01317c --output candle-examples/examples/dinov2reg4/bd2d3830ac3270218ba82fd24e2290becd01317c.jpg
# Perform inference
cargo run --example dinov2reg4 --release -- --image candle-examples/examples/dinov2reg4/bd2d3830ac3270218ba82fd24e2290becd01317c.jpg
> Orchis simia Lam. : 45.55%
> Orchis × bergonii Nanteuil: 9.80%
> Orchis italica Poir. : 9.66%
> Orchis × angusticruris Franch.: 2.76%
> Orchis × bivonae Tod. : 2.54%
```
![Orchis Simia](https://bs.plantnet.org/image/o/bd2d3830ac3270218ba82fd24e2290becd01317c)

View File

@ -0,0 +1,70 @@
//! DINOv2 reg4 finetuned on PlantCLEF 2024
//! https://arxiv.org/abs/2309.16588
//! https://huggingface.co/spaces/BVRA/PlantCLEF2024
//! https://zenodo.org/records/10848263
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use clap::Parser;
use candle::{DType, IndexOp, D};
use candle_nn::{Module, VarBuilder};
use candle_transformers::models::dinov2reg4;
#[derive(Parser)]
struct Args {
#[arg(long)]
model: Option<String>,
#[arg(long)]
image: String,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = candle_examples::device(args.cpu)?;
let image = candle_examples::imagenet::load_image518(args.image)?.to_device(&device)?;
println!("loaded image {image:?}");
let f_species_id_mapping = "candle-examples/examples/dinov2reg4/species_id_mapping.txt";
let classes: Vec<String> = std::fs::read_to_string(f_species_id_mapping)
.expect("missing classes file")
.split('\n')
.map(|s| s.to_string())
.collect();
let model_file = match args.model {
None => {
let api = hf_hub::api::sync::Api::new()?;
let api =
api.model("vincent-espitalier/dino-v2-reg4-with-plantclef2024-weights".into());
api.get(
"vit_base_patch14_reg4_dinov2_lvd142m_pc24_onlyclassifier_then_all.safetensors",
)?
}
Some(model) => model.into(),
};
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
let model = dinov2reg4::vit_base(vb)?;
println!("model built");
let logits = model.forward(&image.unsqueeze(0)?)?;
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
.i(0)?
.to_vec1::<f32>()?;
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
for &(category_idx, pr) in prs.iter().take(5) {
println!("{:24}: {:.2}%", classes[category_idx], 100. * pr);
}
Ok(())
}

View File

@ -17,6 +17,24 @@ pub fn load_image224<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
.broadcast_div(&std)
}
/// Loads an image from disk using the image crate, this returns a tensor with shape
/// (3, 518, 518). imagenet normalization is applied.
/// The model dinov2 reg4 analyzes images with dimensions 3x518x518 (resulting in 37x37 transformer tokens).
pub fn load_image518<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
let img = image::io::Reader::open(p)?
.decode()
.map_err(candle::Error::wrap)?
.resize_to_fill(518, 518, image::imageops::FilterType::Triangle);
let img = img.to_rgb8();
let data = img.into_raw();
let data = Tensor::from_vec(data, (518, 518, 3), &Device::Cpu)?.permute((2, 0, 1))?;
let mean = Tensor::new(&[0.485f32, 0.456, 0.406], &Device::Cpu)?.reshape((3, 1, 1))?;
let std = Tensor::new(&[0.229f32, 0.224, 0.225], &Device::Cpu)?.reshape((3, 1, 1))?;
(data.to_dtype(candle::DType::F32)? / 255.)?
.broadcast_sub(&mean)?
.broadcast_div(&std)
}
pub const CLASS_COUNT: i64 = 1000;
pub const CLASSES: [&str; 1000] = [

View File

@ -0,0 +1,281 @@
use candle::{IndexOp, Result, Tensor, D};
use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};
const IMG_SIZE: usize = 518;
const PATCH_SIZE: usize = 14;
const NUM_CLASSES: usize = 7806; // PlantCLEF2024 DINOv2 (https://zenodo.org/records/10848263)
fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> {
if bias {
candle_nn::linear(in_dim, out_dim, vb)
} else {
candle_nn::linear_no_bias(in_dim, out_dim, vb)
}
}
#[derive(Debug)]
struct Attention {
qkv: Linear,
proj: Linear,
num_heads: usize,
scale: f64,
}
impl Attention {
fn new(
vb: VarBuilder,
dim: usize,
num_heads: usize,
qkv_bias: bool,
proj_bias: bool,
) -> Result<Self> {
let qkv = linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?;
let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?;
let scale = 1. / ((dim / num_heads) as f64).sqrt();
Ok(Self {
qkv,
proj,
num_heads,
scale,
})
}
}
impl Module for Attention {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (b, n, c) = xs.dims3()?;
let qkv = self
.qkv
.forward(xs)?
.reshape((b, n, 3, self.num_heads, c / self.num_heads))?
.transpose(1, 2)? // 02134
.transpose(0, 1)? // 20134
.transpose(2, 3)?; // 20314
let q = (qkv.i(0)? * self.scale)?;
let k = qkv.i(1)?.contiguous()?;
let v = qkv.i(2)?.contiguous()?;
let attn = candle_nn::ops::softmax(&q.matmul(&k.t()?)?, D::Minus1)?;
let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?;
self.proj.forward(&attn)
}
}
#[derive(Debug)]
struct LayerScale {
gamma: Tensor,
}
impl LayerScale {
fn new(vb: VarBuilder, dim: usize) -> Result<Self> {
let gamma = vb.get(dim, "gamma")?;
Ok(Self { gamma })
}
}
impl Module for LayerScale {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.broadcast_mul(&self.gamma)
}
}
#[derive(Debug)]
struct Mlp {
fc1: Linear,
fc2: Linear,
}
impl Mlp {
fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result<Self> {
let out_features = in_features;
let fc1 = linear(vb.pp("fc1"), in_features, hidden_features, bias)?;
let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?;
Ok(Self { fc1, fc2 })
}
}
impl Module for Mlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.fc1.forward(xs)?.gelu()?;
self.fc2.forward(&xs)
}
}
#[derive(Debug)]
struct Block {
norm1: LayerNorm,
attn: Attention,
ls1: LayerScale,
norm2: LayerNorm,
mlp: Mlp,
ls2: LayerScale,
}
impl Block {
fn new(vb: VarBuilder, dim: usize, num_heads: usize) -> Result<Self> {
let norm1 = layer_norm(dim, 1e-6, vb.pp("norm1"))?;
let attn = Attention::new(vb.pp("attn"), dim, num_heads, true, true)?;
let ls1 = LayerScale::new(vb.pp("ls1"), dim)?;
let norm2 = layer_norm(dim, 1e-6, vb.pp("norm2"))?;
let mlp = Mlp::new(vb.pp("mlp"), dim, dim * 4, true)?;
let ls2 = LayerScale::new(vb.pp("ls2"), dim)?;
Ok(Self {
norm1,
attn,
ls1,
norm2,
mlp,
ls2,
})
}
}
impl Module for Block {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let residual = xs;
let xs = self
.ls1
.forward(&self.attn.forward(&self.norm1.forward(xs)?)?)?;
let xs = (xs + residual)?;
let residual = &xs;
let xs = self
.ls2
.forward(&self.mlp.forward(&self.norm2.forward(&xs)?)?)?;
xs + residual
}
}
#[derive(Debug)]
struct PatchEmbed {
proj: candle_nn::Conv2d,
patch_size: (usize, usize),
num_patches: usize,
}
impl PatchEmbed {
fn new(
vb: VarBuilder,
img_size: usize,
patch_size: usize,
in_chans: usize,
embed_dim: usize,
) -> Result<Self> {
let config = candle_nn::Conv2dConfig {
stride: patch_size,
..Default::default()
};
let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?;
let num_patches = (img_size / patch_size) * (img_size / patch_size);
Ok(Self {
proj,
patch_size: (patch_size, patch_size),
num_patches,
})
}
}
impl Module for PatchEmbed {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (_b, _c, h, w) = xs.dims4()?;
let (patch_h, patch_w) = self.patch_size;
if (h % patch_h) != 0 {
candle::bail!("image height {h} is not a multiple of patch height {patch_h}")
}
if (w % patch_w) != 0 {
candle::bail!("image width {w} is not a multiple of patch width {patch_w}")
}
let xs = self.proj.forward(xs)?;
let (b, c, h, w) = xs.dims4()?;
// flatten embeddings.
xs.reshape((b, c, h * w))?.transpose(1, 2)
}
}
#[derive(Debug)]
pub struct DinoVisionTransformer {
patch_embed: PatchEmbed,
cls_token: Tensor,
reg_token: Tensor,
pos_embed: Tensor,
blocks: Vec<Block>,
norm: LayerNorm,
head: Linear,
}
impl DinoVisionTransformer {
pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result<Self> {
let patch_embed =
PatchEmbed::new(vb.pp("patch_embed"), IMG_SIZE, PATCH_SIZE, 3, embed_dim)?;
let cls_token = vb.get((1, 1, embed_dim), "cls_token")?;
let reg_token = vb.get((1, 4, embed_dim), "reg_token")?;
let pos_embed = vb.get((1, patch_embed.num_patches, embed_dim), "pos_embed")?;
let head = linear(vb.pp("head"), embed_dim, NUM_CLASSES, true)?;
let norm = layer_norm(embed_dim, 1e-6, vb.pp("norm"))?;
let vb_b = vb.pp("blocks");
let blocks = (0..depth)
.map(|i| Block::new(vb_b.pp(&i.to_string()), embed_dim, num_heads))
.collect::<Result<Vec<_>>>()?;
Ok(Self {
patch_embed,
cls_token,
reg_token,
pos_embed,
blocks,
norm,
head,
})
}
fn interpolate_pos_encoding(&self, xs: &Tensor, w: usize, h: usize) -> Result<Tensor> {
let npatch = xs.dim(1)? - 1;
let n = self.pos_embed.dim(1)? - 1;
let sqrt_n = (n as f64).sqrt();
if npatch == n && w == h {
return Ok(self.pos_embed.clone());
}
let patch_pos_embed = &self.pos_embed;
let dim = xs.dim(D::Minus1)?;
let (w0, h0) = ((w / PATCH_SIZE) as f64 + 0.1, (h / PATCH_SIZE) as f64 + 0.1);
let patch_pos_embed = patch_pos_embed
.reshape((1, sqrt_n as usize, sqrt_n as usize, dim))?
.transpose(2, 3)?
.transpose(1, 2)?;
// This uses bicubic interpolation in the original implementation.
let patch_pos_embed = patch_pos_embed.upsample_nearest2d(h0 as usize, w0 as usize)?;
let el_count = patch_pos_embed.shape().elem_count();
patch_pos_embed
.transpose(1, 2)?
.transpose(2, 3)?
.reshape((1, el_count / dim, dim))
}
fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result<Tensor> {
let (_b, _nc, w, h) = xs.dims4()?;
if (w != IMG_SIZE) || (h != IMG_SIZE) {
panic!("Error: The input tensor should have the shape: Bx3x518x518.");
}
let xs = self.patch_embed.forward(xs)?;
let xs = (&xs + &self.interpolate_pos_encoding(&xs, w, h)?)?;
let xs = Tensor::cat(&[&self.cls_token, &self.reg_token, &xs], 1)?;
Ok(xs)
}
}
impl Module for DinoVisionTransformer {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let mut xs = self.prepare_tokens_with_mask(xs)?;
for blk in self.blocks.iter() {
xs = blk.forward(&xs)?
}
let xs = self.norm.forward(&xs)?;
let xs_norm_clstoken = xs.i((.., 0))?;
self.head.forward(&xs_norm_clstoken)
}
}
pub fn vit_small(vb: VarBuilder) -> Result<DinoVisionTransformer> {
DinoVisionTransformer::new(vb, 12, 384, 6)
}
pub fn vit_base(vb: VarBuilder) -> Result<DinoVisionTransformer> {
DinoVisionTransformer::new(vb, 12, 768, 12)
}

View File

@ -8,6 +8,7 @@ pub mod convmixer;
pub mod convnext;
pub mod depth_anything_v2;
pub mod dinov2;
pub mod dinov2reg4;
pub mod distilbert;
pub mod efficientnet;
pub mod efficientvit;