mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Add a quantized variant of llama2.c (#1197)
* Add a quantized variant of llama2.c * Clippy fixes.
This commit is contained in:
@ -94,28 +94,18 @@ pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) ->
|
|||||||
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
|
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
|
||||||
}
|
}
|
||||||
let nb = n / QK8_0;
|
let nb = n / QK8_0;
|
||||||
if nb % 2 != 0 {
|
|
||||||
crate::bail!("vec_dot_q8_0_q8_0: {nb} is not even")
|
|
||||||
}
|
|
||||||
unsafe {
|
unsafe {
|
||||||
let mut sumv0 = vdupq_n_f32(0.0f32);
|
let mut sumv0 = vdupq_n_f32(0.0f32);
|
||||||
let mut sumv1 = vdupq_n_f32(0.0f32);
|
for i in 0..nb {
|
||||||
for i in (0..nb).step_by(2) {
|
|
||||||
let x0 = &xs[i];
|
let x0 = &xs[i];
|
||||||
let x1 = &xs[i + 1];
|
|
||||||
let y0 = &ys[i];
|
let y0 = &ys[i];
|
||||||
let y1 = &ys[i + 1];
|
|
||||||
|
|
||||||
let x0_0 = vld1q_s8(x0.qs.as_ptr());
|
let x0_0 = vld1q_s8(x0.qs.as_ptr());
|
||||||
let x0_1 = vld1q_s8(x0.qs.as_ptr().add(16));
|
let x0_1 = vld1q_s8(x0.qs.as_ptr().add(16));
|
||||||
let x1_0 = vld1q_s8(x1.qs.as_ptr());
|
|
||||||
let x1_1 = vld1q_s8(x1.qs.as_ptr().add(16));
|
|
||||||
|
|
||||||
// load y
|
// load y
|
||||||
let y0_0 = vld1q_s8(y0.qs.as_ptr());
|
let y0_0 = vld1q_s8(y0.qs.as_ptr());
|
||||||
let y0_1 = vld1q_s8(y0.qs.as_ptr().add(16));
|
let y0_1 = vld1q_s8(y0.qs.as_ptr().add(16));
|
||||||
let y1_0 = vld1q_s8(y1.qs.as_ptr());
|
|
||||||
let y1_1 = vld1q_s8(y1.qs.as_ptr().add(16));
|
|
||||||
|
|
||||||
// TODO dotprod once this is the intrinsics are.
|
// TODO dotprod once this is the intrinsics are.
|
||||||
let p0_0 = vmull_s8(vget_low_s8(x0_0), vget_low_s8(y0_0));
|
let p0_0 = vmull_s8(vget_low_s8(x0_0), vget_low_s8(y0_0));
|
||||||
@ -123,28 +113,16 @@ pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) ->
|
|||||||
let p0_2 = vmull_s8(vget_low_s8(x0_1), vget_low_s8(y0_1));
|
let p0_2 = vmull_s8(vget_low_s8(x0_1), vget_low_s8(y0_1));
|
||||||
let p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
|
let p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
|
||||||
|
|
||||||
let p1_0 = vmull_s8(vget_low_s8(x1_0), vget_low_s8(y1_0));
|
|
||||||
let p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
|
|
||||||
let p1_2 = vmull_s8(vget_low_s8(x1_1), vget_low_s8(y1_1));
|
|
||||||
let p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
|
|
||||||
|
|
||||||
let p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
|
let p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
|
||||||
let p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
|
let p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
|
||||||
let p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
|
|
||||||
let p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
|
|
||||||
|
|
||||||
sumv0 = vmlaq_n_f32(
|
sumv0 = vmlaq_n_f32(
|
||||||
sumv0,
|
sumv0,
|
||||||
vcvtq_f32_s32(vaddq_s32(p0, p1)),
|
vcvtq_f32_s32(vaddq_s32(p0, p1)),
|
||||||
x0.d.to_f32() * y0.d.to_f32(),
|
x0.d.to_f32() * y0.d.to_f32(),
|
||||||
);
|
);
|
||||||
sumv1 = vmlaq_n_f32(
|
|
||||||
sumv1,
|
|
||||||
vcvtq_f32_s32(vaddq_s32(p2, p3)),
|
|
||||||
x1.d.to_f32() * y1.d.to_f32(),
|
|
||||||
);
|
|
||||||
}
|
}
|
||||||
Ok(vaddvq_f32(sumv0) + vaddvq_f32(sumv1))
|
Ok(vaddvq_f32(sumv0))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -61,10 +61,6 @@ pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) ->
|
|||||||
if n % QK8_0 != 0 {
|
if n % QK8_0 != 0 {
|
||||||
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
|
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
|
||||||
}
|
}
|
||||||
let nb = n / QK8_0;
|
|
||||||
if nb % 2 != 0 {
|
|
||||||
crate::bail!("vec_dot_q8_0_q8_0: {nb} is not even")
|
|
||||||
}
|
|
||||||
unsafe {
|
unsafe {
|
||||||
let mut acc = f32x4_splat(0.0f32);
|
let mut acc = f32x4_splat(0.0f32);
|
||||||
for (x, y) in xs.iter().zip(ys.iter()) {
|
for (x, y) in xs.iter().zip(ys.iter()) {
|
||||||
|
@ -7,6 +7,7 @@ extern crate accelerate_src;
|
|||||||
extern crate intel_mkl_src;
|
extern crate intel_mkl_src;
|
||||||
|
|
||||||
mod model;
|
mod model;
|
||||||
|
mod qmodel;
|
||||||
mod training;
|
mod training;
|
||||||
mod weights;
|
mod weights;
|
||||||
use clap::{Parser, Subcommand};
|
use clap::{Parser, Subcommand};
|
||||||
@ -19,6 +20,7 @@ use std::io::Write;
|
|||||||
use tokenizers::Tokenizer;
|
use tokenizers::Tokenizer;
|
||||||
|
|
||||||
use model::{Config, Llama};
|
use model::{Config, Llama};
|
||||||
|
use qmodel::QLlama;
|
||||||
use weights::TransformerWeights;
|
use weights::TransformerWeights;
|
||||||
|
|
||||||
#[derive(Parser, Debug, Clone)]
|
#[derive(Parser, Debug, Clone)]
|
||||||
@ -152,6 +154,20 @@ fn main() -> anyhow::Result<()> {
|
|||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
enum Model {
|
||||||
|
Llama(Llama),
|
||||||
|
QLlama(QLlama),
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Model {
|
||||||
|
fn forward(&self, xs: &Tensor, pos: usize) -> anyhow::Result<Tensor> {
|
||||||
|
match self {
|
||||||
|
Self::Llama(l) => Ok(l.forward(xs, pos)?),
|
||||||
|
Self::QLlama(l) => Ok(l.forward(xs, pos)?),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
fn run_eval(args: &EvaluationCmd, common_args: &Args) -> Result<()> {
|
fn run_eval(args: &EvaluationCmd, common_args: &Args) -> Result<()> {
|
||||||
use std::io::BufRead;
|
use std::io::BufRead;
|
||||||
|
|
||||||
@ -241,24 +257,56 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
|
|||||||
|
|
||||||
let device = candle_examples::device(common_args.cpu)?;
|
let device = candle_examples::device(common_args.cpu)?;
|
||||||
|
|
||||||
|
let is_gguf = config_path.extension().map_or(false, |v| v == "gguf");
|
||||||
let is_safetensors = config_path
|
let is_safetensors = config_path
|
||||||
.extension()
|
.extension()
|
||||||
.map_or(false, |v| v == "safetensors");
|
.map_or(false, |v| v == "safetensors");
|
||||||
let (vb, config) = if is_safetensors {
|
let (model, config) = if is_gguf {
|
||||||
|
let config = Config::tiny();
|
||||||
|
let vb = qmodel::VarBuilder::from_gguf(config_path)?;
|
||||||
|
let freq_cis_real = vb
|
||||||
|
.get(
|
||||||
|
(config.seq_len, config.head_size() / 2),
|
||||||
|
"rot.freq_cis_real",
|
||||||
|
)?
|
||||||
|
.dequantize(&candle::Device::Cpu)?;
|
||||||
|
let freq_cis_imag = vb
|
||||||
|
.get(
|
||||||
|
(config.seq_len, config.head_size() / 2),
|
||||||
|
"rot.freq_cis_imag",
|
||||||
|
)?
|
||||||
|
.dequantize(&candle::Device::Cpu)?;
|
||||||
|
|
||||||
|
let fake_vb = candle_nn::VarBuilder::from_tensors(
|
||||||
|
[
|
||||||
|
("freq_cis_real".to_string(), freq_cis_real),
|
||||||
|
("freq_cis_imag".to_string(), freq_cis_imag),
|
||||||
|
]
|
||||||
|
.into_iter()
|
||||||
|
.collect(),
|
||||||
|
candle::DType::F32,
|
||||||
|
&candle::Device::Cpu,
|
||||||
|
);
|
||||||
|
let cache = model::Cache::new(true, &config, fake_vb)?;
|
||||||
|
let model = Model::QLlama(QLlama::load(vb, &cache, config.clone())?);
|
||||||
|
(model, config)
|
||||||
|
} else if is_safetensors {
|
||||||
let config = Config::tiny();
|
let config = Config::tiny();
|
||||||
let tensors = candle::safetensors::load(config_path, &device)?;
|
let tensors = candle::safetensors::load(config_path, &device)?;
|
||||||
let vb = candle_nn::VarBuilder::from_tensors(tensors, candle::DType::F32, &device);
|
let vb = candle_nn::VarBuilder::from_tensors(tensors, candle::DType::F32, &device);
|
||||||
(vb, config)
|
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
||||||
|
let model = Model::Llama(Llama::load(vb, &cache, config.clone())?);
|
||||||
|
(model, config)
|
||||||
} else {
|
} else {
|
||||||
let mut file = std::fs::File::open(config_path)?;
|
let mut file = std::fs::File::open(config_path)?;
|
||||||
let config = Config::from_reader(&mut file)?;
|
let config = Config::from_reader(&mut file)?;
|
||||||
println!("{config:?}");
|
println!("{config:?}");
|
||||||
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
|
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
|
||||||
let vb = weights.var_builder(&config, &device)?;
|
let vb = weights.var_builder(&config, &device)?;
|
||||||
(vb, config)
|
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
||||||
|
let model = Model::Llama(Llama::load(vb, &cache, config.clone())?);
|
||||||
|
(model, config)
|
||||||
};
|
};
|
||||||
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
|
||||||
let model = Llama::load(vb, &cache, config)?;
|
|
||||||
|
|
||||||
println!("starting the inference loop");
|
println!("starting the inference loop");
|
||||||
let mut logits_processor = LogitsProcessor::new(299792458, args.temperature, args.top_p);
|
let mut logits_processor = LogitsProcessor::new(299792458, args.temperature, args.top_p);
|
||||||
@ -273,7 +321,7 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
|
|||||||
|
|
||||||
let start_gen = std::time::Instant::now();
|
let start_gen = std::time::Instant::now();
|
||||||
for index in 0.. {
|
for index in 0.. {
|
||||||
if tokens.len() >= model.config.seq_len {
|
if tokens.len() >= config.seq_len {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||||
|
@ -36,9 +36,9 @@ pub struct Cache {
|
|||||||
masks: Arc<Mutex<HashMap<usize, Tensor>>>,
|
masks: Arc<Mutex<HashMap<usize, Tensor>>>,
|
||||||
pub use_kv_cache: bool,
|
pub use_kv_cache: bool,
|
||||||
#[allow(clippy::type_complexity)]
|
#[allow(clippy::type_complexity)]
|
||||||
kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
|
pub kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
|
||||||
cos: Tensor,
|
pub cos: Tensor,
|
||||||
sin: Tensor,
|
pub sin: Tensor,
|
||||||
device: Device,
|
device: Device,
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -75,7 +75,7 @@ impl Cache {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
fn mask(&self, t: usize) -> Result<Tensor> {
|
pub fn mask(&self, t: usize) -> Result<Tensor> {
|
||||||
let mut masks = self.masks.lock().unwrap();
|
let mut masks = self.masks.lock().unwrap();
|
||||||
if let Some(mask) = masks.get(&t) {
|
if let Some(mask) = masks.get(&t) {
|
||||||
Ok(mask.clone())
|
Ok(mask.clone())
|
||||||
|
227
candle-examples/examples/llama2-c/qmodel.rs
Normal file
227
candle-examples/examples/llama2-c/qmodel.rs
Normal file
@ -0,0 +1,227 @@
|
|||||||
|
use super::model::{Cache, Config};
|
||||||
|
use candle::{DType, IndexOp, Module, Result, Tensor, D};
|
||||||
|
use candle_transformers::quantized_nn::{linear_no_bias as linear, Embedding, Linear, RmsNorm};
|
||||||
|
pub use candle_transformers::quantized_var_builder::VarBuilder;
|
||||||
|
|
||||||
|
fn silu(xs: &Tensor) -> Result<Tensor> {
|
||||||
|
xs / (xs.neg()?.exp()? + 1.0)?
|
||||||
|
}
|
||||||
|
|
||||||
|
struct CausalSelfAttention {
|
||||||
|
q_proj: Linear,
|
||||||
|
k_proj: Linear,
|
||||||
|
v_proj: Linear,
|
||||||
|
o_proj: Linear,
|
||||||
|
n_head: usize,
|
||||||
|
n_key_value_head: usize,
|
||||||
|
head_dim: usize,
|
||||||
|
cache: Cache,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl CausalSelfAttention {
|
||||||
|
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||||
|
let (b_sz, seq_len, h, n_embd) = x.dims4()?;
|
||||||
|
let cos = self.cache.cos.i(index_pos..index_pos + seq_len)?;
|
||||||
|
let sin = self.cache.sin.i(index_pos..index_pos + seq_len)?;
|
||||||
|
let cos = cos.unsqueeze(1)?;
|
||||||
|
let sin = sin.unsqueeze(1)?;
|
||||||
|
let cos = cos.broadcast_as((b_sz, seq_len, 1, n_embd / 2, 1))?;
|
||||||
|
let sin = sin.broadcast_as((b_sz, seq_len, 1, n_embd / 2, 1))?;
|
||||||
|
let x = x.reshape((b_sz, seq_len, h, n_embd / 2, 2))?;
|
||||||
|
let x0 = x.narrow(D::Minus1, 0, 1)?;
|
||||||
|
let x1 = x.narrow(D::Minus1, 1, 1)?;
|
||||||
|
let dst0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?;
|
||||||
|
let dst1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?;
|
||||||
|
let rope = Tensor::cat(&[&dst0, &dst1], D::Minus1)?.reshape((b_sz, seq_len, h, n_embd))?;
|
||||||
|
Ok(rope)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
|
||||||
|
let (b_sz, seq_len, n_embd) = x.dims3()?;
|
||||||
|
let q = self.q_proj.forward(x)?;
|
||||||
|
let k = self.k_proj.forward(x)?;
|
||||||
|
let v = self.v_proj.forward(x)?;
|
||||||
|
|
||||||
|
let q = q.reshape((b_sz, seq_len, self.n_head, self.head_dim))?;
|
||||||
|
let k = k.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?;
|
||||||
|
let mut v = v.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?;
|
||||||
|
|
||||||
|
let q = self.apply_rotary_emb(&q, index_pos)?;
|
||||||
|
let mut k = self.apply_rotary_emb(&k, index_pos)?;
|
||||||
|
|
||||||
|
if self.cache.use_kv_cache {
|
||||||
|
let mut cache = self.cache.kvs.lock().unwrap();
|
||||||
|
if let Some((cache_k, cache_v)) = &cache[block_idx] {
|
||||||
|
k = Tensor::cat(&[cache_k, &k], 1)?.contiguous()?;
|
||||||
|
v = Tensor::cat(&[cache_v, &v], 1)?.contiguous()?;
|
||||||
|
}
|
||||||
|
cache[block_idx] = Some((k.clone(), v.clone()))
|
||||||
|
}
|
||||||
|
|
||||||
|
let k = self.repeat_kv(k)?;
|
||||||
|
let v = self.repeat_kv(v)?;
|
||||||
|
|
||||||
|
let q = q.transpose(1, 2)?.contiguous()?;
|
||||||
|
let k = k.transpose(1, 2)?.contiguous()?;
|
||||||
|
let v = v.transpose(1, 2)?.contiguous()?;
|
||||||
|
|
||||||
|
let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
|
||||||
|
let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?;
|
||||||
|
let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
|
||||||
|
let att = candle_nn::ops::softmax(&att, D::Minus1)?;
|
||||||
|
// Convert to contiguous as matmul doesn't support strided vs for now.
|
||||||
|
let y = att.matmul(&v.contiguous()?)?;
|
||||||
|
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
|
||||||
|
let y = self.o_proj.forward(&y)?;
|
||||||
|
Ok(y)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
|
||||||
|
let n_rep = self.n_head / self.n_key_value_head;
|
||||||
|
if n_rep == 1 {
|
||||||
|
Ok(x)
|
||||||
|
} else {
|
||||||
|
let (b_sz, seq_len, n_kv_head, head_dim) = x.dims4()?;
|
||||||
|
let x = x
|
||||||
|
.unsqueeze(3)?
|
||||||
|
.expand((b_sz, seq_len, n_kv_head, n_rep, head_dim))?
|
||||||
|
.reshape((b_sz, seq_len, n_kv_head * n_rep, head_dim))?;
|
||||||
|
Ok(x)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
|
||||||
|
let size_in = cfg.dim;
|
||||||
|
let size_q = (cfg.dim / cfg.n_heads) * cfg.n_heads;
|
||||||
|
let size_kv = (cfg.dim / cfg.n_heads) * cfg.n_kv_heads;
|
||||||
|
let q_proj = linear(size_in, size_q, vb.pp("q_proj"))?;
|
||||||
|
let k_proj = linear(size_in, size_kv, vb.pp("k_proj"))?;
|
||||||
|
let v_proj = linear(size_in, size_kv, vb.pp("v_proj"))?;
|
||||||
|
let o_proj = linear(size_q, size_in, vb.pp("o_proj"))?;
|
||||||
|
Ok(Self {
|
||||||
|
q_proj,
|
||||||
|
k_proj,
|
||||||
|
v_proj,
|
||||||
|
o_proj,
|
||||||
|
n_head: cfg.n_heads,
|
||||||
|
n_key_value_head: cfg.n_kv_heads,
|
||||||
|
head_dim: cfg.dim / cfg.n_heads,
|
||||||
|
cache: cache.clone(),
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
|
||||||
|
let shape = mask.shape();
|
||||||
|
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
|
||||||
|
let m = mask.where_cond(&on_true, on_false)?;
|
||||||
|
Ok(m)
|
||||||
|
}
|
||||||
|
|
||||||
|
struct Mlp {
|
||||||
|
c_fc1: Linear,
|
||||||
|
c_fc2: Linear,
|
||||||
|
c_proj: Linear,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Mlp {
|
||||||
|
fn new(c_fc1: Linear, c_fc2: Linear, c_proj: Linear) -> Self {
|
||||||
|
Self {
|
||||||
|
c_fc1,
|
||||||
|
c_fc2,
|
||||||
|
c_proj,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||||
|
let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
|
||||||
|
self.c_proj.forward(&x)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||||
|
let h_size = cfg.dim;
|
||||||
|
let i_size = cfg.hidden_dim;
|
||||||
|
let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?;
|
||||||
|
let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?;
|
||||||
|
let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?;
|
||||||
|
Ok(Self::new(c_fc1, c_fc2, c_proj))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct Block {
|
||||||
|
rms_1: RmsNorm,
|
||||||
|
attn: CausalSelfAttention,
|
||||||
|
rms_2: RmsNorm,
|
||||||
|
mlp: Mlp,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Block {
|
||||||
|
fn new(rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp) -> Self {
|
||||||
|
Self {
|
||||||
|
rms_1,
|
||||||
|
attn,
|
||||||
|
rms_2,
|
||||||
|
mlp,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
|
||||||
|
let residual = x;
|
||||||
|
let x = self.rms_1.forward(x)?;
|
||||||
|
let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?;
|
||||||
|
let residual = &x;
|
||||||
|
let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?;
|
||||||
|
Ok(x)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
|
||||||
|
let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?;
|
||||||
|
let mlp = Mlp::load(vb.pp("mlp"), cfg)?;
|
||||||
|
let input_layernorm = RmsNorm::new(cfg.dim, cfg.norm_eps, vb.pp("input_layernorm"))?;
|
||||||
|
let post_attention_layernorm =
|
||||||
|
RmsNorm::new(cfg.dim, cfg.norm_eps, vb.pp("post_attention_layernorm"))?;
|
||||||
|
Ok(Self::new(
|
||||||
|
input_layernorm,
|
||||||
|
attn,
|
||||||
|
post_attention_layernorm,
|
||||||
|
mlp,
|
||||||
|
))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub struct QLlama {
|
||||||
|
wte: Embedding,
|
||||||
|
blocks: Vec<Block>,
|
||||||
|
ln_f: RmsNorm,
|
||||||
|
lm_head: Linear,
|
||||||
|
pub config: Config,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl QLlama {
|
||||||
|
pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||||
|
let (_b_sz, _seq_len) = x.dims2()?;
|
||||||
|
let mut x = self.wte.forward(x)?;
|
||||||
|
for (block_idx, block) in self.blocks.iter().enumerate() {
|
||||||
|
x = block.forward(&x, index_pos, block_idx)?;
|
||||||
|
}
|
||||||
|
let x = self.ln_f.forward(&x)?;
|
||||||
|
let logits = self.lm_head.forward(&x)?;
|
||||||
|
logits.to_dtype(DType::F32)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn load(vb: VarBuilder, cache: &Cache, cfg: Config) -> Result<Self> {
|
||||||
|
let wte = Embedding::new(cfg.vocab_size, cfg.dim, vb.pp("model.embed_tokens"))?;
|
||||||
|
let lm_head = linear(cfg.dim, cfg.vocab_size, vb.pp("lm_head"))?;
|
||||||
|
let ln_f = RmsNorm::new(cfg.dim, cfg.norm_eps, vb.pp("model.norm"))?;
|
||||||
|
let blocks: Vec<_> = (0..cfg.n_layers)
|
||||||
|
.map(|i| Block::load(vb.pp(format!("model.layers.{i}")), cache, &cfg).unwrap())
|
||||||
|
.collect();
|
||||||
|
Ok(Self {
|
||||||
|
wte,
|
||||||
|
blocks,
|
||||||
|
ln_f,
|
||||||
|
lm_head,
|
||||||
|
config: cfg,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
Reference in New Issue
Block a user