mirror of
https://github.com/huggingface/candle.git
synced 2025-06-20 04:00:28 +00:00
Split out the quantized file. (#456)
This commit is contained in:
294
candle-core/src/quantized/ggml_file.rs
Normal file
294
candle-core/src/quantized/ggml_file.rs
Normal file
@ -0,0 +1,294 @@
|
||||
//! Support for the GGML file format.
|
||||
|
||||
use super::{k_quants, GgmlDType};
|
||||
use crate::{DType, Device, Result, Tensor};
|
||||
use byteorder::{LittleEndian, ReadBytesExt};
|
||||
|
||||
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.h#L37
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
enum Magic {
|
||||
Ggjt,
|
||||
Ggla,
|
||||
Ggmf,
|
||||
Ggml,
|
||||
Ggsn,
|
||||
}
|
||||
|
||||
impl TryFrom<u32> for Magic {
|
||||
type Error = crate::Error;
|
||||
fn try_from(value: u32) -> Result<Self> {
|
||||
let magic = match value {
|
||||
0x67676a74 => Self::Ggjt,
|
||||
0x67676c61 => Self::Ggla,
|
||||
0x67676d66 => Self::Ggmf,
|
||||
0x67676d6c => Self::Ggml,
|
||||
0x6767736e => Self::Ggsn,
|
||||
_ => crate::bail!("unknown magic {value:08x}"),
|
||||
};
|
||||
Ok(magic)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub enum VersionedMagic {
|
||||
GgmlUnversioned,
|
||||
GgmfV1,
|
||||
GgjtV1,
|
||||
GgjtV2,
|
||||
GgjtV3,
|
||||
}
|
||||
|
||||
impl VersionedMagic {
|
||||
fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> {
|
||||
let magic = reader.read_u32::<LittleEndian>()?;
|
||||
let magic = Magic::try_from(magic)?;
|
||||
if magic == Magic::Ggml {
|
||||
return Ok(Self::GgmlUnversioned);
|
||||
}
|
||||
let version = reader.read_u32::<LittleEndian>()?;
|
||||
let versioned_magic = match (magic, version) {
|
||||
(Magic::Ggmf, 1) => Self::GgmfV1,
|
||||
(Magic::Ggjt, 1) => Self::GgjtV1,
|
||||
(Magic::Ggjt, 2) => Self::GgjtV2,
|
||||
(Magic::Ggjt, 3) => Self::GgjtV3,
|
||||
_ => crate::bail!("ggml: unsupported magic/version {magic:?}/{version}"),
|
||||
};
|
||||
Ok(versioned_magic)
|
||||
}
|
||||
|
||||
fn align32(&self) -> bool {
|
||||
match self {
|
||||
Self::GgmlUnversioned | Self::GgmfV1 => false,
|
||||
Self::GgjtV1 | Self::GgjtV2 | Self::GgjtV3 => true,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub struct HParams {
|
||||
pub n_vocab: u32,
|
||||
pub n_embd: u32,
|
||||
pub n_mult: u32,
|
||||
pub n_head: u32,
|
||||
pub n_layer: u32,
|
||||
pub n_rot: u32,
|
||||
pub ftype: u32,
|
||||
}
|
||||
|
||||
impl HParams {
|
||||
fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> {
|
||||
let n_vocab = reader.read_u32::<LittleEndian>()?;
|
||||
let n_embd = reader.read_u32::<LittleEndian>()?;
|
||||
let n_mult = reader.read_u32::<LittleEndian>()?;
|
||||
let n_head = reader.read_u32::<LittleEndian>()?;
|
||||
let n_layer = reader.read_u32::<LittleEndian>()?;
|
||||
let n_rot = reader.read_u32::<LittleEndian>()?;
|
||||
let ftype = reader.read_u32::<LittleEndian>()?;
|
||||
Ok(Self {
|
||||
n_vocab,
|
||||
n_embd,
|
||||
n_mult,
|
||||
n_head,
|
||||
n_layer,
|
||||
n_rot,
|
||||
ftype,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
pub struct Vocab {
|
||||
pub token_score_pairs: Vec<(Vec<u8>, f32)>,
|
||||
}
|
||||
|
||||
impl Vocab {
|
||||
fn read<R: std::io::Read>(reader: &mut R, n_vocab: usize) -> Result<Self> {
|
||||
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L556
|
||||
let mut token_score_pairs = Vec::with_capacity(n_vocab);
|
||||
for _index in 0..n_vocab {
|
||||
let len = reader.read_u32::<LittleEndian>()? as usize;
|
||||
let mut word = vec![0u8; len];
|
||||
reader.read_exact(&mut word)?;
|
||||
let score = reader.read_f32::<LittleEndian>()?;
|
||||
token_score_pairs.push((word, score))
|
||||
}
|
||||
Ok(Self { token_score_pairs })
|
||||
}
|
||||
}
|
||||
|
||||
fn dequantize_and_create_tensor<T: super::GgmlType>(
|
||||
raw_data: &[u8],
|
||||
tensor_elems: usize,
|
||||
size_in_bytes: usize,
|
||||
dims: Vec<usize>,
|
||||
device: &Device,
|
||||
) -> Result<Tensor> {
|
||||
let mut f32_data = vec![0f32; tensor_elems];
|
||||
let raw_data_ptr = raw_data.as_ptr();
|
||||
let n_blocks = size_in_bytes / std::mem::size_of::<T>();
|
||||
let raw_data = unsafe { std::slice::from_raw_parts(raw_data_ptr as *const T, n_blocks) };
|
||||
T::to_float(raw_data, &mut f32_data)?;
|
||||
Tensor::from_vec(f32_data, dims, device)
|
||||
}
|
||||
|
||||
/// Creates a [Tensor] from a raw GGML tensor.
|
||||
pub fn tensor_from_ggml(
|
||||
ggml_dtype: GgmlDType,
|
||||
raw_data: &[u8],
|
||||
dims: Vec<usize>,
|
||||
dtype: DType,
|
||||
device: &Device,
|
||||
) -> Result<Tensor> {
|
||||
let tensor_elems = dims.iter().product::<usize>();
|
||||
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.blck_size();
|
||||
|
||||
let tensor = match ggml_dtype {
|
||||
GgmlDType::F32 => Tensor::from_raw_buffer(raw_data, DType::F32, &dims, device),
|
||||
GgmlDType::F16 => Tensor::from_raw_buffer(raw_data, DType::F16, &dims, device),
|
||||
GgmlDType::Q4_0 => dequantize_and_create_tensor::<k_quants::BlockQ4_0>(
|
||||
raw_data,
|
||||
tensor_elems,
|
||||
size_in_bytes,
|
||||
dims,
|
||||
device,
|
||||
),
|
||||
GgmlDType::Q4_1 => dequantize_and_create_tensor::<k_quants::BlockQ4_1>(
|
||||
raw_data,
|
||||
tensor_elems,
|
||||
size_in_bytes,
|
||||
dims,
|
||||
device,
|
||||
),
|
||||
GgmlDType::Q5_0 => dequantize_and_create_tensor::<k_quants::BlockQ5_0>(
|
||||
raw_data,
|
||||
tensor_elems,
|
||||
size_in_bytes,
|
||||
dims,
|
||||
device,
|
||||
),
|
||||
GgmlDType::Q5_1 => dequantize_and_create_tensor::<k_quants::BlockQ5_1>(
|
||||
raw_data,
|
||||
tensor_elems,
|
||||
size_in_bytes,
|
||||
dims,
|
||||
device,
|
||||
),
|
||||
GgmlDType::Q8_0 => dequantize_and_create_tensor::<k_quants::BlockQ8_0>(
|
||||
raw_data,
|
||||
tensor_elems,
|
||||
size_in_bytes,
|
||||
dims,
|
||||
device,
|
||||
),
|
||||
GgmlDType::Q2K => dequantize_and_create_tensor::<k_quants::BlockQ2K>(
|
||||
raw_data,
|
||||
tensor_elems,
|
||||
size_in_bytes,
|
||||
dims,
|
||||
device,
|
||||
),
|
||||
GgmlDType::Q3K => dequantize_and_create_tensor::<k_quants::BlockQ3K>(
|
||||
raw_data,
|
||||
tensor_elems,
|
||||
size_in_bytes,
|
||||
dims,
|
||||
device,
|
||||
),
|
||||
GgmlDType::Q4K => dequantize_and_create_tensor::<k_quants::BlockQ4K>(
|
||||
raw_data,
|
||||
tensor_elems,
|
||||
size_in_bytes,
|
||||
dims,
|
||||
device,
|
||||
),
|
||||
GgmlDType::Q5K => dequantize_and_create_tensor::<k_quants::BlockQ5K>(
|
||||
raw_data,
|
||||
tensor_elems,
|
||||
size_in_bytes,
|
||||
dims,
|
||||
device,
|
||||
),
|
||||
GgmlDType::Q6K => dequantize_and_create_tensor::<k_quants::BlockQ6K>(
|
||||
raw_data,
|
||||
tensor_elems,
|
||||
size_in_bytes,
|
||||
dims,
|
||||
device,
|
||||
),
|
||||
_ => crate::bail!("quantized type {dtype:?} is not supported yet"),
|
||||
}?;
|
||||
//We only have ggml-quant to f32 conversions, meaning we have to convert to the desired type
|
||||
if tensor.dtype() != dtype {
|
||||
tensor.to_dtype(dtype)
|
||||
} else {
|
||||
Ok(tensor)
|
||||
}
|
||||
}
|
||||
|
||||
fn read_one_tensor<R: std::io::Seek + std::io::Read>(
|
||||
reader: &mut R,
|
||||
magic: VersionedMagic,
|
||||
dtype: DType,
|
||||
device: &Device,
|
||||
) -> Result<(String, Tensor)> {
|
||||
let n_dims = reader.read_u32::<LittleEndian>()?;
|
||||
let name_len = reader.read_u32::<LittleEndian>()?;
|
||||
let ggml_dtype = reader.read_u32::<LittleEndian>()?;
|
||||
let ggml_dtype = GgmlDType::from_u32(ggml_dtype)?;
|
||||
let mut dims = vec![0u32; n_dims as usize];
|
||||
reader.read_u32_into::<LittleEndian>(&mut dims)?;
|
||||
let mut name = vec![0u8; name_len as usize];
|
||||
reader.read_exact(&mut name)?;
|
||||
let name = String::from_utf8_lossy(&name).into_owned();
|
||||
|
||||
if magic.align32() {
|
||||
let pos = reader.stream_position()?;
|
||||
reader.seek(std::io::SeekFrom::Current(((32 - pos % 32) % 32) as i64))?;
|
||||
}
|
||||
let dims = dims.iter().map(|&u| u as usize).collect::<Vec<_>>();
|
||||
let tensor_elems = dims.iter().product::<usize>();
|
||||
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.blck_size();
|
||||
println!("{name} {ggml_dtype:?} {dims:?}");
|
||||
// TODO: Mmap version to avoid copying the data around?
|
||||
let mut raw_data = vec![0u8; size_in_bytes];
|
||||
reader.read_exact(&mut raw_data)?;
|
||||
match tensor_from_ggml(ggml_dtype, &raw_data, dims, dtype, device) {
|
||||
Ok(tensor) => Ok((name, tensor)),
|
||||
Err(e) => crate::bail!("Error creating tensor {name}: {e}"),
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Content {
|
||||
pub magic: VersionedMagic,
|
||||
pub hparams: HParams,
|
||||
pub vocab: Vocab,
|
||||
pub tensors: Vec<(String, Tensor)>,
|
||||
}
|
||||
|
||||
impl Content {
|
||||
pub fn read<R: std::io::Seek + std::io::Read>(
|
||||
reader: &mut R,
|
||||
dtype: DType,
|
||||
device: &Device,
|
||||
) -> Result<Content> {
|
||||
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L505
|
||||
let last_position = reader.seek(std::io::SeekFrom::End(0))?;
|
||||
reader.seek(std::io::SeekFrom::Start(0))?;
|
||||
let magic = VersionedMagic::read(reader)?;
|
||||
let hparams = HParams::read(reader)?;
|
||||
let vocab = Vocab::read(reader, hparams.n_vocab as usize)?;
|
||||
let mut tensors = vec![];
|
||||
|
||||
while reader.stream_position()? != last_position {
|
||||
let (name, tensor) = read_one_tensor(reader, magic, dtype, device)?;
|
||||
tensors.push((name, tensor))
|
||||
}
|
||||
Ok(Self {
|
||||
magic,
|
||||
hparams,
|
||||
vocab,
|
||||
tensors,
|
||||
})
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user