Split out the quantized file. (#456)

This commit is contained in:
Laurent Mazare
2023-08-15 20:26:27 +01:00
committed by GitHub
parent 08effe3762
commit e68b2accb4
6 changed files with 386 additions and 376 deletions

View File

@ -50,13 +50,13 @@ pub mod display;
mod dtype;
mod dummy_cuda_backend;
pub mod error;
pub mod ggml;
mod indexer;
pub mod layout;
#[cfg(feature = "mkl")]
mod mkl;
pub mod npy;
mod op;
pub mod quantized;
pub mod safetensors;
pub mod shape;
mod storage;

View File

@ -0,0 +1,294 @@
//! Support for the GGML file format.
use super::{k_quants, GgmlDType};
use crate::{DType, Device, Result, Tensor};
use byteorder::{LittleEndian, ReadBytesExt};
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.h#L37
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum Magic {
Ggjt,
Ggla,
Ggmf,
Ggml,
Ggsn,
}
impl TryFrom<u32> for Magic {
type Error = crate::Error;
fn try_from(value: u32) -> Result<Self> {
let magic = match value {
0x67676a74 => Self::Ggjt,
0x67676c61 => Self::Ggla,
0x67676d66 => Self::Ggmf,
0x67676d6c => Self::Ggml,
0x6767736e => Self::Ggsn,
_ => crate::bail!("unknown magic {value:08x}"),
};
Ok(magic)
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum VersionedMagic {
GgmlUnversioned,
GgmfV1,
GgjtV1,
GgjtV2,
GgjtV3,
}
impl VersionedMagic {
fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> {
let magic = reader.read_u32::<LittleEndian>()?;
let magic = Magic::try_from(magic)?;
if magic == Magic::Ggml {
return Ok(Self::GgmlUnversioned);
}
let version = reader.read_u32::<LittleEndian>()?;
let versioned_magic = match (magic, version) {
(Magic::Ggmf, 1) => Self::GgmfV1,
(Magic::Ggjt, 1) => Self::GgjtV1,
(Magic::Ggjt, 2) => Self::GgjtV2,
(Magic::Ggjt, 3) => Self::GgjtV3,
_ => crate::bail!("ggml: unsupported magic/version {magic:?}/{version}"),
};
Ok(versioned_magic)
}
fn align32(&self) -> bool {
match self {
Self::GgmlUnversioned | Self::GgmfV1 => false,
Self::GgjtV1 | Self::GgjtV2 | Self::GgjtV3 => true,
}
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct HParams {
pub n_vocab: u32,
pub n_embd: u32,
pub n_mult: u32,
pub n_head: u32,
pub n_layer: u32,
pub n_rot: u32,
pub ftype: u32,
}
impl HParams {
fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> {
let n_vocab = reader.read_u32::<LittleEndian>()?;
let n_embd = reader.read_u32::<LittleEndian>()?;
let n_mult = reader.read_u32::<LittleEndian>()?;
let n_head = reader.read_u32::<LittleEndian>()?;
let n_layer = reader.read_u32::<LittleEndian>()?;
let n_rot = reader.read_u32::<LittleEndian>()?;
let ftype = reader.read_u32::<LittleEndian>()?;
Ok(Self {
n_vocab,
n_embd,
n_mult,
n_head,
n_layer,
n_rot,
ftype,
})
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct Vocab {
pub token_score_pairs: Vec<(Vec<u8>, f32)>,
}
impl Vocab {
fn read<R: std::io::Read>(reader: &mut R, n_vocab: usize) -> Result<Self> {
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L556
let mut token_score_pairs = Vec::with_capacity(n_vocab);
for _index in 0..n_vocab {
let len = reader.read_u32::<LittleEndian>()? as usize;
let mut word = vec![0u8; len];
reader.read_exact(&mut word)?;
let score = reader.read_f32::<LittleEndian>()?;
token_score_pairs.push((word, score))
}
Ok(Self { token_score_pairs })
}
}
fn dequantize_and_create_tensor<T: super::GgmlType>(
raw_data: &[u8],
tensor_elems: usize,
size_in_bytes: usize,
dims: Vec<usize>,
device: &Device,
) -> Result<Tensor> {
let mut f32_data = vec![0f32; tensor_elems];
let raw_data_ptr = raw_data.as_ptr();
let n_blocks = size_in_bytes / std::mem::size_of::<T>();
let raw_data = unsafe { std::slice::from_raw_parts(raw_data_ptr as *const T, n_blocks) };
T::to_float(raw_data, &mut f32_data)?;
Tensor::from_vec(f32_data, dims, device)
}
/// Creates a [Tensor] from a raw GGML tensor.
pub fn tensor_from_ggml(
ggml_dtype: GgmlDType,
raw_data: &[u8],
dims: Vec<usize>,
dtype: DType,
device: &Device,
) -> Result<Tensor> {
let tensor_elems = dims.iter().product::<usize>();
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.blck_size();
let tensor = match ggml_dtype {
GgmlDType::F32 => Tensor::from_raw_buffer(raw_data, DType::F32, &dims, device),
GgmlDType::F16 => Tensor::from_raw_buffer(raw_data, DType::F16, &dims, device),
GgmlDType::Q4_0 => dequantize_and_create_tensor::<k_quants::BlockQ4_0>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q4_1 => dequantize_and_create_tensor::<k_quants::BlockQ4_1>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q5_0 => dequantize_and_create_tensor::<k_quants::BlockQ5_0>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q5_1 => dequantize_and_create_tensor::<k_quants::BlockQ5_1>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q8_0 => dequantize_and_create_tensor::<k_quants::BlockQ8_0>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q2K => dequantize_and_create_tensor::<k_quants::BlockQ2K>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q3K => dequantize_and_create_tensor::<k_quants::BlockQ3K>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q4K => dequantize_and_create_tensor::<k_quants::BlockQ4K>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q5K => dequantize_and_create_tensor::<k_quants::BlockQ5K>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q6K => dequantize_and_create_tensor::<k_quants::BlockQ6K>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
_ => crate::bail!("quantized type {dtype:?} is not supported yet"),
}?;
//We only have ggml-quant to f32 conversions, meaning we have to convert to the desired type
if tensor.dtype() != dtype {
tensor.to_dtype(dtype)
} else {
Ok(tensor)
}
}
fn read_one_tensor<R: std::io::Seek + std::io::Read>(
reader: &mut R,
magic: VersionedMagic,
dtype: DType,
device: &Device,
) -> Result<(String, Tensor)> {
let n_dims = reader.read_u32::<LittleEndian>()?;
let name_len = reader.read_u32::<LittleEndian>()?;
let ggml_dtype = reader.read_u32::<LittleEndian>()?;
let ggml_dtype = GgmlDType::from_u32(ggml_dtype)?;
let mut dims = vec![0u32; n_dims as usize];
reader.read_u32_into::<LittleEndian>(&mut dims)?;
let mut name = vec![0u8; name_len as usize];
reader.read_exact(&mut name)?;
let name = String::from_utf8_lossy(&name).into_owned();
if magic.align32() {
let pos = reader.stream_position()?;
reader.seek(std::io::SeekFrom::Current(((32 - pos % 32) % 32) as i64))?;
}
let dims = dims.iter().map(|&u| u as usize).collect::<Vec<_>>();
let tensor_elems = dims.iter().product::<usize>();
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.blck_size();
println!("{name} {ggml_dtype:?} {dims:?}");
// TODO: Mmap version to avoid copying the data around?
let mut raw_data = vec![0u8; size_in_bytes];
reader.read_exact(&mut raw_data)?;
match tensor_from_ggml(ggml_dtype, &raw_data, dims, dtype, device) {
Ok(tensor) => Ok((name, tensor)),
Err(e) => crate::bail!("Error creating tensor {name}: {e}"),
}
}
#[derive(Debug)]
pub struct Content {
pub magic: VersionedMagic,
pub hparams: HParams,
pub vocab: Vocab,
pub tensors: Vec<(String, Tensor)>,
}
impl Content {
pub fn read<R: std::io::Seek + std::io::Read>(
reader: &mut R,
dtype: DType,
device: &Device,
) -> Result<Content> {
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L505
let last_position = reader.seek(std::io::SeekFrom::End(0))?;
reader.seek(std::io::SeekFrom::Start(0))?;
let magic = VersionedMagic::read(reader)?;
let hparams = HParams::read(reader)?;
let vocab = Vocab::read(reader, hparams.n_vocab as usize)?;
let mut tensors = vec![];
while reader.stream_position()? != last_position {
let (name, tensor) = read_one_tensor(reader, magic, dtype, device)?;
tensors.push((name, tensor))
}
Ok(Self {
magic,
hparams,
vocab,
tensors,
})
}
}

View File

@ -1,7 +1,5 @@
//! Support for the GGML file format.
use crate::{DType, Device, Result, Tensor};
use byteorder::{LittleEndian, ReadBytesExt};
use super::GgmlDType;
use crate::Result;
use half::f16;
// Default to QK_K 256 rather than 64.
@ -728,367 +726,3 @@ pub fn matmul<T: GgmlType>(
}
Ok(())
}
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.h#L37
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum Magic {
Ggjt,
Ggla,
Ggmf,
Ggml,
Ggsn,
}
impl TryFrom<u32> for Magic {
type Error = crate::Error;
fn try_from(value: u32) -> Result<Self> {
let magic = match value {
0x67676a74 => Self::Ggjt,
0x67676c61 => Self::Ggla,
0x67676d66 => Self::Ggmf,
0x67676d6c => Self::Ggml,
0x6767736e => Self::Ggsn,
_ => crate::bail!("unknown magic {value:08x}"),
};
Ok(magic)
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum VersionedMagic {
GgmlUnversioned,
GgmfV1,
GgjtV1,
GgjtV2,
GgjtV3,
}
impl VersionedMagic {
fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> {
let magic = reader.read_u32::<LittleEndian>()?;
let magic = Magic::try_from(magic)?;
if magic == Magic::Ggml {
return Ok(Self::GgmlUnversioned);
}
let version = reader.read_u32::<LittleEndian>()?;
let versioned_magic = match (magic, version) {
(Magic::Ggmf, 1) => Self::GgmfV1,
(Magic::Ggjt, 1) => Self::GgjtV1,
(Magic::Ggjt, 2) => Self::GgjtV2,
(Magic::Ggjt, 3) => Self::GgjtV3,
_ => crate::bail!("ggml: unsupported magic/version {magic:?}/{version}"),
};
Ok(versioned_magic)
}
fn align32(&self) -> bool {
match self {
Self::GgmlUnversioned | Self::GgmfV1 => false,
Self::GgjtV1 | Self::GgjtV2 | Self::GgjtV3 => true,
}
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct HParams {
pub n_vocab: u32,
pub n_embd: u32,
pub n_mult: u32,
pub n_head: u32,
pub n_layer: u32,
pub n_rot: u32,
pub ftype: u32,
}
impl HParams {
fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> {
let n_vocab = reader.read_u32::<LittleEndian>()?;
let n_embd = reader.read_u32::<LittleEndian>()?;
let n_mult = reader.read_u32::<LittleEndian>()?;
let n_head = reader.read_u32::<LittleEndian>()?;
let n_layer = reader.read_u32::<LittleEndian>()?;
let n_rot = reader.read_u32::<LittleEndian>()?;
let ftype = reader.read_u32::<LittleEndian>()?;
Ok(Self {
n_vocab,
n_embd,
n_mult,
n_head,
n_layer,
n_rot,
ftype,
})
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct Vocab {
pub token_score_pairs: Vec<(Vec<u8>, f32)>,
}
impl Vocab {
fn read<R: std::io::Read>(reader: &mut R, n_vocab: usize) -> Result<Self> {
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L556
let mut token_score_pairs = Vec::with_capacity(n_vocab);
for _index in 0..n_vocab {
let len = reader.read_u32::<LittleEndian>()? as usize;
let mut word = vec![0u8; len];
reader.read_exact(&mut word)?;
let score = reader.read_f32::<LittleEndian>()?;
token_score_pairs.push((word, score))
}
Ok(Self { token_score_pairs })
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum GgmlDType {
F32,
F16,
Q4_0,
Q4_1,
Q5_0,
Q5_1,
Q8_0,
Q8_1,
Q2K,
Q3K,
Q4K,
Q5K,
Q6K,
Q8K,
}
impl GgmlDType {
fn from_u32(u: u32) -> Result<Self> {
let dtype = match u {
0 => Self::F32,
1 => Self::F16,
2 => Self::Q4_0,
3 => Self::Q4_1,
6 => Self::Q5_0,
7 => Self::Q5_1,
8 => Self::Q8_0,
9 => Self::Q8_1,
10 => Self::Q2K,
11 => Self::Q3K,
12 => Self::Q4K,
13 => Self::Q5K,
14 => Self::Q6K,
15 => Self::Q8K,
_ => crate::bail!("unknown dtype for tensor {u}"),
};
Ok(dtype)
}
fn type_size(&self) -> usize {
match self {
Self::F32 => 4,
Self::F16 => 2,
Self::Q4_0 => std::mem::size_of::<BlockQ4_0>(),
Self::Q4_1 => std::mem::size_of::<BlockQ4_1>(),
Self::Q5_0 => std::mem::size_of::<BlockQ5_0>(),
Self::Q5_1 => std::mem::size_of::<BlockQ5_1>(),
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L932
Self::Q8_0 => std::mem::size_of::<BlockQ8_0>(),
Self::Q8_1 => std::mem::size_of::<BlockQ8_1>(),
Self::Q2K => std::mem::size_of::<BlockQ2K>(),
Self::Q3K => std::mem::size_of::<BlockQ3K>(),
Self::Q4K => std::mem::size_of::<BlockQ4K>(),
Self::Q5K => std::mem::size_of::<BlockQ5K>(),
Self::Q6K => std::mem::size_of::<BlockQ6K>(),
Self::Q8K => std::mem::size_of::<BlockQ8K>(),
}
}
fn blck_size(&self) -> usize {
match self {
Self::F32 => 1,
Self::F16 => 1,
Self::Q4_0 => QK4_0,
Self::Q4_1 => QK4_1,
Self::Q5_0 => QK5_0,
Self::Q5_1 => QK5_1,
Self::Q8_0 => QK8_0,
Self::Q8_1 => QK8_1,
Self::Q2K | Self::Q3K | Self::Q4K | Self::Q5K | Self::Q6K | Self::Q8K => QK_K,
}
}
}
fn dequantize_and_create_tensor<T: GgmlType>(
raw_data: &[u8],
tensor_elems: usize,
size_in_bytes: usize,
dims: Vec<usize>,
device: &Device,
) -> Result<Tensor> {
let mut f32_data = vec![0f32; tensor_elems];
let raw_data_ptr = raw_data.as_ptr();
let n_blocks = size_in_bytes / std::mem::size_of::<T>();
let raw_data = unsafe { std::slice::from_raw_parts(raw_data_ptr as *const T, n_blocks) };
T::to_float(raw_data, &mut f32_data)?;
Tensor::from_vec(f32_data, dims, device)
}
/// Creates a [Tensor] from a raw GGML tensor.
pub fn tensor_from_ggml(
ggml_dtype: GgmlDType,
raw_data: &[u8],
dims: Vec<usize>,
dtype: DType,
device: &Device,
) -> Result<Tensor> {
let tensor_elems = dims.iter().product::<usize>();
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.blck_size();
let tensor = match ggml_dtype {
GgmlDType::F32 => Tensor::from_raw_buffer(raw_data, DType::F32, &dims, device),
GgmlDType::F16 => Tensor::from_raw_buffer(raw_data, DType::F16, &dims, device),
GgmlDType::Q4_0 => dequantize_and_create_tensor::<BlockQ4_0>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q4_1 => dequantize_and_create_tensor::<BlockQ4_1>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q5_0 => dequantize_and_create_tensor::<BlockQ5_0>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q5_1 => dequantize_and_create_tensor::<BlockQ5_1>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q8_0 => dequantize_and_create_tensor::<BlockQ8_0>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q2K => dequantize_and_create_tensor::<BlockQ2K>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q3K => dequantize_and_create_tensor::<BlockQ3K>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q4K => dequantize_and_create_tensor::<BlockQ4K>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q5K => dequantize_and_create_tensor::<BlockQ5K>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
GgmlDType::Q6K => dequantize_and_create_tensor::<BlockQ6K>(
raw_data,
tensor_elems,
size_in_bytes,
dims,
device,
),
_ => crate::bail!("quantized type {dtype:?} is not supported yet"),
}?;
//We only have ggml-quant to f32 conversions, meaning we have to convert to the desired type
if tensor.dtype() != dtype {
tensor.to_dtype(dtype)
} else {
Ok(tensor)
}
}
fn read_one_tensor<R: std::io::Seek + std::io::Read>(
reader: &mut R,
magic: VersionedMagic,
dtype: DType,
device: &Device,
) -> Result<(String, Tensor)> {
let n_dims = reader.read_u32::<LittleEndian>()?;
let name_len = reader.read_u32::<LittleEndian>()?;
let ggml_dtype = reader.read_u32::<LittleEndian>()?;
let ggml_dtype = GgmlDType::from_u32(ggml_dtype)?;
let mut dims = vec![0u32; n_dims as usize];
reader.read_u32_into::<LittleEndian>(&mut dims)?;
let mut name = vec![0u8; name_len as usize];
reader.read_exact(&mut name)?;
let name = String::from_utf8_lossy(&name).into_owned();
if magic.align32() {
let pos = reader.stream_position()?;
reader.seek(std::io::SeekFrom::Current(((32 - pos % 32) % 32) as i64))?;
}
let dims = dims.iter().map(|&u| u as usize).collect::<Vec<_>>();
let tensor_elems = dims.iter().product::<usize>();
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.blck_size();
println!("{name} {ggml_dtype:?} {dims:?}");
// TODO: Mmap version to avoid copying the data around?
let mut raw_data = vec![0u8; size_in_bytes];
reader.read_exact(&mut raw_data)?;
match tensor_from_ggml(ggml_dtype, &raw_data, dims, dtype, device) {
Ok(tensor) => Ok((name, tensor)),
Err(e) => crate::bail!("Error creating tensor {name}: {e}"),
}
}
#[derive(Debug)]
pub struct Content {
pub magic: VersionedMagic,
pub hparams: HParams,
pub vocab: Vocab,
pub tensors: Vec<(String, Tensor)>,
}
impl Content {
pub fn read<R: std::io::Seek + std::io::Read>(
reader: &mut R,
dtype: DType,
device: &Device,
) -> Result<Content> {
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L505
let last_position = reader.seek(std::io::SeekFrom::End(0))?;
reader.seek(std::io::SeekFrom::Start(0))?;
let magic = VersionedMagic::read(reader)?;
let hparams = HParams::read(reader)?;
let vocab = Vocab::read(reader, hparams.n_vocab as usize)?;
let mut tensors = vec![];
while reader.stream_position()? != last_position {
let (name, tensor) = read_one_tensor(reader, magic, dtype, device)?;
tensors.push((name, tensor))
}
Ok(Self {
magic,
hparams,
vocab,
tensors,
})
}
}

View File

@ -0,0 +1,82 @@
use crate::Result;
pub mod ggml_file;
pub mod k_quants;
pub use k_quants::GgmlType;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum GgmlDType {
F32,
F16,
Q4_0,
Q4_1,
Q5_0,
Q5_1,
Q8_0,
Q8_1,
Q2K,
Q3K,
Q4K,
Q5K,
Q6K,
Q8K,
}
impl GgmlDType {
pub(crate) fn from_u32(u: u32) -> Result<Self> {
let dtype = match u {
0 => Self::F32,
1 => Self::F16,
2 => Self::Q4_0,
3 => Self::Q4_1,
6 => Self::Q5_0,
7 => Self::Q5_1,
8 => Self::Q8_0,
9 => Self::Q8_1,
10 => Self::Q2K,
11 => Self::Q3K,
12 => Self::Q4K,
13 => Self::Q5K,
14 => Self::Q6K,
15 => Self::Q8K,
_ => crate::bail!("unknown dtype for tensor {u}"),
};
Ok(dtype)
}
fn type_size(&self) -> usize {
use k_quants::*;
match self {
Self::F32 => 4,
Self::F16 => 2,
Self::Q4_0 => std::mem::size_of::<BlockQ4_0>(),
Self::Q4_1 => std::mem::size_of::<BlockQ4_1>(),
Self::Q5_0 => std::mem::size_of::<BlockQ5_0>(),
Self::Q5_1 => std::mem::size_of::<BlockQ5_1>(),
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L932
Self::Q8_0 => std::mem::size_of::<BlockQ8_0>(),
Self::Q8_1 => std::mem::size_of::<BlockQ8_1>(),
Self::Q2K => std::mem::size_of::<BlockQ2K>(),
Self::Q3K => std::mem::size_of::<BlockQ3K>(),
Self::Q4K => std::mem::size_of::<BlockQ4K>(),
Self::Q5K => std::mem::size_of::<BlockQ5K>(),
Self::Q6K => std::mem::size_of::<BlockQ6K>(),
Self::Q8K => std::mem::size_of::<BlockQ8K>(),
}
}
fn blck_size(&self) -> usize {
match self {
Self::F32 => 1,
Self::F16 => 1,
Self::Q4_0 => k_quants::QK4_0,
Self::Q4_1 => k_quants::QK4_1,
Self::Q5_0 => k_quants::QK5_0,
Self::Q5_1 => k_quants::QK5_1,
Self::Q8_0 => k_quants::QK8_0,
Self::Q8_1 => k_quants::QK8_1,
Self::Q2K | Self::Q3K | Self::Q4K | Self::Q5K | Self::Q6K | Self::Q8K => k_quants::QK_K,
}
}
}

View File

@ -1,18 +1,18 @@
use candle_core::{ggml, Device, Result, Tensor};
use ggml::GgmlType;
use candle_core::{quantized, Device, Result, Tensor};
use quantized::{k_quants, GgmlType};
#[test]
fn ggml_matmul() -> Result<()> {
fn quantized_matmul() -> Result<()> {
let cpu = &Device::Cpu;
let (m, k, n) = (3, 64, 4);
let lhs = (0..(m * k)).map(|v| v as f32).collect::<Vec<_>>();
let tensor_lhs = Tensor::from_slice(&lhs, (m, k), cpu)?;
let mut dst = vec![42.; 3 * 4];
let mut rhs_t = vec![ggml::BlockQ4_0::zeros(); 8];
let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8];
let rhs = (0..(k * n)).map(|v| v as f32).collect::<Vec<_>>();
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), cpu)?.t()?;
ggml::BlockQ4_0::from_float(&rhs, &mut rhs_t)?;
ggml::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?;
k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?;
k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?;
assert_eq!(
dst,
&[

View File

@ -2,7 +2,7 @@ use anyhow::Result;
use clap::Parser;
use std::fs::File;
use candle::ggml::Content;
use candle::quantized::ggml_file::Content;
use candle::{DType, Device};
#[derive(Parser, Debug)]