Optimize Tensor::new when called on nested Vec<..>. (#2927)

* Optimize Tensor::new when called on nested Vec<..>.

* Improve performance.

* Similar flattening for the 4d case.

* More tweaks.

* Add some dummy test.
This commit is contained in:
Laurent Mazare
2025-04-28 09:19:45 +02:00
committed by GitHub
parent e3db30021f
commit e98754fc5a
5 changed files with 174 additions and 7 deletions

View File

@ -103,7 +103,63 @@ impl<S: WithDType, const N1: usize, const N2: usize, const N3: usize, const N4:
}
}
impl<S: NdArray> NdArray for Vec<S> {
impl<S: WithDType> NdArray for Vec<S> {
fn shape(&self) -> Result<Shape> {
Ok(Shape::from(self.len()))
}
fn to_cpu_storage(&self) -> CpuStorage {
S::to_cpu_storage(self.as_slice())
}
}
impl<S: WithDType> NdArray for Vec<&[S]> {
fn shape(&self) -> Result<Shape> {
if self.is_empty() {
crate::bail!("empty array")
}
let n = self.len();
let m = self[0].len();
for v in self.iter() {
if v.len() != m {
crate::bail!("two elements have different len {m} {}", v.len())
}
}
Ok(Shape::from((n, m)))
}
fn to_cpu_storage(&self) -> CpuStorage {
let data = self.iter().copied().flatten().copied().collect::<Vec<_>>();
S::to_cpu_storage_owned(data)
}
}
impl<S: WithDType> NdArray for Vec<Vec<S>> {
fn shape(&self) -> Result<Shape> {
if self.is_empty() {
crate::bail!("empty array")
}
let n = self.len();
let m = self[0].len();
for v in self.iter() {
if v.len() != m {
crate::bail!("two elements have different len {m} {}", v.len())
}
}
Ok(Shape::from((n, m)))
}
fn to_cpu_storage(&self) -> CpuStorage {
let len: usize = self.iter().map(|v| v.len()).sum();
let mut dst = Vec::with_capacity(len);
for v in self.iter() {
dst.extend(v.iter().copied());
}
S::to_cpu_storage_owned(dst)
}
}
impl<S: WithDType> NdArray for Vec<Vec<Vec<S>>> {
fn shape(&self) -> Result<Shape> {
if self.is_empty() {
crate::bail!("empty array")
@ -120,9 +176,57 @@ impl<S: NdArray> NdArray for Vec<S> {
}
fn to_cpu_storage(&self) -> CpuStorage {
// This allocates intermediary memory and shouldn't be necessary.
let storages = self.iter().map(|v| v.to_cpu_storage()).collect::<Vec<_>>();
CpuStorage::concat(storages.as_slice()).unwrap()
if self.is_empty() {
return S::to_cpu_storage_owned(vec![]);
}
let len: usize = self
.iter()
.map(|v| v.iter().map(|v| v.len()).sum::<usize>())
.sum();
let mut dst = Vec::with_capacity(len);
for v1 in self.iter() {
for v2 in v1.iter() {
dst.extend(v2.iter().copied());
}
}
S::to_cpu_storage_owned(dst)
}
}
impl<S: WithDType> NdArray for Vec<Vec<Vec<Vec<S>>>> {
fn shape(&self) -> Result<Shape> {
if self.is_empty() {
crate::bail!("empty array")
}
let shape0 = self[0].shape()?;
let n = self.len();
for v in self.iter() {
let shape = v.shape()?;
if shape != shape0 {
crate::bail!("two elements have different shapes {shape:?} {shape0:?}")
}
}
Ok(Shape::from([[n].as_slice(), shape0.dims()].concat()))
}
fn to_cpu_storage(&self) -> CpuStorage {
let len: usize = self
.iter()
.map(|v| {
v.iter()
.map(|v| v.iter().map(|v| v.len()).sum::<usize>())
.sum::<usize>()
})
.sum();
let mut dst = Vec::with_capacity(len);
for v1 in self.iter() {
for v2 in v1.iter() {
for v3 in v2.iter() {
dst.extend(v3.iter().copied());
}
}
}
S::to_cpu_storage_owned(dst)
}
}