Optimize Tensor::new when called on nested Vec<..>. (#2927)

* Optimize Tensor::new when called on nested Vec<..>.

* Improve performance.

* Similar flattening for the 4d case.

* More tweaks.

* Add some dummy test.
This commit is contained in:
Laurent Mazare
2025-04-28 09:19:45 +02:00
committed by GitHub
parent e3db30021f
commit e98754fc5a
5 changed files with 174 additions and 7 deletions

View File

@ -4,11 +4,12 @@ use criterion::criterion_main;
criterion_main!(
benchmarks::affine::benches,
benchmarks::copy::benches,
benchmarks::conv_transpose2d::benches,
benchmarks::matmul::benches,
benchmarks::qmatmul::benches,
benchmarks::random::benches,
benchmarks::reduce::benches,
benchmarks::unary::benches,
benchmarks::where_cond::benches,
benchmarks::conv_transpose2d::benches,
benchmarks::qmatmul::benches,
benchmarks::unary::benches
);

View File

@ -0,0 +1,38 @@
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{Device, Tensor, WithDType};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run_copy_mask_benchmark<D: WithDType>(c: &mut Criterion, device: &Device, name: &str) {
let batch_size = 128;
let in_seq_len = 1;
let kv_seq_len = 1024;
let attn_mask = vec![vec![vec![D::zero(); kv_seq_len]; in_seq_len]; batch_size];
let size_in_bytes = batch_size * in_seq_len * kv_seq_len * D::DTYPE.size_in_bytes();
let mut group = c.benchmark_group(device.bench_name(name));
group.throughput(Throughput::Bytes(size_in_bytes as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let attn_masks = vec![attn_mask.clone(); iters as usize];
let start = Instant::now();
for attn_mask in attn_masks.into_iter() {
let tensor = Tensor::new(black_box(attn_mask), device).unwrap();
black_box(tensor);
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
run_copy_mask_benchmark::<f32>(c, &device, "copy_mask");
}
}
criterion_group!(benches, criterion_benchmark);

View File

@ -1,5 +1,6 @@
pub(crate) mod affine;
pub(crate) mod conv_transpose2d;
pub(crate) mod copy;
pub(crate) mod matmul;
pub(crate) mod qmatmul;
pub(crate) mod random;

View File

@ -103,7 +103,63 @@ impl<S: WithDType, const N1: usize, const N2: usize, const N3: usize, const N4:
}
}
impl<S: NdArray> NdArray for Vec<S> {
impl<S: WithDType> NdArray for Vec<S> {
fn shape(&self) -> Result<Shape> {
Ok(Shape::from(self.len()))
}
fn to_cpu_storage(&self) -> CpuStorage {
S::to_cpu_storage(self.as_slice())
}
}
impl<S: WithDType> NdArray for Vec<&[S]> {
fn shape(&self) -> Result<Shape> {
if self.is_empty() {
crate::bail!("empty array")
}
let n = self.len();
let m = self[0].len();
for v in self.iter() {
if v.len() != m {
crate::bail!("two elements have different len {m} {}", v.len())
}
}
Ok(Shape::from((n, m)))
}
fn to_cpu_storage(&self) -> CpuStorage {
let data = self.iter().copied().flatten().copied().collect::<Vec<_>>();
S::to_cpu_storage_owned(data)
}
}
impl<S: WithDType> NdArray for Vec<Vec<S>> {
fn shape(&self) -> Result<Shape> {
if self.is_empty() {
crate::bail!("empty array")
}
let n = self.len();
let m = self[0].len();
for v in self.iter() {
if v.len() != m {
crate::bail!("two elements have different len {m} {}", v.len())
}
}
Ok(Shape::from((n, m)))
}
fn to_cpu_storage(&self) -> CpuStorage {
let len: usize = self.iter().map(|v| v.len()).sum();
let mut dst = Vec::with_capacity(len);
for v in self.iter() {
dst.extend(v.iter().copied());
}
S::to_cpu_storage_owned(dst)
}
}
impl<S: WithDType> NdArray for Vec<Vec<Vec<S>>> {
fn shape(&self) -> Result<Shape> {
if self.is_empty() {
crate::bail!("empty array")
@ -120,9 +176,57 @@ impl<S: NdArray> NdArray for Vec<S> {
}
fn to_cpu_storage(&self) -> CpuStorage {
// This allocates intermediary memory and shouldn't be necessary.
let storages = self.iter().map(|v| v.to_cpu_storage()).collect::<Vec<_>>();
CpuStorage::concat(storages.as_slice()).unwrap()
if self.is_empty() {
return S::to_cpu_storage_owned(vec![]);
}
let len: usize = self
.iter()
.map(|v| v.iter().map(|v| v.len()).sum::<usize>())
.sum();
let mut dst = Vec::with_capacity(len);
for v1 in self.iter() {
for v2 in v1.iter() {
dst.extend(v2.iter().copied());
}
}
S::to_cpu_storage_owned(dst)
}
}
impl<S: WithDType> NdArray for Vec<Vec<Vec<Vec<S>>>> {
fn shape(&self) -> Result<Shape> {
if self.is_empty() {
crate::bail!("empty array")
}
let shape0 = self[0].shape()?;
let n = self.len();
for v in self.iter() {
let shape = v.shape()?;
if shape != shape0 {
crate::bail!("two elements have different shapes {shape:?} {shape0:?}")
}
}
Ok(Shape::from([[n].as_slice(), shape0.dims()].concat()))
}
fn to_cpu_storage(&self) -> CpuStorage {
let len: usize = self
.iter()
.map(|v| {
v.iter()
.map(|v| v.iter().map(|v| v.len()).sum::<usize>())
.sum::<usize>()
})
.sum();
let mut dst = Vec::with_capacity(len);
for v1 in self.iter() {
for v2 in v1.iter() {
for v3 in v2.iter() {
dst.extend(v3.iter().copied());
}
}
}
S::to_cpu_storage_owned(dst)
}
}

View File

@ -1811,3 +1811,26 @@ fn test_flip_3d_channels() -> Result<()> {
candle_core::test_utils::assert_tensor_eq(&flipped, &expected)?;
Ok(())
}
#[test]
fn tensor_new() -> Result<()> {
let t1 = Tensor::new(vec![1f32, 2.0, 3.0], &Device::Cpu)?;
assert_eq!(t1.to_vec1::<f32>()?, [1.0, 2.0, 3.0]);
let t2 = Tensor::new(vec![vec![1f32, 2., 3.], vec![4., 5., 6.]], &Device::Cpu)?;
assert_eq!(t2.to_vec2::<f32>()?, [[1., 2., 3.], [4., 5., 6.]]);
let t3 = Tensor::new(
vec![
vec![vec![1f32, 2., 3.], vec![4., 5., 6.]],
vec![vec![3f32, 1., 4.], vec![1., 5., 9.]],
],
&Device::Cpu,
)?;
assert_eq!(
t3.to_vec3::<f32>()?,
[
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]],
[[3.0, 1.0, 4.0], [1.0, 5.0, 9.0]]
]
);
Ok(())
}