Add the comparison operations. (#207)

* Add the comparison operations.

* Add the helper functions on the tensor side.

* More cmp operations.

* Cpu implementation for the comparison operations.
This commit is contained in:
Laurent Mazare
2023-07-20 10:40:31 +02:00
committed by GitHub
parent dc416243a3
commit e9c052bf94
8 changed files with 178 additions and 41 deletions

View File

@ -1,3 +1,4 @@
use crate::op::{CmpOp, ReduceOp};
use crate::{CpuStorage, DType, Layout, Result, Shape}; use crate::{CpuStorage, DType, Layout, Result, Shape};
pub(crate) trait BackendStorage: Sized { pub(crate) trait BackendStorage: Sized {
@ -16,7 +17,9 @@ pub(crate) trait BackendStorage: Sized {
fn elu(&self, _: &Layout, _: f64) -> Result<Self>; fn elu(&self, _: &Layout, _: f64) -> Result<Self>;
fn reduce_op(&self, _: crate::op::ReduceOp, _: &Layout, _: &[usize]) -> Result<Self>; fn reduce_op(&self, _: ReduceOp, _: &Layout, _: &[usize]) -> Result<Self>;
fn cmp(&self, _: CmpOp, _: &Self, _: &Layout, _: &Layout) -> Result<Self>;
fn divide_by_sum_over_dim(&mut self, _: &Shape, _: usize) -> Result<()>; fn divide_by_sum_over_dim(&mut self, _: &Shape, _: usize) -> Result<()>;

View File

@ -1,4 +1,5 @@
use crate::{op::Op, Error, Result, Tensor, TensorId}; use crate::op::{Op, ReduceOp};
use crate::{Error, Result, Tensor, TensorId};
use std::collections::HashMap; use std::collections::HashMap;
impl Tensor { impl Tensor {
@ -66,9 +67,8 @@ impl Tensor {
} }
Op::Reshape(node) Op::Reshape(node)
| Op::Broadcast(node) | Op::Broadcast(node)
| Op::Sum(node, _) | Op::Cmp(node, _)
| Op::Max(node, _) | Op::Reduce(node, _, _)
| Op::Min(node, _)
| Op::ToDType(node) | Op::ToDType(node)
| Op::ToDevice(node) | Op::ToDevice(node)
| Op::Transpose(node, _, _) | Op::Transpose(node, _, _)
@ -201,14 +201,15 @@ impl Tensor {
let sum_grad = grads.or_insert(arg)?; let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.broadcast_add(&arg_grad)? *sum_grad = sum_grad.broadcast_add(&arg_grad)?
} }
Op::Sum(arg, _sum_dims) => { Op::Reduce(arg, ReduceOp::Sum, _) => {
let sum_grad = grads.or_insert(arg)?; let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.broadcast_add(&grad)? *sum_grad = sum_grad.broadcast_add(&grad)?
} }
Op::Max(_args, _sum_dims) => { Op::Cmp(_args, _) => return Err(Error::BackwardNotSupported { op: "cmp" }),
Op::Reduce(_args, ReduceOp::Max, _) => {
return Err(Error::BackwardNotSupported { op: "max" }) return Err(Error::BackwardNotSupported { op: "max" })
} }
Op::Min(_args, _sum_dims) => { Op::Reduce(_args, ReduceOp::Min, _) => {
return Err(Error::BackwardNotSupported { op: "min" }) return Err(Error::BackwardNotSupported { op: "min" })
} }
Op::ToDType(arg) => { Op::ToDType(arg) => {

View File

@ -1,5 +1,5 @@
use crate::backend::{BackendDevice, BackendStorage}; use crate::backend::{BackendDevice, BackendStorage};
use crate::op::{BinaryOp, ReduceOp, UnaryOp}; use crate::op::{BinaryOp, CmpOp, ReduceOp, UnaryOp};
use crate::{DType, Error, Layout, Result, Shape, WithDType}; use crate::{DType, Error, Layout, Result, Shape, WithDType};
use half::{bf16, f16}; use half::{bf16, f16};
@ -62,6 +62,57 @@ trait Map2 {
} }
} }
trait Map2U8 {
const OP: &'static str;
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<u8>>;
fn map(
&self,
v1: &CpuStorage,
l1: &Layout,
v2: &CpuStorage,
l2: &Layout,
) -> Result<CpuStorage> {
match (v1, v2) {
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::U32(v1), C::U32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::BF16(v1), C::BF16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::F16(v1), C::F16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::F32(v1), C::F32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::F64(v1), C::F64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
_ => Err(Error::DTypeMismatchBinaryOp {
lhs: v1.dtype(),
rhs: v2.dtype(),
op: Self::OP,
}
.bt()),
}
}
}
struct Cmp(CmpOp);
impl Map2U8 for Cmp {
const OP: &'static str = "cmp";
#[inline(always)]
fn f<T: WithDType>(
&self,
lhs: &[T],
lhs_l: &Layout,
rhs: &[T],
rhs_l: &Layout,
) -> Result<Vec<u8>> {
let dst = match self.0 {
CmpOp::Eq => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x == y)),
CmpOp::Ne => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x != y)),
CmpOp::Lt => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x < y)),
CmpOp::Le => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x <= y)),
CmpOp::Gt => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x > y)),
CmpOp::Ge => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x >= y)),
};
Ok(dst)
}
}
struct WCond<'a>(&'a [u32], &'a Layout); struct WCond<'a>(&'a [u32], &'a Layout);
impl<'a> Map2 for WCond<'a> { impl<'a> Map2 for WCond<'a> {
@ -269,13 +320,13 @@ fn unary_map_vec<T: Copy, U: Copy, F: FnMut(T) -> U, FV: FnMut(&[T], &mut [U])>(
} }
// This function maps over two strided index sequences. // This function maps over two strided index sequences.
fn binary_map<T: Copy, F: FnMut(T, T) -> T>( fn binary_map<T: Copy, U: Copy, F: FnMut(T, T) -> U>(
lhs_l: &Layout, lhs_l: &Layout,
rhs_l: &Layout, rhs_l: &Layout,
lhs: &[T], lhs: &[T],
rhs: &[T], rhs: &[T],
mut f: F, mut f: F,
) -> Vec<T> { ) -> Vec<U> {
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) { match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => lhs[o_l1..o_l2] (Some((o_l1, o_l2)), Some((o_r1, o_r2))) => lhs[o_l1..o_l2]
.iter() .iter()
@ -1064,6 +1115,10 @@ impl BackendStorage for CpuStorage {
.map(self, layout) .map(self, layout)
} }
fn cmp(&self, op: CmpOp, rhs: &Self, lhs_l: &Layout, rhs_l: &Layout) -> Result<Self> {
Cmp(op).map(self, lhs_l, rhs, rhs_l)
}
fn divide_by_sum_over_dim(&mut self, shape: &Shape, dim: usize) -> Result<()> { fn divide_by_sum_over_dim(&mut self, shape: &Shape, dim: usize) -> Result<()> {
// [self] stores data in a contiguous way starting at offset 0. // [self] stores data in a contiguous way starting at offset 0.
match self { match self {

View File

@ -1,4 +1,5 @@
use crate::backend::{BackendDevice, BackendStorage}; use crate::backend::{BackendDevice, BackendStorage};
use crate::op::{CmpOp, ReduceOp};
use crate::{CpuStorage, DType, Layout, Result, Shape, WithDType}; use crate::{CpuStorage, DType, Layout, Result, Shape, WithDType};
use candle_kernels as kernels; use candle_kernels as kernels;
use cudarc::cublas::{Gemm, GemmConfig, StridedBatchedConfig}; use cudarc::cublas::{Gemm, GemmConfig, StridedBatchedConfig};
@ -515,7 +516,7 @@ impl<'a> Map1 for Sum<'a> {
} }
} }
struct FastReduce<'a>(&'a [usize], crate::op::ReduceOp); struct FastReduce<'a>(&'a [usize], ReduceOp);
impl<'a> Map1 for FastReduce<'a> { impl<'a> Map1 for FastReduce<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>( fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self, &self,
@ -558,9 +559,9 @@ impl<'a> Map1 for FastReduce<'a> {
.w()?; .w()?;
let src = &src.slice(layout.start_offset()..); let src = &src.slice(layout.start_offset()..);
let name = match self.1 { let name = match self.1 {
crate::op::ReduceOp::Sum => "fast_sum", ReduceOp::Sum => "fast_sum",
crate::op::ReduceOp::Min => "fast_min", ReduceOp::Min => "fast_min",
crate::op::ReduceOp::Max => "fast_max", ReduceOp::Max => "fast_max",
}; };
let func = dev.get_or_load_func(&kernel_name::<T>(name), kernels::REDUCE)?; let func = dev.get_or_load_func(&kernel_name::<T>(name), kernels::REDUCE)?;
// SAFETY: filled in by the follow up kernel. // SAFETY: filled in by the follow up kernel.
@ -961,17 +962,16 @@ impl BackendStorage for CudaStorage {
Ok(Self { slice, device }) Ok(Self { slice, device })
} }
fn reduce_op( fn reduce_op(&self, op: ReduceOp, layout: &Layout, sum_dims: &[usize]) -> Result<Self> {
&self,
op: crate::op::ReduceOp,
layout: &Layout,
sum_dims: &[usize],
) -> Result<Self> {
let device = self.device().clone(); let device = self.device().clone();
let slice = FastReduce(sum_dims, op).map(&self.slice, &device, layout)?; let slice = FastReduce(sum_dims, op).map(&self.slice, &device, layout)?;
Ok(Self { slice, device }) Ok(Self { slice, device })
} }
fn cmp(&self, _: CmpOp, _: &Self, _: &Layout, _: &Layout) -> Result<Self> {
Err(CudaError::InternalError("TODO: implement cmp").into())
}
fn divide_by_sum_over_dim(&mut self, _: &Shape, _: usize) -> Result<()> { fn divide_by_sum_over_dim(&mut self, _: &Shape, _: usize) -> Result<()> {
Err(CudaError::InternalError("TODO: implement divide_by_sum_over_dim").into()) Err(CudaError::InternalError("TODO: implement divide_by_sum_over_dim").into())
} }

View File

@ -1,4 +1,5 @@
#![allow(dead_code)] #![allow(dead_code)]
use crate::op::{CmpOp, ReduceOp};
use crate::{CpuStorage, DType, Error, Layout, Result, Shape}; use crate::{CpuStorage, DType, Error, Layout, Result, Shape};
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
@ -40,7 +41,11 @@ impl crate::backend::BackendStorage for CudaStorage {
Err(Error::NotCompiledWithCudaSupport) Err(Error::NotCompiledWithCudaSupport)
} }
fn reduce_op(&self, _: crate::op::ReduceOp, _: &Layout, _: &[usize]) -> Result<Self> { fn reduce_op(&self, _: ReduceOp, _: &Layout, _: &[usize]) -> Result<Self> {
Err(Error::NotCompiledWithCudaSupport)
}
fn cmp(&self, _: CmpOp, _: &Self, _: &Layout, _: &Layout) -> Result<Self> {
Err(Error::NotCompiledWithCudaSupport) Err(Error::NotCompiledWithCudaSupport)
} }

View File

@ -2,12 +2,31 @@ use crate::Tensor;
use half::{bf16, f16}; use half::{bf16, f16};
use num_traits::float::Float; use num_traits::float::Float;
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum CmpOp {
Eq,
Ne,
Le,
Ge,
Lt,
Gt,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum ReduceOp {
Sum,
Min,
Max,
}
#[derive(Clone)] #[derive(Clone)]
pub(crate) enum Op { pub(crate) enum Op {
Add(Tensor, Tensor), Add(Tensor, Tensor),
Mul(Tensor, Tensor), Mul(Tensor, Tensor),
Sub(Tensor, Tensor), Sub(Tensor, Tensor),
Div(Tensor, Tensor), Div(Tensor, Tensor),
Cmp(Tensor, CmpOp),
Reduce(Tensor, ReduceOp, Vec<usize>),
Matmul(Tensor, Tensor), Matmul(Tensor, Tensor),
Embedding(Tensor, Tensor), Embedding(Tensor, Tensor),
WhereCond(Tensor, Tensor, Tensor), WhereCond(Tensor, Tensor, Tensor),
@ -28,9 +47,6 @@ pub(crate) enum Op {
mul: f64, mul: f64,
add: f64, add: f64,
}, },
Sum(Tensor, Vec<usize>),
Max(Tensor, Vec<usize>),
Min(Tensor, Vec<usize>),
ToDType(Tensor), ToDType(Tensor),
Broadcast(Tensor), Broadcast(Tensor),
Exp(Tensor), Exp(Tensor),
@ -356,10 +372,3 @@ impl UnaryOp for Relu {
v v
} }
} }
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum ReduceOp {
Sum,
Min,
Max,
}

View File

@ -1,5 +1,6 @@
use crate::backend::BackendStorage; use crate::backend::BackendStorage;
use crate::{op, CpuStorage, CudaStorage, DType, Device, Error, Layout, Result, Shape}; use crate::op::{self, CmpOp, ReduceOp};
use crate::{CpuStorage, CudaStorage, DType, Device, Error, Layout, Result, Shape};
// We do not want to implement Clone on Storage as cloning may fail because of // We do not want to implement Clone on Storage as cloning may fail because of
// out of memory. Instead try_clone should be used. // out of memory. Instead try_clone should be used.
@ -80,12 +81,38 @@ impl Storage {
} }
} }
pub(crate) fn reduce_op( pub(crate) fn cmp(
&self, &self,
op: crate::op::ReduceOp, op: CmpOp,
layout: &Layout, rhs: &Self,
s: &[usize], lhs_layout: &Layout,
rhs_layout: &Layout,
) -> Result<Self> { ) -> Result<Self> {
self.same_device(rhs, "cmp")?;
self.same_dtype(rhs, "cmp")?;
match (self, rhs) {
(Storage::Cpu(lhs), Storage::Cpu(rhs)) => {
let storage = lhs.cmp(op, rhs, lhs_layout, rhs_layout)?;
Ok(Self::Cpu(storage))
}
(Self::Cuda(lhs), Self::Cuda(rhs)) => {
let storage = lhs.cmp(op, rhs, lhs_layout, rhs_layout)?;
Ok(Self::Cuda(storage))
}
(lhs, rhs) => {
// Should not happen because of the same device check above but we're defensive
// anyway.
Err(Error::DeviceMismatchBinaryOp {
lhs: lhs.device().location(),
rhs: rhs.device().location(),
op: "cmp",
}
.bt())
}
}
}
pub(crate) fn reduce_op(&self, op: ReduceOp, layout: &Layout, s: &[usize]) -> Result<Self> {
match self { match self {
Storage::Cpu(storage) => { Storage::Cpu(storage) => {
let storage = storage.reduce_op(op, layout, s)?; let storage = storage.reduce_op(op, layout, s)?;

View File

@ -1,5 +1,5 @@
use crate::backend::{BackendDevice, BackendStorage}; use crate::backend::{BackendDevice, BackendStorage};
use crate::op::{Op, ReduceOp}; use crate::op::{CmpOp, Op, ReduceOp};
use crate::shape::{Dim, Dims}; use crate::shape::{Dim, Dims};
use crate::{storage::Storage, DType, Device, Error, Layout, Result, Shape}; use crate::{storage::Storage, DType, Device, Error, Layout, Result, Shape};
use std::sync::{Arc, RwLock}; use std::sync::{Arc, RwLock};
@ -634,7 +634,7 @@ impl Tensor {
.storage() .storage()
.reduce_op(ReduceOp::Max, self.layout(), &max_dims)?; .reduce_op(ReduceOp::Max, self.layout(), &max_dims)?;
let op = if self.track_op() { let op = if self.track_op() {
Some(Op::Max(self.clone(), max_dims.to_vec())) Some(Op::Reduce(self.clone(), ReduceOp::Max, max_dims.to_vec()))
} else { } else {
None None
}; };
@ -656,7 +656,7 @@ impl Tensor {
.storage() .storage()
.reduce_op(ReduceOp::Min, self.layout(), &min_dims)?; .reduce_op(ReduceOp::Min, self.layout(), &min_dims)?;
let op = if self.track_op() { let op = if self.track_op() {
Some(Op::Min(self.clone(), min_dims.to_vec())) Some(Op::Reduce(self.clone(), ReduceOp::Min, min_dims.to_vec()))
} else { } else {
None None
}; };
@ -678,7 +678,7 @@ impl Tensor {
.storage() .storage()
.reduce_op(ReduceOp::Sum, self.layout(), &sum_dims)?; .reduce_op(ReduceOp::Sum, self.layout(), &sum_dims)?;
let op = if self.track_op() { let op = if self.track_op() {
Some(Op::Sum(self.clone(), sum_dims.to_vec())) Some(Op::Reduce(self.clone(), ReduceOp::Sum, sum_dims.to_vec()))
} else { } else {
None None
}; };
@ -748,6 +748,43 @@ impl Tensor {
self.min(dims) self.min(dims)
} }
pub fn cmp(&self, rhs: &Self, op: CmpOp) -> Result<Self> {
let shape = self.same_shape_binary_op(rhs, "cmp")?;
let storage = self
.storage()
.cmp(op, &rhs.storage(), self.layout(), rhs.layout())?;
let op = if self.track_op() {
Some(Op::Cmp(self.clone(), op))
} else {
None
};
Ok(from_storage(storage, shape.dims(), op, false))
}
pub fn eq(&self, rhs: &Self) -> Result<Self> {
self.cmp(rhs, CmpOp::Eq)
}
pub fn ne(&self, rhs: &Self) -> Result<Self> {
self.cmp(rhs, CmpOp::Ne)
}
pub fn lt(&self, rhs: &Self) -> Result<Self> {
self.cmp(rhs, CmpOp::Lt)
}
pub fn gt(&self, rhs: &Self) -> Result<Self> {
self.cmp(rhs, CmpOp::Gt)
}
pub fn ge(&self, rhs: &Self) -> Result<Self> {
self.cmp(rhs, CmpOp::Ge)
}
pub fn le(&self, rhs: &Self) -> Result<Self> {
self.cmp(rhs, CmpOp::Le)
}
/// Applies a 1D convolution over the input tensor. /// Applies a 1D convolution over the input tensor.
pub fn conv1d(&self, kernel: &Self, padding: usize, stride: usize) -> Result<Self> { pub fn conv1d(&self, kernel: &Self, padding: usize, stride: usize) -> Result<Self> {
let (c_out, c_in_k, k_size) = kernel.shape().r3()?; let (c_out, c_in_k, k_size) = kernel.shape().r3()?;