mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 02:58:50 +00:00
Quantized moondream implementation and BOS token (#1980)
* moondream implementation * add moondream example * change config default activation * Add assets and integrate phi mixformer with example * Make use of kv cache and fix seq_len bug; Clean up example code * Add README link to example * Remove pos_embed scaling; Remove assets; Add to README; Expand VisionConfig * Delete image * Use apply instead of forward * Pass bos token at the beginning of tensor. * Quantize moondream. * Forward with image bos token. * Clippy. * Use q4_0 quantization. * Add pointers for sequence and tokens; Remove seq_len conditional
This commit is contained in:
@ -9,11 +9,19 @@ use clap::Parser;
|
|||||||
|
|
||||||
use candle::{DType, Device, Tensor};
|
use candle::{DType, Device, Tensor};
|
||||||
use candle_nn::VarBuilder;
|
use candle_nn::VarBuilder;
|
||||||
use candle_transformers::{generation::LogitsProcessor, models::moondream};
|
use candle_transformers::{
|
||||||
|
generation::LogitsProcessor,
|
||||||
|
models::{moondream, quantized_moondream},
|
||||||
|
};
|
||||||
use tokenizers::Tokenizer;
|
use tokenizers::Tokenizer;
|
||||||
|
|
||||||
|
enum Model {
|
||||||
|
Moondream(moondream::Model),
|
||||||
|
Quantized(quantized_moondream::Model),
|
||||||
|
}
|
||||||
|
|
||||||
struct TextGeneration {
|
struct TextGeneration {
|
||||||
model: moondream::Model,
|
model: Model,
|
||||||
device: Device,
|
device: Device,
|
||||||
tokenizer: Tokenizer,
|
tokenizer: Tokenizer,
|
||||||
logits_processor: LogitsProcessor,
|
logits_processor: LogitsProcessor,
|
||||||
@ -25,7 +33,7 @@ struct TextGeneration {
|
|||||||
impl TextGeneration {
|
impl TextGeneration {
|
||||||
#[allow(clippy::too_many_arguments)]
|
#[allow(clippy::too_many_arguments)]
|
||||||
fn new(
|
fn new(
|
||||||
model: moondream::Model,
|
model: Model,
|
||||||
tokenizer: Tokenizer,
|
tokenizer: Tokenizer,
|
||||||
seed: u64,
|
seed: u64,
|
||||||
temp: Option<f64>,
|
temp: Option<f64>,
|
||||||
@ -64,6 +72,14 @@ impl TextGeneration {
|
|||||||
let mut tokens = tokens.get_ids().to_vec();
|
let mut tokens = tokens.get_ids().to_vec();
|
||||||
let mut generated_tokens = 0usize;
|
let mut generated_tokens = 0usize;
|
||||||
|
|
||||||
|
// Moondream tokenizer bos_token is "<|endoftext|>"
|
||||||
|
// https://huggingface.co/vikhyatk/moondream2/blob/main/special_tokens_map.json
|
||||||
|
let bos_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
|
||||||
|
Some(token) => *token,
|
||||||
|
None => anyhow::bail!("cannot find the BOS token"),
|
||||||
|
};
|
||||||
|
// eos_token is "END"
|
||||||
|
// https://github.com/vikhyat/moondream/blob/a9d788a20d1543fb1479edc54106e88cff7759d3/moondream/moondream.py#L100
|
||||||
let eos_token = match self.tokenizer.get_vocab(true).get("END") {
|
let eos_token = match self.tokenizer.get_vocab(true).get("END") {
|
||||||
Some(token) => *token,
|
Some(token) => *token,
|
||||||
None => anyhow::bail!("cannot find the EOS token"),
|
None => anyhow::bail!("cannot find the EOS token"),
|
||||||
@ -75,11 +91,24 @@ impl TextGeneration {
|
|||||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||||
let logits = if index > 0 {
|
let logits = if index > 0 {
|
||||||
self.model.text_model.forward(&input)?
|
match self.model {
|
||||||
|
Model::Moondream(ref mut model) => model.text_model.forward(&input)?,
|
||||||
|
Model::Quantized(ref mut model) => model.text_model.forward(&input)?,
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
self.model
|
let bos_token = Tensor::new(&[bos_token], &self.device)?.unsqueeze(0)?;
|
||||||
.text_model
|
match self.model {
|
||||||
.forward_with_img(&input, image_embeds)?
|
Model::Moondream(ref mut model) => {
|
||||||
|
model
|
||||||
|
.text_model
|
||||||
|
.forward_with_img(&bos_token, &input, image_embeds)?
|
||||||
|
}
|
||||||
|
Model::Quantized(ref mut model) => {
|
||||||
|
model
|
||||||
|
.text_model
|
||||||
|
.forward_with_img(&bos_token, &input, image_embeds)?
|
||||||
|
}
|
||||||
|
}
|
||||||
};
|
};
|
||||||
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
||||||
let logits = if self.repeat_penalty == 1. {
|
let logits = if self.repeat_penalty == 1. {
|
||||||
@ -142,7 +171,7 @@ struct Args {
|
|||||||
top_p: Option<f64>,
|
top_p: Option<f64>,
|
||||||
|
|
||||||
/// The seed to use when generating random samples.
|
/// The seed to use when generating random samples.
|
||||||
#[arg(long, default_value_t = 299792458)]
|
#[arg(long, default_value_t = 0)]
|
||||||
seed: u64,
|
seed: u64,
|
||||||
|
|
||||||
#[arg(long, default_value_t = 5000)]
|
#[arg(long, default_value_t = 5000)]
|
||||||
@ -156,12 +185,15 @@ struct Args {
|
|||||||
#[arg(long, default_value_t = 64)]
|
#[arg(long, default_value_t = 64)]
|
||||||
repeat_last_n: usize,
|
repeat_last_n: usize,
|
||||||
|
|
||||||
#[arg(long, default_value = "vikhyatk/moondream2")]
|
#[arg(long)]
|
||||||
model_id: String,
|
model_id: Option<String>,
|
||||||
|
|
||||||
#[arg(long, default_value = "main")]
|
#[arg(long, default_value = "main")]
|
||||||
revision: String,
|
revision: String,
|
||||||
|
|
||||||
|
#[arg(long)]
|
||||||
|
quantized: bool,
|
||||||
|
|
||||||
#[arg(long)]
|
#[arg(long)]
|
||||||
model_file: Option<String>,
|
model_file: Option<String>,
|
||||||
|
|
||||||
@ -216,14 +248,30 @@ async fn main() -> anyhow::Result<()> {
|
|||||||
|
|
||||||
let start = std::time::Instant::now();
|
let start = std::time::Instant::now();
|
||||||
let api = hf_hub::api::tokio::Api::new()?;
|
let api = hf_hub::api::tokio::Api::new()?;
|
||||||
|
let model_id = match args.model_id {
|
||||||
|
Some(model_id) => model_id.to_string(),
|
||||||
|
None => {
|
||||||
|
if args.quantized {
|
||||||
|
"santiagomed/candle-moondream".to_string()
|
||||||
|
} else {
|
||||||
|
"vikhyatk/moondream2".to_string()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
let repo = api.repo(hf_hub::Repo::with_revision(
|
let repo = api.repo(hf_hub::Repo::with_revision(
|
||||||
args.model_id,
|
model_id,
|
||||||
hf_hub::RepoType::Model,
|
hf_hub::RepoType::Model,
|
||||||
args.revision,
|
args.revision,
|
||||||
));
|
));
|
||||||
let model_file = match args.model_file {
|
let model_file = match args.model_file {
|
||||||
Some(m) => m.into(),
|
Some(m) => m.into(),
|
||||||
None => repo.get("model.safetensors").await?,
|
None => {
|
||||||
|
if args.quantized {
|
||||||
|
repo.get("model-q4_0.gguf").await?
|
||||||
|
} else {
|
||||||
|
repo.get("model.safetensors").await?
|
||||||
|
}
|
||||||
|
}
|
||||||
};
|
};
|
||||||
let tokenizer = match args.tokenizer_file {
|
let tokenizer = match args.tokenizer_file {
|
||||||
Some(m) => m.into(),
|
Some(m) => m.into(),
|
||||||
@ -234,22 +282,35 @@ async fn main() -> anyhow::Result<()> {
|
|||||||
|
|
||||||
let start = std::time::Instant::now();
|
let start = std::time::Instant::now();
|
||||||
let device = candle_examples::device(args.cpu)?;
|
let device = candle_examples::device(args.cpu)?;
|
||||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
|
|
||||||
let config = moondream::Config::v2();
|
let config = moondream::Config::v2();
|
||||||
let model = moondream::Model::new(&config, vb)?;
|
let model = if args.quantized {
|
||||||
|
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(
|
||||||
|
&model_file,
|
||||||
|
&device,
|
||||||
|
)?;
|
||||||
|
let model = quantized_moondream::Model::new(&config, vb)?;
|
||||||
|
Model::Quantized(model)
|
||||||
|
} else {
|
||||||
|
let vb =
|
||||||
|
unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
|
||||||
|
let model = moondream::Model::new(&config, vb)?;
|
||||||
|
Model::Moondream(model)
|
||||||
|
};
|
||||||
println!("loaded the model in {:?}", start.elapsed());
|
println!("loaded the model in {:?}", start.elapsed());
|
||||||
|
|
||||||
let start = std::time::Instant::now();
|
let start = std::time::Instant::now();
|
||||||
let image = load_image(args.image)?.to_device(&device)?;
|
let image = load_image(args.image)?.to_device(&device)?;
|
||||||
let image_embeds = image.unsqueeze(0)?;
|
let image_embeds = image.unsqueeze(0)?;
|
||||||
let image_embeds = image_embeds.apply(model.vision_encoder())?;
|
let image_embeds = match model {
|
||||||
|
Model::Moondream(ref m) => image_embeds.apply(m.vision_encoder())?,
|
||||||
|
Model::Quantized(ref m) => image_embeds.apply(m.vision_encoder())?,
|
||||||
|
};
|
||||||
println!(
|
println!(
|
||||||
"loaded and encoded the image {image:?} in {:?}",
|
"loaded and encoded the image {image:?} in {:?}",
|
||||||
start.elapsed()
|
start.elapsed()
|
||||||
);
|
);
|
||||||
|
|
||||||
let prompt = format!("\n\nQuestion: {0}\n\nAnswer:", args.prompt);
|
let prompt = format!("\n\nQuestion: {0}\n\nAnswer:", args.prompt);
|
||||||
|
|
||||||
let mut pipeline = TextGeneration::new(
|
let mut pipeline = TextGeneration::new(
|
||||||
model,
|
model,
|
||||||
tokenizer,
|
tokenizer,
|
||||||
|
@ -438,16 +438,20 @@ impl MixFormerSequentialForCausalLM {
|
|||||||
xs.narrow(1, seq_len - 1, 1)?.apply(&self.head)?.squeeze(1)
|
xs.narrow(1, seq_len - 1, 1)?.apply(&self.head)?.squeeze(1)
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn forward_with_img(&mut self, xs: &Tensor, img_embeds: &Tensor) -> Result<Tensor> {
|
pub fn forward_with_img(
|
||||||
|
&mut self,
|
||||||
|
bos_token: &Tensor,
|
||||||
|
xs: &Tensor,
|
||||||
|
img_embeds: &Tensor,
|
||||||
|
) -> Result<Tensor> {
|
||||||
let _enter = self.span.enter();
|
let _enter = self.span.enter();
|
||||||
let xs = xs.apply(&self.embedding)?;
|
let xs = xs.apply(&self.embedding)?;
|
||||||
let mut xs = Tensor::cat(&[img_embeds.clone(), xs], 1)?;
|
let bos_token = bos_token.apply(&self.embedding)?;
|
||||||
|
// Python implementation sequence order is <bos token embedding><img embedding><rest of text embedding>
|
||||||
|
// https://github.com/vikhyat/moondream/blob/a9d788a20d1543fb1479edc54106e88cff7759d3/moondream/moondream.py#L43-L56
|
||||||
|
let mut xs = Tensor::cat(&[bos_token, img_embeds.clone(), xs], 1)?;
|
||||||
let (_b_size, seq_len, _embds) = xs.dims3()?;
|
let (_b_size, seq_len, _embds) = xs.dims3()?;
|
||||||
let mask = if seq_len <= 1 {
|
let mask = Some(get_mask(seq_len, xs.device())?);
|
||||||
None
|
|
||||||
} else {
|
|
||||||
Some(get_mask(seq_len, xs.device())?)
|
|
||||||
};
|
|
||||||
for block in self.blocks.iter_mut() {
|
for block in self.blocks.iter_mut() {
|
||||||
xs = block.forward(&xs, mask.as_ref())?
|
xs = block.forward(&xs, mask.as_ref())?
|
||||||
}
|
}
|
||||||
|
@ -35,6 +35,7 @@ pub mod quantized_llama2_c;
|
|||||||
pub mod quantized_metavoice;
|
pub mod quantized_metavoice;
|
||||||
pub mod quantized_mistral;
|
pub mod quantized_mistral;
|
||||||
pub mod quantized_mixformer;
|
pub mod quantized_mixformer;
|
||||||
|
pub mod quantized_moondream;
|
||||||
pub mod quantized_mpt;
|
pub mod quantized_mpt;
|
||||||
pub mod quantized_rwkv_v5;
|
pub mod quantized_rwkv_v5;
|
||||||
pub mod quantized_rwkv_v6;
|
pub mod quantized_rwkv_v6;
|
||||||
|
@ -25,15 +25,15 @@ fn scaled_dot_product_attention(q: &Tensor, k: &Tensor, v: &Tensor) -> Result<Te
|
|||||||
|
|
||||||
#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
|
#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
|
||||||
pub struct VisionConfig {
|
pub struct VisionConfig {
|
||||||
image_embedding_dim: usize,
|
pub(crate) image_embedding_dim: usize,
|
||||||
model_dim: usize,
|
pub(crate) model_dim: usize,
|
||||||
hidden_dim: usize,
|
pub(crate) hidden_dim: usize,
|
||||||
hidden_features: usize,
|
pub(crate) hidden_features: usize,
|
||||||
embed_len: usize,
|
pub(crate) embed_len: usize,
|
||||||
embed_dim: usize,
|
pub(crate) embed_dim: usize,
|
||||||
num_blocks: usize,
|
pub(crate) num_blocks: usize,
|
||||||
num_heads: usize,
|
pub(crate) num_heads: usize,
|
||||||
act: candle_nn::Activation,
|
pub(crate) act: candle_nn::Activation,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl VisionConfig {
|
impl VisionConfig {
|
||||||
|
@ -337,6 +337,30 @@ impl MixFormerSequentialForCausalLM {
|
|||||||
xs.narrow(1, seq_len - 1, 1)?.apply(&self.head)?.squeeze(1)
|
xs.narrow(1, seq_len - 1, 1)?.apply(&self.head)?.squeeze(1)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub fn forward_with_img(
|
||||||
|
&mut self,
|
||||||
|
bos_token: &Tensor,
|
||||||
|
xs: &Tensor,
|
||||||
|
img_embeds: &Tensor,
|
||||||
|
) -> Result<Tensor> {
|
||||||
|
let _enter = self.span.enter();
|
||||||
|
let xs = xs.apply(&self.embedding)?;
|
||||||
|
let bos_token = bos_token.apply(&self.embedding)?;
|
||||||
|
// Python implementation sequence order is <bos token embedding><img embedding><rest of text embedding>
|
||||||
|
// https://github.com/vikhyat/moondream/blob/a9d788a20d1543fb1479edc54106e88cff7759d3/moondream/moondream.py#L43-L56
|
||||||
|
let mut xs = Tensor::cat(&[bos_token, img_embeds.clone(), xs], 1)?;
|
||||||
|
let (_b_size, seq_len, _embds) = xs.dims3()?;
|
||||||
|
let mask = Some(get_mask(seq_len, xs.device())?);
|
||||||
|
for block in self.blocks.iter_mut() {
|
||||||
|
xs = block.forward(&xs, mask.as_ref())?
|
||||||
|
}
|
||||||
|
let xs = xs
|
||||||
|
.narrow(1, seq_len - 1, 1)?
|
||||||
|
.apply(&self.head)?
|
||||||
|
.squeeze(1)?;
|
||||||
|
Ok(xs)
|
||||||
|
}
|
||||||
|
|
||||||
pub fn clear_kv_cache(&mut self) {
|
pub fn clear_kv_cache(&mut self) {
|
||||||
self.blocks.iter_mut().for_each(|b| b.clear_kv_cache())
|
self.blocks.iter_mut().for_each(|b| b.clear_kv_cache())
|
||||||
}
|
}
|
||||||
|
271
candle-transformers/src/models/quantized_moondream.rs
Normal file
271
candle-transformers/src/models/quantized_moondream.rs
Normal file
@ -0,0 +1,271 @@
|
|||||||
|
use crate::models::moondream::{Config, VisionConfig};
|
||||||
|
use crate::models::quantized_mixformer::MixFormerSequentialForCausalLM as PhiModel;
|
||||||
|
use crate::quantized_nn::{layer_norm, linear_b, Linear};
|
||||||
|
use crate::quantized_var_builder::VarBuilder;
|
||||||
|
use candle::{IndexOp, Module, Result, Tensor, D};
|
||||||
|
|
||||||
|
fn scaled_dot_product_attention(q: &Tensor, k: &Tensor, v: &Tensor) -> Result<Tensor> {
|
||||||
|
let dim = q.dim(D::Minus1)?;
|
||||||
|
let scale_factor = 1.0 / (dim as f64).sqrt();
|
||||||
|
let attn_weights = (q.matmul(&k.t()?)? * scale_factor)?;
|
||||||
|
candle_nn::ops::softmax_last_dim(&attn_weights)?.matmul(v)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
struct LinearPatchEmbedding {
|
||||||
|
linear: Linear,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl LinearPatchEmbedding {
|
||||||
|
fn new(vb: VarBuilder) -> Result<Self> {
|
||||||
|
let linear = linear_b(588, 1152, true, vb.pp("linear"))?;
|
||||||
|
Ok(Self { linear })
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Module for LinearPatchEmbedding {
|
||||||
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||||
|
xs.apply(&self.linear)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
struct Attention {
|
||||||
|
num_heads: usize,
|
||||||
|
head_dim: usize,
|
||||||
|
qkv: Linear,
|
||||||
|
proj: Linear,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Attention {
|
||||||
|
pub fn new(vb: VarBuilder, dim: usize, num_heads: usize) -> Result<Self> {
|
||||||
|
let qkv = linear_b(dim, dim * 3, true, vb.pp("qkv"))?;
|
||||||
|
let proj = linear_b(dim, dim, true, vb.pp("proj"))?;
|
||||||
|
Ok(Self {
|
||||||
|
num_heads,
|
||||||
|
head_dim: dim / num_heads,
|
||||||
|
qkv,
|
||||||
|
proj,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Module for Attention {
|
||||||
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||||
|
let (b, n, c) = xs.dims3()?;
|
||||||
|
let qkv = xs
|
||||||
|
.apply(&self.qkv)?
|
||||||
|
.reshape((b, n, 3, self.num_heads, self.head_dim))?
|
||||||
|
.permute((2, 0, 3, 1, 4))?;
|
||||||
|
let (q, k, v) = (
|
||||||
|
qkv.i(0)?.contiguous()?,
|
||||||
|
qkv.i(1)?.contiguous()?,
|
||||||
|
qkv.i(2)?.contiguous()?,
|
||||||
|
);
|
||||||
|
scaled_dot_product_attention(&q, &k, &v)?
|
||||||
|
.transpose(1, 2)?
|
||||||
|
.reshape((b, n, c))?
|
||||||
|
.apply(&self.proj)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
struct VitBlock {
|
||||||
|
attn: Attention,
|
||||||
|
mlp: Mlp,
|
||||||
|
norm1: candle_nn::LayerNorm,
|
||||||
|
norm2: candle_nn::LayerNorm,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl VitBlock {
|
||||||
|
fn new(vb: VarBuilder, dim: usize, num_heads: usize, cfg: &VisionConfig) -> Result<Self> {
|
||||||
|
let attn = Attention::new(vb.pp("attn"), dim, num_heads)?;
|
||||||
|
let mlp = Mlp::new(vb.pp("mlp"), dim, cfg.hidden_features, dim, cfg.act)?;
|
||||||
|
let norm1 = layer_norm(dim, 1e-5, vb.pp("norm1"))?;
|
||||||
|
let norm2 = layer_norm(dim, 1e-5, vb.pp("norm2"))?;
|
||||||
|
Ok(Self {
|
||||||
|
attn,
|
||||||
|
mlp,
|
||||||
|
norm1,
|
||||||
|
norm2,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Module for VitBlock {
|
||||||
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||||
|
let ys = xs.apply(&self.norm1)?.apply(&self.attn)?;
|
||||||
|
let xs = (xs + &ys)?;
|
||||||
|
let ys = xs.apply(&self.norm2)?.apply(&self.mlp)?;
|
||||||
|
let xs = (&xs + &ys)?;
|
||||||
|
Ok(xs)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
struct VisionTransformer {
|
||||||
|
patch_embed: LinearPatchEmbedding,
|
||||||
|
pos_embed: Tensor,
|
||||||
|
blocks: Vec<VitBlock>,
|
||||||
|
norm: candle_nn::LayerNorm,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl VisionTransformer {
|
||||||
|
fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
|
||||||
|
let patch_embed = LinearPatchEmbedding::new(vb.pp("patch_embed"))?;
|
||||||
|
let pos_embed = vb
|
||||||
|
.get((1, cfg.embed_len, cfg.embed_dim), "pos_embed")?
|
||||||
|
.dequantize(vb.device())?;
|
||||||
|
let blocks = (0..cfg.num_blocks)
|
||||||
|
.map(|i| {
|
||||||
|
VitBlock::new(
|
||||||
|
vb.pp(format!("blocks.{}", i)),
|
||||||
|
cfg.embed_dim,
|
||||||
|
cfg.num_heads,
|
||||||
|
cfg,
|
||||||
|
)
|
||||||
|
})
|
||||||
|
.collect::<Result<_>>()?;
|
||||||
|
let norm = layer_norm(cfg.embed_dim, 1e-5, vb.pp("norm"))?;
|
||||||
|
Ok(Self {
|
||||||
|
patch_embed,
|
||||||
|
pos_embed,
|
||||||
|
blocks,
|
||||||
|
norm,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Module for VisionTransformer {
|
||||||
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||||
|
let mut xs = (&xs.apply(&self.patch_embed)? + &self.pos_embed)?;
|
||||||
|
for block in self.blocks.iter() {
|
||||||
|
xs = xs.apply(block)?;
|
||||||
|
}
|
||||||
|
xs.apply(&self.norm)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct Encoder {
|
||||||
|
model: VisionTransformer,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Encoder {
|
||||||
|
fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
|
||||||
|
let model = VisionTransformer::new(cfg, vb.pp("model.visual"))?;
|
||||||
|
Ok(Self { model })
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Module for Encoder {
|
||||||
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||||
|
xs.apply(&self.model)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
struct Mlp {
|
||||||
|
fc1: Linear,
|
||||||
|
act: candle_nn::Activation,
|
||||||
|
fc2: Linear,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Mlp {
|
||||||
|
fn new(
|
||||||
|
vb: VarBuilder,
|
||||||
|
in_features: usize,
|
||||||
|
hidden_features: usize,
|
||||||
|
out_features: usize,
|
||||||
|
act: candle_nn::Activation,
|
||||||
|
) -> Result<Self> {
|
||||||
|
let fc1 = linear_b(in_features, hidden_features, true, vb.pp("fc1"))?;
|
||||||
|
let fc2 = linear_b(hidden_features, out_features, true, vb.pp("fc2"))?;
|
||||||
|
Ok(Self { fc1, act, fc2 })
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Module for Mlp {
|
||||||
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||||
|
xs.apply(&self.fc1)?.apply(&self.act)?.apply(&self.fc2)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
struct VisionProjection {
|
||||||
|
mlp: Mlp,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl VisionProjection {
|
||||||
|
fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
|
||||||
|
let mlp = Mlp::new(
|
||||||
|
vb.pp("mlp"),
|
||||||
|
cfg.image_embedding_dim,
|
||||||
|
cfg.hidden_dim,
|
||||||
|
cfg.model_dim,
|
||||||
|
cfg.act,
|
||||||
|
)?;
|
||||||
|
Ok(Self { mlp })
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Module for VisionProjection {
|
||||||
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||||
|
xs.apply(&self.mlp)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct VisionEncoder {
|
||||||
|
encoder: Encoder,
|
||||||
|
projection: VisionProjection,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl VisionEncoder {
|
||||||
|
pub fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
|
||||||
|
let encoder = Encoder::new(cfg, vb.pp("encoder"))?;
|
||||||
|
let projection = VisionProjection::new(cfg, vb.pp("projection"))?;
|
||||||
|
Ok(Self {
|
||||||
|
encoder,
|
||||||
|
projection,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Module for VisionEncoder {
|
||||||
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||||
|
let (b, c, hp1, wp2) = xs.dims4()?;
|
||||||
|
let (p1, p2) = (14, 14);
|
||||||
|
let h = hp1 / p1;
|
||||||
|
let w = wp2 / p2;
|
||||||
|
xs.reshape((b, c, h, p1, h, p2))?
|
||||||
|
.permute((0, 2, 4, 1, 3, 5))?
|
||||||
|
.reshape((b, h * w, c * p1 * p2))?
|
||||||
|
.apply(&self.encoder)?
|
||||||
|
.apply(&self.projection)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub struct Model {
|
||||||
|
pub text_model: PhiModel,
|
||||||
|
pub vision_encoder: VisionEncoder,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Model {
|
||||||
|
pub fn new(config: &Config, vb: VarBuilder) -> Result<Self> {
|
||||||
|
let text_model = PhiModel::new_v2(&config.phi_config, vb.pp("text_model"))?;
|
||||||
|
let vision_encoder = VisionEncoder::new(&config.vision_config, vb.pp("vision_encoder"))?;
|
||||||
|
Ok(Self {
|
||||||
|
text_model,
|
||||||
|
vision_encoder,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn vision_encoder(&self) -> &VisionEncoder {
|
||||||
|
&self.vision_encoder
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn text_model(&mut self) -> &mut PhiModel {
|
||||||
|
&mut self.text_model
|
||||||
|
}
|
||||||
|
}
|
Reference in New Issue
Block a user