Move the cpu backend specific bits apart.

This commit is contained in:
laurent
2023-06-21 10:25:56 +01:00
parent b3eb57cd0a
commit eb52b9b343
4 changed files with 118 additions and 83 deletions

99
src/cpu_backend.rs Normal file
View File

@ -0,0 +1,99 @@
use crate::storage::{BinaryOp, UnaryOp};
use crate::{DType, Error, Result, Shape, StridedIndex};
// TODO: Think about whether we would be better off with a dtype and
// a buffer as an owned slice of bytes.
#[derive(Debug, Clone)]
pub enum CpuStorage {
F32(Vec<f32>),
F64(Vec<f64>),
}
impl CpuStorage {
pub fn dtype(&self) -> DType {
match self {
Self::F32(_) => DType::F32,
Self::F64(_) => DType::F64,
}
}
pub(crate) fn affine_impl(
&self,
shape: &Shape,
stride: &[usize],
mul: f64,
add: f64,
) -> Result<Self> {
match self {
Self::F32(storage) => {
let index = StridedIndex::new(shape.dims(), stride);
let mul = mul as f32;
let add = add as f32;
let data = index.map(|i| storage[i] * mul + add).collect();
Ok(Self::F32(data))
}
Self::F64(storage) => {
let index = StridedIndex::new(shape.dims(), stride);
let data = index.map(|i| storage[i] * mul + add).collect();
Ok(Self::F64(data))
}
}
}
pub(crate) fn unary_impl<B: UnaryOp>(&self, shape: &Shape, stride: &[usize]) -> Result<Self> {
// TODO: Different code path for the contiguous case?
match self {
Self::F32(storage) => {
let index = StridedIndex::new(shape.dims(), stride);
let data = index.map(|i| B::f32(storage[i])).collect();
Ok(Self::F32(data))
}
Self::F64(storage) => {
let index = StridedIndex::new(shape.dims(), stride);
let data = index.map(|i| B::f64(storage[i])).collect();
Ok(Self::F64(data))
}
}
}
pub(crate) fn binary_impl<B: BinaryOp>(
&self,
rhs: &Self,
shape: &Shape,
lhs_stride: &[usize],
rhs_stride: &[usize],
) -> Result<Self> {
// The ggml implementation has different paths based on whether the rhs is contiguous
// or not, for now we only consider the general case but we should benchmark and do the
// same if it helps.
// https://github.com/ggerganov/llama.cpp/blob/aacdbd40562684665b6f7b8ba6695b7a2088bbb0/ggml.c#L7895
match (self, rhs) {
(CpuStorage::F32(lhs), CpuStorage::F32(rhs)) => {
let lhs_index = StridedIndex::new(shape.dims(), lhs_stride);
let rhs_index = StridedIndex::new(shape.dims(), rhs_stride);
let data = lhs_index
.zip(rhs_index)
.map(|(lhs_i, rhs_i)| B::f32(lhs[lhs_i], rhs[rhs_i]))
.collect();
Ok(Self::F32(data))
}
(CpuStorage::F64(lhs), CpuStorage::F64(rhs)) => {
let lhs_index = StridedIndex::new(shape.dims(), lhs_stride);
let rhs_index = StridedIndex::new(shape.dims(), rhs_stride);
let data = lhs_index
.zip(rhs_index)
.map(|(lhs_i, rhs_i)| B::f64(lhs[lhs_i], rhs[rhs_i]))
.collect();
Ok(Self::F64(data))
}
_ => {
// This should be covered by the dtype check above.
Err(Error::DTypeMismatchBinaryOp {
lhs: self.dtype(),
rhs: rhs.dtype(),
op: B::NAME,
})
}
}
}
}

View File

@ -1,7 +1,4 @@
use crate::{
storage::{CpuStorage, Storage},
DType, Result, Shape,
};
use crate::{CpuStorage, DType, Result, Shape, Storage};
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum Device {

View File

@ -1,3 +1,4 @@
mod cpu_backend;
mod device;
mod dtype;
mod error;
@ -7,10 +8,11 @@ mod storage;
mod strided_index;
mod tensor;
pub use cpu_backend::CpuStorage;
pub use device::Device;
pub use dtype::{DType, WithDType};
pub use error::{Error, Result};
pub use shape::Shape;
pub use storage::{CpuStorage, Storage};
pub use storage::Storage;
use strided_index::StridedIndex;
pub use tensor::{Tensor, TensorId};

View File

@ -1,21 +1,4 @@
use crate::{DType, Device, Error, Result, Shape, StridedIndex};
// TODO: Think about whether we would be better off with a dtype and
// a buffer as an owned slice of bytes.
#[derive(Debug, Clone)]
pub enum CpuStorage {
F32(Vec<f32>),
F64(Vec<f64>),
}
impl CpuStorage {
pub(crate) fn dtype(&self) -> DType {
match self {
Self::F32(_) => DType::F32,
Self::F64(_) => DType::F64,
}
}
}
use crate::{CpuStorage, DType, Device, Error, Result, Shape};
#[derive(Debug, Clone)]
pub enum Storage {
@ -23,13 +6,13 @@ pub enum Storage {
Cuda { gpu_id: usize }, // TODO: Actually add the storage.
}
trait UnaryOp {
pub(crate) trait UnaryOp {
const NAME: &'static str;
fn f32(v1: f32) -> f32;
fn f64(v1: f64) -> f64;
}
trait BinaryOp {
pub(crate) trait BinaryOp {
const NAME: &'static str;
fn f32(v1: f32, v2: f32) -> f32;
fn f64(v1: f64, v2: f64) -> f64;
@ -157,20 +140,10 @@ impl Storage {
) -> Result<Self> {
// TODO: Different code path for the contiguous case?
match self {
Storage::Cpu(storage) => match storage {
CpuStorage::F32(storage) => {
let index = StridedIndex::new(shape.dims(), stride);
let mul = mul as f32;
let add = add as f32;
let data = index.map(|i| storage[i] * mul + add).collect();
Ok(Storage::Cpu(CpuStorage::F32(data)))
}
CpuStorage::F64(storage) => {
let index = StridedIndex::new(shape.dims(), stride);
let data = index.map(|i| storage[i] * mul + add).collect();
Ok(Storage::Cpu(CpuStorage::F64(data)))
}
},
Storage::Cpu(storage) => {
let storage = storage.affine_impl(shape, stride, mul, add)?;
Ok(Self::Cpu(storage))
}
Self::Cuda { .. } => todo!(),
}
}
@ -178,18 +151,10 @@ impl Storage {
fn unary_impl<B: UnaryOp>(&self, shape: &Shape, stride: &[usize]) -> Result<Self> {
// TODO: Different code path for the contiguous case?
match self {
Storage::Cpu(storage) => match storage {
CpuStorage::F32(storage) => {
let index = StridedIndex::new(shape.dims(), stride);
let data = index.map(|i| B::f32(storage[i])).collect();
Ok(Storage::Cpu(CpuStorage::F32(data)))
}
CpuStorage::F64(storage) => {
let index = StridedIndex::new(shape.dims(), stride);
let data = index.map(|i| B::f64(storage[i])).collect();
Ok(Storage::Cpu(CpuStorage::F64(data)))
}
},
Storage::Cpu(storage) => {
let storage = storage.unary_impl::<B>(shape, stride)?;
Ok(Self::Cpu(storage))
}
Self::Cuda { .. } => todo!(),
}
}
@ -204,39 +169,11 @@ impl Storage {
) -> Result<Self> {
self.same_device(rhs, B::NAME)?;
self.same_dtype(rhs, B::NAME)?;
// The ggml implementation has different paths based on whether the rhs is contiguous
// or not, for now we only consider the general case but we should benchmark and do the
// same if it helps.
// https://github.com/ggerganov/llama.cpp/blob/aacdbd40562684665b6f7b8ba6695b7a2088bbb0/ggml.c#L7895
match (self, rhs) {
(Storage::Cpu(lhs), Storage::Cpu(rhs)) => match (lhs, rhs) {
(CpuStorage::F32(lhs), CpuStorage::F32(rhs)) => {
let lhs_index = StridedIndex::new(shape.dims(), lhs_stride);
let rhs_index = StridedIndex::new(shape.dims(), rhs_stride);
let data = lhs_index
.zip(rhs_index)
.map(|(lhs_i, rhs_i)| B::f32(lhs[lhs_i], rhs[rhs_i]))
.collect();
Ok(Storage::Cpu(CpuStorage::F32(data)))
}
(CpuStorage::F64(lhs), CpuStorage::F64(rhs)) => {
let lhs_index = StridedIndex::new(shape.dims(), lhs_stride);
let rhs_index = StridedIndex::new(shape.dims(), rhs_stride);
let data = lhs_index
.zip(rhs_index)
.map(|(lhs_i, rhs_i)| B::f64(lhs[lhs_i], rhs[rhs_i]))
.collect();
Ok(Storage::Cpu(CpuStorage::F64(data)))
}
_ => {
// This should be covered by the dtype check above.
Err(Error::DTypeMismatchBinaryOp {
lhs: lhs.dtype(),
rhs: rhs.dtype(),
op: B::NAME,
})
}
},
(Storage::Cpu(lhs), Storage::Cpu(rhs)) => {
let storage = lhs.binary_impl::<B>(rhs, shape, lhs_stride, rhs_stride)?;
Ok(Self::Cpu(storage))
}
(Self::Cuda { .. }, Self::Cuda { .. }) => todo!(),
(lhs, rhs) => {
// Should not happen because of the same device check above but we're defensive