Evaluate on the pre-tokenized file. (#290)

This commit is contained in:
Laurent Mazare
2023-07-31 21:31:38 +01:00
committed by GitHub
parent 6b98b66eb3
commit f28558d0b7

View File

@ -214,6 +214,9 @@ struct Args {
#[arg(long, default_value = "")]
prompt: String,
#[arg(long)]
eval_file: Option<String>,
}
fn main() -> anyhow::Result<()> {
@ -240,12 +243,66 @@ fn main() -> anyhow::Result<()> {
match args.task {
Task::Inference => run_inference(tokenizer, &config_path, args)?,
Task::Evaluation => run_eval(tokenizer, &config_path, args)?,
Task::Evaluation => {
if let Some(eval_file) = &args.eval_file {
run_eval_file(eval_file.into(), &config_path, args)?
} else {
run_eval(tokenizer, &config_path, args)?
}
}
Task::Training => todo!(),
}
Ok(())
}
fn run_eval_file(
path: std::path::PathBuf,
config_path: &std::path::PathBuf,
args: Args,
) -> Result<()> {
use std::io::BufRead;
let device = candle_examples::device(args.cpu)?;
let mut file = std::fs::File::open(config_path)?;
let config = Config::from_reader(&mut file)?;
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
let vb = weights.var_builder(&config, &device)?;
let cache = model::Cache::new(false, &config, vb.pp("rot"))?;
let model = Llama::load(vb, &cache, config)?;
let bytes = std::fs::read(path)?;
// Tokens are encoded as u16.
let mut tokens = vec![0u16; bytes.len() / 2];
std::io::Cursor::new(bytes).read_u16_into::<LittleEndian>(&mut tokens)?;
let tokens: Vec<u32> = tokens.into_iter().map(|u| u as u32).collect();
println!("dataset loaded: {} tokens", tokens.len());
let seq_len = model.config.seq_len;
let batch_size = 32;
let mut inputs = vec![];
let mut targets = vec![];
for start_idx in (0..tokens.len()).step_by(seq_len) {
if start_idx + seq_len + 1 > tokens.len() {
break;
}
let tokens = &tokens[start_idx..start_idx + seq_len + 1];
let inputs_ = Tensor::new(&tokens[..seq_len], &device)?;
let targets_ = Tensor::new(&tokens[1..], &device)?;
inputs.push(inputs_);
targets.push(targets_);
if inputs.len() >= batch_size {
let inp = Tensor::stack(&inputs, 0)?;
let tgt = Tensor::stack(&targets, 0)?;
let logits = model.forward(&inp, 0)?;
let loss = candle_nn::loss::cross_entropy(&logits.flatten_to(1)?, &tgt.flatten_to(1)?)?;
println!("{}", loss.to_vec0::<f32>()?);
inputs.clear();
targets.clear();
}
}
Ok(())
}
fn run_eval(tokenizer: Tokenizer, config_path: &std::path::PathBuf, args: Args) -> Result<()> {
use std::io::BufRead;