Add more models to the onnx example. (#1273)

* Add more models to the onnx example.

* Input validation.

* Input validation.

* Bugfix.

* Implement clip.

* BatchNorm support.

* Get the efficientnet onnx to work.
This commit is contained in:
Laurent Mazare
2023-11-05 16:57:26 +01:00
committed by GitHub
parent 60fdab4e17
commit f365a075e5
3 changed files with 181 additions and 23 deletions

View File

@ -5,7 +5,13 @@ extern crate intel_mkl_src;
extern crate accelerate_src;
use candle::{IndexOp, D};
use clap::Parser;
use clap::{Parser, ValueEnum};
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Which {
SqueezeNet,
EfficientNet,
}
#[derive(Parser)]
struct Args {
@ -14,19 +20,32 @@ struct Args {
#[arg(long)]
model: Option<String>,
/// The model to be used.
#[arg(value_enum, long, default_value_t = Which::SqueezeNet)]
which: Which,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let image = candle_examples::imagenet::load_image224(args.image)?;
let image = match args.which {
Which::SqueezeNet => image,
Which::EfficientNet => image.permute((1, 2, 0))?,
};
println!("loaded image {image:?}");
let model = match args.model {
Some(model) => std::path::PathBuf::from(model),
None => hf_hub::api::sync::Api::new()?
.model("lmz/candle-onnx".into())
.get("squeezenet1.1-7.onnx")?,
None => match args.which {
Which::SqueezeNet => hf_hub::api::sync::Api::new()?
.model("lmz/candle-onnx".into())
.get("squeezenet1.1-7.onnx")?,
Which::EfficientNet => hf_hub::api::sync::Api::new()?
.model("onnx/EfficientNet-Lite4".into())
.get("efficientnet-lite4-11.onnx")?,
},
};
let model = candle_onnx::read_file(model)?;
@ -34,10 +53,12 @@ pub fn main() -> anyhow::Result<()> {
let mut inputs = std::collections::HashMap::new();
inputs.insert(graph.input[0].name.to_string(), image.unsqueeze(0)?);
let mut outputs = candle_onnx::simple_eval(&model, inputs)?;
let logits = outputs.remove(&graph.output[0].name).unwrap();
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
.i(0)?
.to_vec1::<f32>()?;
let output = outputs.remove(&graph.output[0].name).unwrap();
let prs = match args.which {
Which::SqueezeNet => candle_nn::ops::softmax(&output, D::Minus1)?,
Which::EfficientNet => output,
};
let prs = prs.i(0)?.to_vec1::<f32>()?;
// Sort the predictions and take the top 5
let mut top: Vec<_> = prs.iter().enumerate().collect();