mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 19:58:35 +00:00
Add more models to the onnx example. (#1273)
* Add more models to the onnx example. * Input validation. * Input validation. * Bugfix. * Implement clip. * BatchNorm support. * Get the efficientnet onnx to work.
This commit is contained in:
@ -5,7 +5,13 @@ extern crate intel_mkl_src;
|
||||
extern crate accelerate_src;
|
||||
|
||||
use candle::{IndexOp, D};
|
||||
use clap::Parser;
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
#[derive(Clone, Copy, Debug, ValueEnum)]
|
||||
enum Which {
|
||||
SqueezeNet,
|
||||
EfficientNet,
|
||||
}
|
||||
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
@ -14,19 +20,32 @@ struct Args {
|
||||
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
/// The model to be used.
|
||||
#[arg(value_enum, long, default_value_t = Which::SqueezeNet)]
|
||||
which: Which,
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
let image = match args.which {
|
||||
Which::SqueezeNet => image,
|
||||
Which::EfficientNet => image.permute((1, 2, 0))?,
|
||||
};
|
||||
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model = match args.model {
|
||||
Some(model) => std::path::PathBuf::from(model),
|
||||
None => hf_hub::api::sync::Api::new()?
|
||||
.model("lmz/candle-onnx".into())
|
||||
.get("squeezenet1.1-7.onnx")?,
|
||||
None => match args.which {
|
||||
Which::SqueezeNet => hf_hub::api::sync::Api::new()?
|
||||
.model("lmz/candle-onnx".into())
|
||||
.get("squeezenet1.1-7.onnx")?,
|
||||
Which::EfficientNet => hf_hub::api::sync::Api::new()?
|
||||
.model("onnx/EfficientNet-Lite4".into())
|
||||
.get("efficientnet-lite4-11.onnx")?,
|
||||
},
|
||||
};
|
||||
|
||||
let model = candle_onnx::read_file(model)?;
|
||||
@ -34,10 +53,12 @@ pub fn main() -> anyhow::Result<()> {
|
||||
let mut inputs = std::collections::HashMap::new();
|
||||
inputs.insert(graph.input[0].name.to_string(), image.unsqueeze(0)?);
|
||||
let mut outputs = candle_onnx::simple_eval(&model, inputs)?;
|
||||
let logits = outputs.remove(&graph.output[0].name).unwrap();
|
||||
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
|
||||
.i(0)?
|
||||
.to_vec1::<f32>()?;
|
||||
let output = outputs.remove(&graph.output[0].name).unwrap();
|
||||
let prs = match args.which {
|
||||
Which::SqueezeNet => candle_nn::ops::softmax(&output, D::Minus1)?,
|
||||
Which::EfficientNet => output,
|
||||
};
|
||||
let prs = prs.i(0)?.to_vec1::<f32>()?;
|
||||
|
||||
// Sort the predictions and take the top 5
|
||||
let mut top: Vec<_> = prs.iter().enumerate().collect();
|
Reference in New Issue
Block a user