mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
Llama more training (#297)
* Rework the var-builder to handle initializations. * Add some helper functions for layer creation. * Improve the layer initializations. * Get initialized variables. * Precompute the rot embeddings when training lamas.
This commit is contained in:
@ -1,5 +1,6 @@
|
||||
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{Embedding, Linear, VarBuilder};
|
||||
use candle_nn::linear_no_bias as linear;
|
||||
use candle_nn::{embedding, Embedding, Linear, VarBuilder};
|
||||
use std::collections::HashMap;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
@ -43,8 +44,25 @@ pub struct Cache {
|
||||
|
||||
impl Cache {
|
||||
pub fn new(use_kv_cache: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let freq_cis_real = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real")?;
|
||||
let freq_cis_imag = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag")?;
|
||||
let n_elem = cfg.dim / cfg.n_heads;
|
||||
let theta: Vec<_> = (0..n_elem)
|
||||
.step_by(2)
|
||||
.map(|i| 1f32 / 10000f32.powf(i as f32 / n_elem as f32))
|
||||
.collect();
|
||||
let theta = Tensor::new(theta.as_slice(), vb.device())?;
|
||||
let idx_theta = Tensor::arange(0, cfg.seq_len as u32, vb.device())?
|
||||
.to_dtype(DType::F32)?
|
||||
.reshape((cfg.seq_len, 1))?
|
||||
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
|
||||
let precomputed_cos = idx_theta.cos()?;
|
||||
let precomputed_sin = idx_theta.sin()?;
|
||||
|
||||
let freq_cis_real = vb
|
||||
.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real")
|
||||
.unwrap_or(precomputed_cos);
|
||||
let freq_cis_imag = vb
|
||||
.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag")
|
||||
.unwrap_or(precomputed_sin);
|
||||
let cos = freq_cis_real.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?;
|
||||
let sin = freq_cis_imag.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?;
|
||||
Ok(Self {
|
||||
@ -76,16 +94,6 @@ fn silu(xs: &Tensor) -> Result<Tensor> {
|
||||
xs / (xs.neg()?.exp()? + 1.0)?
|
||||
}
|
||||
|
||||
fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
|
||||
let weight = vb.get((size2, size1), "weight")?;
|
||||
Ok(Linear::new(weight, None))
|
||||
}
|
||||
|
||||
fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
|
||||
let embeddings = vb.get((cfg.vocab_size, cfg.dim), "weight")?;
|
||||
Ok(Embedding::new(embeddings, cfg.dim))
|
||||
}
|
||||
|
||||
struct RmsNorm {
|
||||
scale: Tensor,
|
||||
eps: f64,
|
||||
@ -93,7 +101,7 @@ struct RmsNorm {
|
||||
|
||||
impl RmsNorm {
|
||||
fn load(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
|
||||
let scale = vb.get(size, "weight")?;
|
||||
let scale = vb.get_or_init(size, "weight", candle_nn::Init::Const(1.))?;
|
||||
Ok(Self { scale, eps })
|
||||
}
|
||||
|
||||
@ -315,7 +323,7 @@ impl Llama {
|
||||
}
|
||||
|
||||
pub fn load(vb: VarBuilder, cache: &Cache, cfg: Config) -> Result<Self> {
|
||||
let wte = embedding(&cfg, vb.pp("model.embed_tokens"))?;
|
||||
let wte = embedding(cfg.vocab_size, cfg.dim, vb.pp("model.embed_tokens"))?;
|
||||
let lm_head = linear(cfg.dim, cfg.vocab_size, vb.pp("lm_head"))?;
|
||||
let ln_f = RmsNorm::load(cfg.dim, cfg.norm_eps, vb.pp("model.norm"))?;
|
||||
let blocks: Vec<_> = (0..cfg.n_layers)
|
||||
|
Reference in New Issue
Block a user