Llama more training (#297)

* Rework the var-builder to handle initializations.

* Add some helper functions for layer creation.

* Improve the layer initializations.

* Get initialized variables.

* Precompute the rot embeddings when training lamas.
This commit is contained in:
Laurent Mazare
2023-08-01 19:53:41 +01:00
committed by GitHub
parent a27239f3d9
commit ff876c2103
10 changed files with 238 additions and 163 deletions

View File

@ -1,5 +1,6 @@
use candle::{DType, Device, IndexOp, Result, Tensor, D};
use candle_nn::{Embedding, Linear, VarBuilder};
use candle_nn::linear_no_bias as linear;
use candle_nn::{embedding, Embedding, Linear, VarBuilder};
use std::collections::HashMap;
use std::sync::{Arc, Mutex};
@ -43,8 +44,25 @@ pub struct Cache {
impl Cache {
pub fn new(use_kv_cache: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let freq_cis_real = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real")?;
let freq_cis_imag = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag")?;
let n_elem = cfg.dim / cfg.n_heads;
let theta: Vec<_> = (0..n_elem)
.step_by(2)
.map(|i| 1f32 / 10000f32.powf(i as f32 / n_elem as f32))
.collect();
let theta = Tensor::new(theta.as_slice(), vb.device())?;
let idx_theta = Tensor::arange(0, cfg.seq_len as u32, vb.device())?
.to_dtype(DType::F32)?
.reshape((cfg.seq_len, 1))?
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
let precomputed_cos = idx_theta.cos()?;
let precomputed_sin = idx_theta.sin()?;
let freq_cis_real = vb
.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real")
.unwrap_or(precomputed_cos);
let freq_cis_imag = vb
.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag")
.unwrap_or(precomputed_sin);
let cos = freq_cis_real.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?;
let sin = freq_cis_imag.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?;
Ok(Self {
@ -76,16 +94,6 @@ fn silu(xs: &Tensor) -> Result<Tensor> {
xs / (xs.neg()?.exp()? + 1.0)?
}
fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
let weight = vb.get((size2, size1), "weight")?;
Ok(Linear::new(weight, None))
}
fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
let embeddings = vb.get((cfg.vocab_size, cfg.dim), "weight")?;
Ok(Embedding::new(embeddings, cfg.dim))
}
struct RmsNorm {
scale: Tensor,
eps: f64,
@ -93,7 +101,7 @@ struct RmsNorm {
impl RmsNorm {
fn load(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
let scale = vb.get(size, "weight")?;
let scale = vb.get_or_init(size, "weight", candle_nn::Init::Const(1.))?;
Ok(Self { scale, eps })
}
@ -315,7 +323,7 @@ impl Llama {
}
pub fn load(vb: VarBuilder, cache: &Cache, cfg: Config) -> Result<Self> {
let wte = embedding(&cfg, vb.pp("model.embed_tokens"))?;
let wte = embedding(cfg.vocab_size, cfg.dim, vb.pp("model.embed_tokens"))?;
let lm_head = linear(cfg.dim, cfg.vocab_size, vb.pp("lm_head"))?;
let ln_f = RmsNorm::load(cfg.dim, cfg.norm_eps, vb.pp("model.norm"))?;
let blocks: Vec<_> = (0..cfg.n_layers)