Llama more training (#297)

* Rework the var-builder to handle initializations.

* Add some helper functions for layer creation.

* Improve the layer initializations.

* Get initialized variables.

* Precompute the rot embeddings when training lamas.
This commit is contained in:
Laurent Mazare
2023-08-01 19:53:41 +01:00
committed by GitHub
parent a27239f3d9
commit ff876c2103
10 changed files with 238 additions and 163 deletions

View File

@ -142,15 +142,15 @@ pub fn run(args: &crate::TrainingCmd, common_args: &crate::Args) -> Result<()> {
dataset.train_tokens.len(),
dataset.valid_tokens.len()
);
let vb = candle_nn::VarBuilder::zeros(DType::F32, &device);
let varmap = candle_nn::VarMap::new();
let vb = candle_nn::VarBuilder::from_varmap(&varmap, DType::F32, &device);
let config = Config::tiny();
let iter = DatasetRandomIter::new(&dataset, false, config.seq_len, device.clone());
let batch_iter = candle_nn::dataset::Batcher::new_r2(iter).batch_size(args.batch_size);
let cache = Cache::new(false, &config, vb.pp("rot"))?;
let model = Llama::load(vb, &cache, config)?;
let all_vars = vec![]; // TODO: Propagate the variables from the VarBuilder to here.
let sgd = candle_nn::SGD::new(&all_vars, args.learning_rate);
let sgd = candle_nn::SGD::new(varmap.all_vars(), args.learning_rate);
for (batch_index, batch) in batch_iter.enumerate() {
let (inp, tgt) = batch?;
let logits = model.forward(&inp, 0)?;