mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 11:08:52 +00:00
Make the nll op closer to the pytorch version + add a test. (#286)
This commit is contained in:
@ -1,8 +1,28 @@
|
||||
use candle::{Result, Tensor};
|
||||
|
||||
/// The negative loss likelihodd loss.
|
||||
///
|
||||
/// Arguments
|
||||
///
|
||||
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
|
||||
/// of categories. This is expected to contain log probabilities.
|
||||
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N`.
|
||||
///
|
||||
/// The resulting tensor is a scalar containing the average value over the batch.
|
||||
pub fn nll(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
|
||||
let b_sz = target.dim(0)?;
|
||||
inp.gather(target, 1)?
|
||||
let b_sz = match target.dims() {
|
||||
&[b_sz] => b_sz,
|
||||
dims => candle::bail!("the target tensor should have a single dimension ({dims:?})"),
|
||||
};
|
||||
match inp.dims() {
|
||||
&[inp_b_sz, _] => {
|
||||
if inp_b_sz != b_sz {
|
||||
candle::bail!("batch size mismatch between inp ({inp_b_sz}) and target ({b_sz})")
|
||||
}
|
||||
}
|
||||
dims => candle::bail!("the target tensor should have two dimensions ({dims:?})"),
|
||||
}
|
||||
inp.gather(&target.unsqueeze(1)?, 1)?
|
||||
.sum_all()?
|
||||
.affine(-1f64 / b_sz as f64, 0.)
|
||||
}
|
||||
|
Reference in New Issue
Block a user