c78ce76501
Add a simple Module trait and implement it for the various nn layers ( #500 )
...
* Start adding the module trait.
* Use the module trait.
* Implement module for qmatmul.
2023-08-18 09:38:22 +01:00
13401df4d1
Add an abstract type for RmsNorm. ( #499 )
2023-08-18 08:52:14 +01:00
d32e8199cd
Layer norm tweaks ( #482 )
...
* Add some options to make layer-norm more configurable.
* Add the rms-norm variant.
* Replace the RmsNorm with the shared bits.
2023-08-17 10:07:13 +01:00
b278834267
Support the Accelerate BLAS on macOS. ( #325 )
...
* Add the accelerate feature.
* Ffi tweaks.
2023-08-05 17:25:24 +01:00
620f83cf66
Add the candle-datasets crate ( #322 )
...
* Move the vision datasets to a separate crate.
* Move the batcher bits.
* Update the readme.
* Move the tiny-stories bits.
---------
Co-authored-by: Jane Doe <jane.doe@example.org >
2023-08-05 08:56:50 +01:00
f7b2a0391d
Transpose the weight matrixes for llama2.c. ( #321 )
2023-08-04 13:32:20 +01:00
a79286885c
Support safetensors weights in llama2.c inference. ( #317 )
2023-08-03 11:10:58 +01:00
4f17290ce0
Use AdamW in the llama2 training. ( #308 )
2023-08-02 14:14:02 +01:00
ff876c2103
Llama more training ( #297 )
...
* Rework the var-builder to handle initializations.
* Add some helper functions for layer creation.
* Improve the layer initializations.
* Get initialized variables.
* Precompute the rot embeddings when training lamas.
2023-08-01 19:53:41 +01:00
a27239f3d9
Add training for the llama2.c example ( #296 )
...
* Rework the commands and run inference by default.
* Add the training module and load the training dataset.
* Random dataset iterator.
* Proper valid-loss computation.
* Compute the evaluation loss.
* Add more substance to the training loop.
2023-08-01 17:23:07 +01:00
75e0448114
Move the weight bits in a separate module. ( #295 )
2023-08-01 10:37:06 +01:00
614f911e9e
Add some batcher variants that handle errors. ( #294 )
2023-08-01 09:40:34 +01:00
e1e8127f15
Add the batcher. ( #293 )
2023-08-01 09:16:10 +01:00
fa98ca0c35
Use subcommands in llama2. ( #292 )
2023-08-01 05:57:41 +01:00
1a07ff8d17
Pre-tokenized evaluation mode for llama2.c. ( #291 )
2023-08-01 05:36:25 +01:00
f28558d0b7
Evaluate on the pre-tokenized file. ( #290 )
2023-07-31 21:31:38 +01:00
6b98b66eb3
Remove the end of text tokens. ( #289 )
2023-07-31 20:43:57 +01:00
9ae1f6afee
Add an eval mode to llama2-c ( #288 )
...
* Add an eval mode to llama2-c.
* Encode line by line.
* Get the eval to run.
2023-07-31 17:22:14 +01:00
b3ea96b62b
Add a prompt and support more models in llama2-c. ( #285 )
...
* Support more models in llama2-c.
* Add a prompt.
2023-07-31 13:09:30 +01:00
94a43faaca
Use the hub models for llama2.c ( #284 )
2023-07-31 12:51:14 +01:00
4bf2ebf836
Use u8 tensors for masks. ( #273 )
2023-07-29 11:32:58 +01:00
3eb2bc6d07
Softmax numerical stability. ( #267 )
...
* Softmax numerical stability.
* Fix the flash-attn test.
2023-07-28 13:13:01 +01:00
550a13a547
Use the binary decoder for llama2.c. ( #230 )
...
* Use the binary decoder for llama2.c.
* Add the temperature.
* Formatting tweak.
* Fix the rotary embeddings.
2023-07-24 10:56:08 +01:00
35b65fed88
Add llama2.c as an example. ( #229 )
...
* Start adding llama2.c.
* Model loading.
* Add the llama-v2 model.
* Start converting the weights.
* Rotary embedding tweaks.
* Get the model to generate some tokens.
2023-07-24 09:13:50 +01:00