mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 02:58:50 +00:00
Compare commits
1 Commits
0.9.0-alph
...
einsum-cus
Author | SHA1 | Date | |
---|---|---|---|
a910ec5993 |
7
.github/dependabot.yml
vendored
7
.github/dependabot.yml
vendored
@ -1,7 +0,0 @@
|
|||||||
version: 2
|
|
||||||
updates:
|
|
||||||
- package-ecosystem: "cargo"
|
|
||||||
directory: "/"
|
|
||||||
schedule:
|
|
||||||
interval: "weekly"
|
|
||||||
open-pull-requests-limit: 5
|
|
40
.github/workflows/book-cd.yml
vendored
Normal file
40
.github/workflows/book-cd.yml
vendored
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
name: Deploy Rust book
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
deploy:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
permissions:
|
||||||
|
contents: write # To push a branch
|
||||||
|
pull-requests: write # To create a PR from that branch
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
- name: Install latest mdbook
|
||||||
|
run: |
|
||||||
|
tag=$(curl 'https://api.github.com/repos/rust-lang/mdbook/releases/latest' | jq -r '.tag_name')
|
||||||
|
url="https://github.com/rust-lang/mdbook/releases/download/${tag}/mdbook-${tag}-x86_64-unknown-linux-gnu.tar.gz"
|
||||||
|
mkdir mdbook
|
||||||
|
curl -sSL $url | tar -xz --directory=./mdbook
|
||||||
|
echo `pwd`/mdbook >> $GITHUB_PATH
|
||||||
|
- name: Deploy GitHub Pages
|
||||||
|
run: |
|
||||||
|
# This assumes your book is in the root of your repository.
|
||||||
|
# Just add a `cd` here if you need to change to another directory.
|
||||||
|
cd candle-book
|
||||||
|
mdbook build
|
||||||
|
git worktree add gh-pages
|
||||||
|
git config user.name "Deploy from CI"
|
||||||
|
git config user.email ""
|
||||||
|
cd gh-pages
|
||||||
|
# Delete the ref to avoid keeping history.
|
||||||
|
git update-ref -d refs/heads/gh-pages
|
||||||
|
rm -rf *
|
||||||
|
mv ../book/* .
|
||||||
|
git add .
|
||||||
|
git commit -m "Deploy $GITHUB_SHA to gh-pages"
|
||||||
|
git push --force --set-upstream origin gh-pages
|
29
.github/workflows/book.yml
vendored
Normal file
29
.github/workflows/book.yml
vendored
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
name: CI
|
||||||
|
on:
|
||||||
|
pull_request:
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
test:
|
||||||
|
name: Test candle-book
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
permissions:
|
||||||
|
contents: write # To push a branch
|
||||||
|
pull-requests: write # To create a PR from that branch
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@master
|
||||||
|
- name: Install Rust
|
||||||
|
run: |
|
||||||
|
rustup set profile minimal
|
||||||
|
rustup toolchain install stable
|
||||||
|
rustup default stable
|
||||||
|
- name: Install latest mdbook
|
||||||
|
run: |
|
||||||
|
tag=$(curl 'https://api.github.com/repos/rust-lang/mdbook/releases/latest' | jq -r '.tag_name')
|
||||||
|
url="https://github.com/rust-lang/mdbook/releases/download/${tag}/mdbook-${tag}-x86_64-unknown-linux-gnu.tar.gz"
|
||||||
|
mkdir bin
|
||||||
|
curl -sSL $url | tar -xz --directory=bin
|
||||||
|
echo "$(pwd)/bin" >> $GITHUB_PATH
|
||||||
|
- name: Run tests
|
||||||
|
run: cd candle-book && cargo build && mdbook test -L ../target/debug/deps/
|
||||||
|
|
||||||
|
|
73
.github/workflows/ci_cuda.yaml
vendored
73
.github/workflows/ci_cuda.yaml
vendored
@ -5,16 +5,47 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
|
start-runner:
|
||||||
|
name: Start self-hosted EC2 runner
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
env:
|
||||||
|
AWS_REGION: us-east-1
|
||||||
|
EC2_AMI_ID: ami-03cfed9ea28f4b002
|
||||||
|
EC2_INSTANCE_TYPE: g5.xlarge
|
||||||
|
EC2_SUBNET_ID: subnet-931b34f5,subnet-ecb993cd,subnet-943dc2d8,subnet-45371f1a,subnet-ee93e0df,subnet-fddc3dfc
|
||||||
|
EC2_SECURITY_GROUP: sg-030175c435ac141d6
|
||||||
|
outputs:
|
||||||
|
label: ${{ steps.start-ec2-runner.outputs.label }}
|
||||||
|
ec2-instance-id: ${{ steps.start-ec2-runner.outputs.ec2-instance-id }}
|
||||||
|
steps:
|
||||||
|
- name: Configure AWS credentials
|
||||||
|
uses: aws-actions/configure-aws-credentials@v1
|
||||||
|
with:
|
||||||
|
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||||
|
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||||
|
aws-region: ${{ env.AWS_REGION }}
|
||||||
|
- name: Start EC2 runner
|
||||||
|
id: start-ec2-runner
|
||||||
|
uses: philschmid/philschmid-ec2-github-runner@main
|
||||||
|
with:
|
||||||
|
mode: start
|
||||||
|
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
|
||||||
|
ec2-image-id: ${{ env.EC2_AMI_ID }}
|
||||||
|
ec2-instance-type: ${{ env.EC2_INSTANCE_TYPE }}
|
||||||
|
subnet-id: ${{ env.EC2_SUBNET_ID }}
|
||||||
|
security-group-id: ${{ env.EC2_SECURITY_GROUP }}
|
||||||
|
aws-resource-tags: > # optional, requires additional permissions
|
||||||
|
[
|
||||||
|
{"Key": "Name", "Value": "ec2-tgi-github-runner"},
|
||||||
|
{"Key": "GitHubRepository", "Value": "${{ github.repository }}"}
|
||||||
|
]
|
||||||
|
|
||||||
test-cuda:
|
test-cuda:
|
||||||
concurrency:
|
concurrency:
|
||||||
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
|
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
|
||||||
cancel-in-progress: true
|
cancel-in-progress: true
|
||||||
runs-on:
|
needs: start-runner # required to start the main job when the runner is ready
|
||||||
group: aws-g4dn-2xlarge
|
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner
|
||||||
container:
|
|
||||||
image: nvidia/cuda:12.3.1-devel-ubuntu22.04
|
|
||||||
options: --gpus 0
|
|
||||||
if: ${{ github.event.pull_request.head.repo.full_name == github.event.pull_request.base.repo.full_name }}
|
|
||||||
permissions:
|
permissions:
|
||||||
contents: write
|
contents: write
|
||||||
packages: write
|
packages: write
|
||||||
@ -25,10 +56,32 @@ jobs:
|
|||||||
steps:
|
steps:
|
||||||
- name: Checkout repository
|
- name: Checkout repository
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
- name: Install dependencies
|
|
||||||
run: apt-get update && apt install curl build-essential libssl-dev protobuf-compiler pkg-config -y
|
|
||||||
- name: Install Rust Stable
|
- name: Install Rust Stable
|
||||||
uses: actions-rust-lang/setup-rust-toolchain@v1
|
run: curl https://sh.rustup.rs -sSf | sh -s -- -y
|
||||||
- uses: Swatinem/rust-cache@v2
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
- run: apt-get update -y && apt-get install libssl-dev -y
|
||||||
- name: Test (cuda)
|
- name: Test (cuda)
|
||||||
run: cargo test --features cuda
|
run: PATH=$PATH:/usr/local/cuda-11.8/bin/ /root/.cargo/bin/cargo test --features cuda
|
||||||
|
stop-runner:
|
||||||
|
name: Stop self-hosted EC2 runner
|
||||||
|
needs:
|
||||||
|
- start-runner
|
||||||
|
- test-cuda
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
env:
|
||||||
|
AWS_REGION: us-east-1
|
||||||
|
if: ${{ always() }} # required to stop the runner even if the error happened in the previous jobs
|
||||||
|
steps:
|
||||||
|
- name: Configure AWS credentials
|
||||||
|
uses: aws-actions/configure-aws-credentials@v1
|
||||||
|
with:
|
||||||
|
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||||
|
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||||
|
aws-region: ${{ env.AWS_REGION }}
|
||||||
|
- name: Stop EC2 runner
|
||||||
|
uses: philschmid/philschmid-ec2-github-runner@main
|
||||||
|
with:
|
||||||
|
mode: stop
|
||||||
|
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
|
||||||
|
label: ${{ needs.start-runner.outputs.label }}
|
||||||
|
ec2-instance-id: ${{ needs.start-runner.outputs.ec2-instance-id }}
|
||||||
|
BIN
.github/workflows/maturin.yml
vendored
BIN
.github/workflows/maturin.yml
vendored
Binary file not shown.
68
.github/workflows/python.yml
vendored
68
.github/workflows/python.yml
vendored
@ -1,68 +0,0 @@
|
|||||||
name: PyO3-CI
|
|
||||||
|
|
||||||
on:
|
|
||||||
workflow_dispatch:
|
|
||||||
push:
|
|
||||||
branches:
|
|
||||||
- main
|
|
||||||
paths:
|
|
||||||
- candle-pyo3/**
|
|
||||||
pull_request:
|
|
||||||
paths:
|
|
||||||
- candle-pyo3/**
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
build_and_test:
|
|
||||||
name: Check everything builds & tests
|
|
||||||
runs-on: ${{ matrix.os }}
|
|
||||||
strategy:
|
|
||||||
matrix:
|
|
||||||
os: [ubuntu-latest] # For now, only test on Linux
|
|
||||||
steps:
|
|
||||||
- name: Checkout repository
|
|
||||||
uses: actions/checkout@v4
|
|
||||||
|
|
||||||
- name: Install Rust
|
|
||||||
uses: actions-rs/toolchain@v1
|
|
||||||
with:
|
|
||||||
toolchain: stable
|
|
||||||
|
|
||||||
- name: Install Python
|
|
||||||
uses: actions/setup-python@v4
|
|
||||||
with:
|
|
||||||
python-version: 3.11
|
|
||||||
architecture: "x64"
|
|
||||||
|
|
||||||
- name: Cache Cargo Registry
|
|
||||||
uses: actions/cache@v1
|
|
||||||
with:
|
|
||||||
path: ~/.cargo/registry
|
|
||||||
key: ${{ runner.os }}-cargo-registry-${{ hashFiles('**/Cargo.lock') }}
|
|
||||||
|
|
||||||
- name: Install Protoc
|
|
||||||
uses: arduino/setup-protoc@v2
|
|
||||||
with:
|
|
||||||
version: "25.0"
|
|
||||||
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
|
||||||
|
|
||||||
- name: Install
|
|
||||||
working-directory: ./candle-pyo3
|
|
||||||
run: |
|
|
||||||
python -m venv .env
|
|
||||||
source .env/bin/activate
|
|
||||||
pip install -U pip
|
|
||||||
pip install pytest maturin black
|
|
||||||
python -m maturin develop -r --features onnx
|
|
||||||
|
|
||||||
- name: Check style
|
|
||||||
working-directory: ./candle-pyo3
|
|
||||||
run: |
|
|
||||||
source .env/bin/activate
|
|
||||||
python stub.py --check
|
|
||||||
black --check .
|
|
||||||
|
|
||||||
- name: Run tests
|
|
||||||
working-directory: ./candle-pyo3
|
|
||||||
run: |
|
|
||||||
source .env/bin/activate
|
|
||||||
python -m pytest -s -v tests
|
|
21
.github/workflows/rust-ci.yml
vendored
21
.github/workflows/rust-ci.yml
vendored
@ -1,6 +1,6 @@
|
|||||||
on:
|
on:
|
||||||
push:
|
push:
|
||||||
branches:
|
branches:
|
||||||
- main
|
- main
|
||||||
pull_request:
|
pull_request:
|
||||||
|
|
||||||
@ -15,10 +15,7 @@ jobs:
|
|||||||
os: [ubuntu-latest, windows-latest, macOS-latest]
|
os: [ubuntu-latest, windows-latest, macOS-latest]
|
||||||
rust: [stable]
|
rust: [stable]
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v2
|
||||||
- uses: actions/setup-python@v5
|
|
||||||
with:
|
|
||||||
python-version: "3.11"
|
|
||||||
- uses: actions-rs/toolchain@v1
|
- uses: actions-rs/toolchain@v1
|
||||||
with:
|
with:
|
||||||
profile: minimal
|
profile: minimal
|
||||||
@ -37,13 +34,7 @@ jobs:
|
|||||||
os: [ubuntu-latest, windows-latest, macOS-latest]
|
os: [ubuntu-latest, windows-latest, macOS-latest]
|
||||||
rust: [stable]
|
rust: [stable]
|
||||||
steps:
|
steps:
|
||||||
- name: Delete huge unnecessary tools folder
|
- uses: actions/checkout@v2
|
||||||
if: runner.os == 'Linux'
|
|
||||||
run: rm -rf /opt/hostedtoolcache
|
|
||||||
- uses: actions/checkout@v4
|
|
||||||
- uses: actions/setup-python@v5
|
|
||||||
with:
|
|
||||||
python-version: "3.11"
|
|
||||||
- uses: actions-rs/toolchain@v1
|
- uses: actions-rs/toolchain@v1
|
||||||
with:
|
with:
|
||||||
profile: minimal
|
profile: minimal
|
||||||
@ -58,7 +49,7 @@ jobs:
|
|||||||
name: Rustfmt
|
name: Rustfmt
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v2
|
||||||
- uses: actions-rs/toolchain@v1
|
- uses: actions-rs/toolchain@v1
|
||||||
with:
|
with:
|
||||||
profile: minimal
|
profile: minimal
|
||||||
@ -74,7 +65,7 @@ jobs:
|
|||||||
name: Clippy
|
name: Clippy
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v2
|
||||||
- uses: actions-rs/toolchain@v1
|
- uses: actions-rs/toolchain@v1
|
||||||
with:
|
with:
|
||||||
profile: minimal
|
profile: minimal
|
||||||
|
15
.github/workflows/trufflehog.yml
vendored
15
.github/workflows/trufflehog.yml
vendored
@ -1,15 +0,0 @@
|
|||||||
on:
|
|
||||||
push:
|
|
||||||
|
|
||||||
name: Secret Leaks
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
trufflehog:
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
steps:
|
|
||||||
- name: Checkout code
|
|
||||||
uses: actions/checkout@v4
|
|
||||||
with:
|
|
||||||
fetch-depth: 0
|
|
||||||
- name: Secret Scanning
|
|
||||||
uses: trufflesecurity/trufflehog@main
|
|
18
.gitignore
vendored
18
.gitignore
vendored
@ -9,10 +9,6 @@ target/
|
|||||||
# More information here https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
|
# More information here https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
|
||||||
Cargo.lock
|
Cargo.lock
|
||||||
|
|
||||||
# editor config
|
|
||||||
.helix
|
|
||||||
.vscode
|
|
||||||
|
|
||||||
# These are backup files generated by rustfmt
|
# These are backup files generated by rustfmt
|
||||||
**/*.rs.bk
|
**/*.rs.bk
|
||||||
|
|
||||||
@ -27,22 +23,14 @@ flamegraph.svg
|
|||||||
*.dylib
|
*.dylib
|
||||||
*.so
|
*.so
|
||||||
*.swp
|
*.swp
|
||||||
*.swo
|
|
||||||
trace-*.json
|
trace-*.json
|
||||||
|
|
||||||
candle-wasm-examples/*/build
|
candle-wasm-examples/*/build
|
||||||
candle-wasm-examples/*/*.bin
|
candle-wasm-examples/*/*.bin
|
||||||
candle-wasm-examples/*/*.jpeg
|
candle-wasm-examples/*/*.jpeg
|
||||||
candle-wasm-examples/*/audios/*.wav
|
candle-wasm-examples/*/*.wav
|
||||||
candle-wasm-examples/**/*.safetensors
|
candle-wasm-examples/*/*.safetensors
|
||||||
candle-wasm-examples/**/*.gguf
|
|
||||||
candle-wasm-examples/*/package-lock.json
|
candle-wasm-examples/*/package-lock.json
|
||||||
candle-wasm-examples/**/config*.json
|
|
||||||
.DS_Store
|
.DS_Store
|
||||||
.idea/*
|
.idea/*
|
||||||
__pycache__
|
|
||||||
out.safetensors
|
|
||||||
out.wav
|
|
||||||
bria.mp3
|
|
||||||
bria.safetensors
|
|
||||||
bria.wav
|
|
||||||
|
11
.vscode/settings.json
vendored
11
.vscode/settings.json
vendored
@ -1,11 +0,0 @@
|
|||||||
{
|
|
||||||
"[python]": {
|
|
||||||
"editor.defaultFormatter": "ms-python.black-formatter"
|
|
||||||
},
|
|
||||||
"python.formatting.provider": "none",
|
|
||||||
"python.testing.pytestArgs": [
|
|
||||||
"candle-pyo3"
|
|
||||||
],
|
|
||||||
"python.testing.unittestEnabled": false,
|
|
||||||
"python.testing.pytestEnabled": true
|
|
||||||
}
|
|
73
CHANGELOG.md
73
CHANGELOG.md
@ -1,84 +1,13 @@
|
|||||||
# Changelog
|
# Changelog
|
||||||
This documents the main changes to the `candle` crate.
|
This documents the main changes to the `candle` crate.
|
||||||
|
|
||||||
## v0.3.1 - Unreleased
|
## v0.2.1 - Unreleased
|
||||||
|
|
||||||
### Added
|
### Added
|
||||||
|
|
||||||
### Modified
|
|
||||||
|
|
||||||
## v0.3.0 - 2023-10-01
|
|
||||||
|
|
||||||
### Added
|
|
||||||
|
|
||||||
- Added the Mistral 7b v0.1 model
|
|
||||||
[983](https://github.com/huggingface/candle/pull/983).
|
|
||||||
- Quantized version of the Mistral model
|
|
||||||
[1009](https://github.com/huggingface/candle/pull/1009).
|
|
||||||
- Add the gelu-erf op and activation function
|
|
||||||
[969](https://github.com/huggingface/candle/pull/969).
|
|
||||||
- Add the mixformer/phi-v1.5 model
|
|
||||||
[930](https://github.com/huggingface/candle/pull/930).
|
|
||||||
- Add the sclice-scatter op
|
|
||||||
[927](https://github.com/huggingface/candle/pull/927).
|
|
||||||
- Add the Wuerstchen diffusion model
|
|
||||||
[911](https://github.com/huggingface/candle/pull/911).
|
|
||||||
|
|
||||||
### Modified
|
|
||||||
|
|
||||||
- Support for simd128 intrinsics in some quantized vecdots
|
|
||||||
[982](https://github.com/huggingface/candle/pull/982).
|
|
||||||
- Optimize the index-select cuda kernel
|
|
||||||
[976](https://github.com/huggingface/candle/pull/976).
|
|
||||||
- Self-contained safetensor wrappers
|
|
||||||
[946](https://github.com/huggingface/candle/pull/946).
|
|
||||||
|
|
||||||
## v0.2.2 - 2023-09-18
|
|
||||||
|
|
||||||
### Added
|
|
||||||
- Support for `top_p` sampling
|
|
||||||
[819](https://github.com/huggingface/candle/pull/819).
|
|
||||||
- T5 model including decoding
|
|
||||||
[864](https://github.com/huggingface/candle/pull/864).
|
|
||||||
- 1-d upsampling
|
|
||||||
[839](https://github.com/huggingface/candle/pull/839).
|
|
||||||
|
|
||||||
### Modified
|
|
||||||
- Bugfix for conv2d
|
|
||||||
[820](https://github.com/huggingface/candle/pull/820).
|
|
||||||
- Support tensor based indexing using `.i`
|
|
||||||
[842](https://github.com/huggingface/candle/pull/842).
|
|
||||||
|
|
||||||
## v0.2.1 - 2023-09-11
|
|
||||||
|
|
||||||
### Added
|
|
||||||
- Add some RNNs (GRU and LSTM) in `candle-nn`
|
|
||||||
[674](https://github.com/huggingface/candle/pull/674),
|
|
||||||
[688](https://github.com/huggingface/candle/pull/688).
|
|
||||||
- gguf v2 support
|
|
||||||
[725](https://github.com/huggingface/candle/pull/725).
|
|
||||||
- Quantized llama example in Python using the pyo3 api
|
|
||||||
[716](https://github.com/huggingface/candle/pull/716).
|
|
||||||
- `candle-nn` layer for conv2d-transposed
|
|
||||||
[760](https://github.com/huggingface/candle/pull/760).
|
|
||||||
- Add the Segment-Anything Model (SAM) as an example
|
|
||||||
[773](https://github.com/huggingface/candle/pull/773).
|
|
||||||
- TinyViT backbone for the segment anything example
|
|
||||||
[787](https://github.com/huggingface/candle/pull/787).
|
|
||||||
- Shape with holes support
|
|
||||||
[770](https://github.com/huggingface/candle/pull/770).
|
|
||||||
|
|
||||||
### Modified
|
### Modified
|
||||||
- Dilations are now supported in conv-transpose2d.
|
- Dilations are now supported in conv-transpose2d.
|
||||||
[671](https://github.com/huggingface/candle/pull/671).
|
[671](https://github.com/huggingface/candle/pull/671).
|
||||||
- Interactive mode for the quantized model
|
|
||||||
[690](https://github.com/huggingface/candle/pull/690).
|
|
||||||
- Faster softmax operation
|
|
||||||
[747](https://github.com/huggingface/candle/pull/747).
|
|
||||||
- Faster convolution operations on CPU and CUDA via im2col
|
|
||||||
[802](https://github.com/huggingface/candle/pull/802).
|
|
||||||
- Moving some models to a more central location
|
|
||||||
[796](https://github.com/huggingface/candle/pull/796).
|
|
||||||
|
|
||||||
## v0.2.0 - 2023-08-30
|
## v0.2.0 - 2023-08-30
|
||||||
|
|
||||||
|
63
Cargo.toml
63
Cargo.toml
@ -3,24 +3,22 @@ members = [
|
|||||||
"candle-core",
|
"candle-core",
|
||||||
"candle-datasets",
|
"candle-datasets",
|
||||||
"candle-examples",
|
"candle-examples",
|
||||||
|
"candle-book",
|
||||||
"candle-nn",
|
"candle-nn",
|
||||||
"candle-pyo3",
|
"candle-pyo3",
|
||||||
"candle-transformers",
|
"candle-transformers",
|
||||||
"candle-wasm-examples/*",
|
"candle-wasm-examples/llama2-c",
|
||||||
"candle-wasm-tests",
|
"candle-wasm-examples/whisper",
|
||||||
"tensor-tools",
|
"candle-wasm-examples/yolo",
|
||||||
]
|
]
|
||||||
exclude = [
|
exclude = [
|
||||||
"candle-book",
|
"candle-flash-attn",
|
||||||
"candle-flash-attn",
|
"candle-kernels",
|
||||||
"candle-kernels",
|
|
||||||
"candle-metal-kernels",
|
|
||||||
"candle-onnx",
|
|
||||||
]
|
]
|
||||||
resolver = "2"
|
resolver = "2"
|
||||||
|
|
||||||
[workspace.package]
|
[workspace.package]
|
||||||
version = "0.9.0-alpha.2"
|
version = "0.2.1"
|
||||||
edition = "2021"
|
edition = "2021"
|
||||||
description = "Minimalist ML framework."
|
description = "Minimalist ML framework."
|
||||||
repository = "https://github.com/huggingface/candle"
|
repository = "https://github.com/huggingface/candle"
|
||||||
@ -29,53 +27,38 @@ categories = ["science"]
|
|||||||
license = "MIT OR Apache-2.0"
|
license = "MIT OR Apache-2.0"
|
||||||
|
|
||||||
[workspace.dependencies]
|
[workspace.dependencies]
|
||||||
ab_glyph = "0.2.23"
|
|
||||||
accelerate-src = { version = "0.3.2" }
|
accelerate-src = { version = "0.3.2" }
|
||||||
anyhow = { version = "1", features = ["backtrace"] }
|
anyhow = { version = "1", features = ["backtrace"] }
|
||||||
byteorder = "1.4.3"
|
byteorder = "1.4.3"
|
||||||
candle = { path = "./candle-core", package = "candle-core", version = "0.9.0-alpha.2" }
|
|
||||||
candle-datasets = { path = "./candle-datasets", version = "0.9.0-alpha.2" }
|
|
||||||
candle-flash-attn = { path = "./candle-flash-attn", version = "0.9.0-alpha.2" }
|
|
||||||
candle-kernels = { path = "./candle-kernels", version = "0.9.0-alpha.2" }
|
|
||||||
candle-metal-kernels = { path = "./candle-metal-kernels", version = "0.9.0-alpha.2" }
|
|
||||||
candle-nn = { path = "./candle-nn", version = "0.9.0-alpha.2" }
|
|
||||||
candle-onnx = { path = "./candle-onnx", version = "0.9.0-alpha.2" }
|
|
||||||
candle-transformers = { path = "./candle-transformers", version = "0.9.0-alpha.2" }
|
|
||||||
clap = { version = "4.2.4", features = ["derive"] }
|
clap = { version = "4.2.4", features = ["derive"] }
|
||||||
criterion = { version = "0.5.1", default-features=false }
|
cudarc = { version = "0.9.14", features = ["f16"] }
|
||||||
cudarc = { version = "0.15.1", features = ["std", "cublas", "cublaslt", "curand", "driver", "nvrtc", "f16", "cuda-version-from-build-system", "dynamic-linking"], default-features=false }
|
# TODO: Switch back to the official gemm implementation once it has caught up.
|
||||||
fancy-regex = "0.13.0"
|
gemm = { version = "0.15.6", package = "candle-gemm" }
|
||||||
gemm = { version = "0.17.0", features = ["wasm-simd128-enable"] }
|
hf-hub = "0.3.0"
|
||||||
hf-hub = "0.4.1"
|
half = { version = "2.3.1", features = ["num-traits", "use-intrinsics", "rand_distr"] }
|
||||||
half = { version = "2.5.0", features = ["num-traits", "use-intrinsics", "rand_distr"] }
|
image = { version = "0.24.7", default-features = false, features = ["jpeg", "png"] }
|
||||||
hound = "3.5.1"
|
imageproc = { version = "0.23.0", default-features = false }
|
||||||
image = { version = "0.25.2", default-features = false, features = ["jpeg", "png"] }
|
|
||||||
imageproc = { version = "0.24.0", default-features = false }
|
|
||||||
intel-mkl-src = { version = "0.8.1", features = ["mkl-static-lp64-iomp"] }
|
intel-mkl-src = { version = "0.8.1", features = ["mkl-static-lp64-iomp"] }
|
||||||
libc = { version = "0.2.147" }
|
libc = { version = "0.2.147" }
|
||||||
log = "0.4"
|
log = "0.4"
|
||||||
memmap2 = { version = "0.9.3", features = ["stable_deref_trait"] }
|
memmap2 = "0.7.1"
|
||||||
num_cpus = "1.15.0"
|
num_cpus = "1.15.0"
|
||||||
num-traits = "0.2.15"
|
num-traits = "0.2.15"
|
||||||
parquet = { version = "51.0.0" }
|
rand = "0.8.5"
|
||||||
rand = "0.9.0"
|
rand_distr = "0.4.3"
|
||||||
rand_distr = "0.5.1"
|
|
||||||
rayon = "1.7.0"
|
rayon = "1.7.0"
|
||||||
safetensors = "0.4.1"
|
rusttype = { version = "0.9", default-features = false }
|
||||||
|
safetensors = "0.3.1"
|
||||||
serde = { version = "1.0.171", features = ["derive"] }
|
serde = { version = "1.0.171", features = ["derive"] }
|
||||||
serde_plain = "1.0.2"
|
|
||||||
serde_json = "1.0.99"
|
serde_json = "1.0.99"
|
||||||
thiserror = "1"
|
thiserror = "1"
|
||||||
tokenizers = { version = "0.21.0", default-features = false }
|
tokenizers = { version = "0.13.4", default-features = false }
|
||||||
tracing = "0.1.37"
|
tracing = "0.1.37"
|
||||||
tracing-chrome = "0.7.1"
|
tracing-chrome = "0.7.1"
|
||||||
tracing-subscriber = "0.3.7"
|
tracing-subscriber = "0.3.7"
|
||||||
ug = "0.3.1"
|
wav = "1.0.0"
|
||||||
ug-cuda = "0.3.1"
|
zip = { version = "0.6.6", default-features = false }
|
||||||
ug-metal = "0.3.1"
|
parquet = { version = "45.0.0" }
|
||||||
yoke = { version = "0.7.2", features = ["derive"] }
|
|
||||||
zip = { version = "1.1.1", default-features = false }
|
|
||||||
metal = { version = "0.27.0", features = ["mps"]}
|
|
||||||
|
|
||||||
[profile.release-with-debug]
|
[profile.release-with-debug]
|
||||||
inherits = "release"
|
inherits = "release"
|
||||||
|
234
README.md
234
README.md
@ -2,17 +2,13 @@
|
|||||||
[](https://discord.gg/hugging-face-879548962464493619)
|
[](https://discord.gg/hugging-face-879548962464493619)
|
||||||
[](https://crates.io/crates/candle-core)
|
[](https://crates.io/crates/candle-core)
|
||||||
[](https://docs.rs/candle-core)
|
[](https://docs.rs/candle-core)
|
||||||
[](https://github.com/huggingface/candle/blob/main/LICENSE-MIT)
|

|
||||||
[](https://github.com/huggingface/candle/blob/main/LICENSE-APACHE)
|
|
||||||
|
|
||||||
Candle is a minimalist ML framework for Rust with a focus on performance (including GPU support)
|
Candle is a minimalist ML framework for Rust with a focus on performance (including GPU support)
|
||||||
and ease of use. Try our online demos:
|
and ease of use. Try our online demos:
|
||||||
[whisper](https://huggingface.co/spaces/lmz/candle-whisper),
|
[whisper](https://huggingface.co/spaces/lmz/candle-whisper),
|
||||||
[LLaMA2](https://huggingface.co/spaces/lmz/candle-llama2),
|
[LLaMA2](https://huggingface.co/spaces/lmz/candle-llama2),
|
||||||
[T5](https://huggingface.co/spaces/radames/Candle-T5-Generation-Wasm),
|
[yolo](https://huggingface.co/spaces/lmz/candle-yolo).
|
||||||
[yolo](https://huggingface.co/spaces/lmz/candle-yolo),
|
|
||||||
[Segment
|
|
||||||
Anything](https://huggingface.co/spaces/radames/candle-segment-anything-wasm).
|
|
||||||
|
|
||||||
## Get started
|
## Get started
|
||||||
|
|
||||||
@ -49,101 +45,40 @@ For more advanced examples, please have a look at the following section.
|
|||||||
|
|
||||||
## Check out our examples
|
## Check out our examples
|
||||||
|
|
||||||
These online demos run entirely in your browser:
|
Check out our [examples](./candle-examples/examples/):
|
||||||
- [yolo](https://huggingface.co/spaces/lmz/candle-yolo): pose estimation and
|
|
||||||
object recognition.
|
|
||||||
- [whisper](https://huggingface.co/spaces/lmz/candle-whisper): speech recognition.
|
|
||||||
- [LLaMA2](https://huggingface.co/spaces/lmz/candle-llama2): text generation.
|
|
||||||
- [T5](https://huggingface.co/spaces/radames/Candle-T5-Generation-Wasm): text generation.
|
|
||||||
- [Phi-1.5, and Phi-2](https://huggingface.co/spaces/radames/Candle-Phi-1.5-Wasm): text generation.
|
|
||||||
- [Segment Anything Model](https://huggingface.co/spaces/radames/candle-segment-anything-wasm): Image segmentation.
|
|
||||||
- [BLIP](https://huggingface.co/spaces/radames/Candle-BLIP-Image-Captioning): image captioning.
|
|
||||||
|
|
||||||
We also provide a some command line based examples using state of the art models:
|
|
||||||
|
|
||||||
- [LLaMA v1, v2, and v3](./candle-examples/examples/llama/): general LLM, includes
|
|
||||||
the SOLAR-10.7B variant.
|
|
||||||
- [Falcon](./candle-examples/examples/falcon/): general LLM.
|
|
||||||
- [Codegeex4](./candle-examples/examples/codegeex4-9b/): Code completion,code interpreter,web search,fuction calling,repository-level
|
|
||||||
- [GLM4](./candle-examples/examples/glm4/): Open Multilingual Multimodal Chat LMs by THUDM
|
|
||||||
- [Gemma v1 and v2](./candle-examples/examples/gemma/): 2b and 7b+/9b general LLMs from Google Deepmind.
|
|
||||||
- [RecurrentGemma](./candle-examples/examples/recurrent-gemma/): 2b and 7b
|
|
||||||
Griffin based models from Google that mix attention with a RNN like state.
|
|
||||||
- [Phi-1, Phi-1.5, Phi-2, and Phi-3](./candle-examples/examples/phi/): 1.3b,
|
|
||||||
2.7b, and 3.8b general LLMs with performance on par with 7b models.
|
|
||||||
- [StableLM-3B-4E1T](./candle-examples/examples/stable-lm/): a 3b general LLM
|
|
||||||
pre-trained on 1T tokens of English and code datasets. Also supports
|
|
||||||
StableLM-2, a 1.6b LLM trained on 2T tokens, as well as the code variants.
|
|
||||||
- [Mamba](./candle-examples/examples/mamba/): an inference only
|
|
||||||
implementation of the Mamba state space model.
|
|
||||||
- [Mistral7b-v0.1](./candle-examples/examples/mistral/): a 7b general LLM with
|
|
||||||
better performance than all publicly available 13b models as of 2023-09-28.
|
|
||||||
- [Mixtral8x7b-v0.1](./candle-examples/examples/mixtral/): a sparse mixture of
|
|
||||||
experts 8x7b general LLM with better performance than a Llama 2 70B model with
|
|
||||||
much faster inference.
|
|
||||||
- [StarCoder](./candle-examples/examples/bigcode/) and
|
|
||||||
[StarCoder2](./candle-examples/examples/starcoder2/): LLM specialized to code generation.
|
|
||||||
- [Qwen1.5](./candle-examples/examples/qwen/): Bilingual (English/Chinese) LLMs.
|
|
||||||
- [RWKV v5 and v6](./candle-examples/examples/rwkv/): An RNN with transformer level LLM
|
|
||||||
performance.
|
|
||||||
- [Replit-code-v1.5](./candle-examples/examples/replit-code/): a 3.3b LLM specialized for code completion.
|
|
||||||
- [Yi-6B / Yi-34B](./candle-examples/examples/yi/): two bilingual
|
|
||||||
(English/Chinese) general LLMs with 6b and 34b parameters.
|
|
||||||
- [Quantized LLaMA](./candle-examples/examples/quantized/): quantized version of
|
|
||||||
the LLaMA model using the same quantization techniques as
|
|
||||||
[llama.cpp](https://github.com/ggerganov/llama.cpp).
|
|
||||||
|
|
||||||
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/quantized/assets/aoc.gif" width="600">
|
|
||||||
|
|
||||||
- [Stable Diffusion](./candle-examples/examples/stable-diffusion/): text to
|
|
||||||
image generative model, support for the 1.5, 2.1, SDXL 1.0 and Turbo versions.
|
|
||||||
|
|
||||||
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg" width="200">
|
|
||||||
|
|
||||||
- [Wuerstchen](./candle-examples/examples/wuerstchen/): another text to
|
|
||||||
image generative model.
|
|
||||||
|
|
||||||
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/wuerstchen/assets/cat.jpg" width="200">
|
|
||||||
|
|
||||||
- [yolo-v3](./candle-examples/examples/yolo-v3/) and
|
|
||||||
[yolo-v8](./candle-examples/examples/yolo-v8/): object detection and pose
|
|
||||||
estimation models.
|
|
||||||
|
|
||||||
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/yolo-v8/assets/bike.od.jpg" width="200"><img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/yolo-v8/assets/bike.pose.jpg" width="200">
|
|
||||||
- [segment-anything](./candle-examples/examples/segment-anything/): image
|
|
||||||
segmentation model with prompt.
|
|
||||||
|
|
||||||
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/segment-anything/assets/sam_merged.jpg" width="200">
|
|
||||||
|
|
||||||
- [SegFormer](./candle-examples/examples/segformer/): transformer based semantic segmentation model.
|
|
||||||
- [Whisper](./candle-examples/examples/whisper/): speech recognition model.
|
- [Whisper](./candle-examples/examples/whisper/): speech recognition model.
|
||||||
- [EnCodec](./candle-examples/examples/encodec/): high-quality audio compression
|
- [LLaMA and LLaMA-v2](./candle-examples/examples/llama/): general LLM.
|
||||||
model using residual vector quantization.
|
- [Falcon](./candle-examples/examples/falcon/): general LLM.
|
||||||
- [MetaVoice](./candle-examples/examples/metavoice/): foundational model for
|
- [Bert](./candle-examples/examples/bert/): useful for sentence embeddings.
|
||||||
text-to-speech.
|
- [StarCoder](./candle-examples/examples/bigcode/): LLM specialized to code
|
||||||
- [Parler-TTS](./candle-examples/examples/parler-tts/): large text-to-speech
|
generation.
|
||||||
model.
|
- [Stable Diffusion](./candle-examples/examples/stable-diffusion/): text to
|
||||||
- [T5](./candle-examples/examples/t5), [Bert](./candle-examples/examples/bert/),
|
image generative model, support for the 1.5, 2.1, and SDXL 1.0 versions.
|
||||||
[JinaBert](./candle-examples/examples/jina-bert/) : useful for sentence embeddings.
|
|
||||||
- [DINOv2](./candle-examples/examples/dinov2/): computer vision model trained
|
- [DINOv2](./candle-examples/examples/dinov2/): computer vision model trained
|
||||||
using self-supervision (can be used for imagenet classification, depth
|
using self-supervision (can be used for imagenet classification, depth
|
||||||
evaluation, segmentation).
|
evaluation, segmentation).
|
||||||
- [VGG](./candle-examples/examples/vgg/),
|
- [Quantized LLaMA](./candle-examples/examples/quantized/): quantized version of
|
||||||
[RepVGG](./candle-examples/examples/repvgg): computer vision models.
|
the LLaMA model using the same quantization techniques as
|
||||||
- [BLIP](./candle-examples/examples/blip/): image to text model, can be used to
|
[llama.cpp](https://github.com/ggerganov/llama.cpp).
|
||||||
generate captions for an image.
|
- [yolo-v3](./candle-examples/examples/yolo-v3/) and
|
||||||
- [CLIP](./candle-examples/examples/clip/): multi-model vision and language
|
[yolo-v8](./candle-examples/examples/yolo-v8/): object detection and pose
|
||||||
model.
|
estimation models.
|
||||||
- [TrOCR](./candle-examples/examples/trocr/): a transformer OCR model, with
|
[segment-anything](./candle-examples/examples/segment-anything/): image
|
||||||
dedicated submodels for hand-writing and printed recognition.
|
segmentation model with prompt.
|
||||||
- [Marian-MT](./candle-examples/examples/marian-mt/): neural machine translation
|
Run them using the following commands:
|
||||||
model, generates the translated text from the input text.
|
|
||||||
- [Moondream](./candle-examples/examples/moondream/): tiny computer-vision model
|
|
||||||
that can answer real-world questions about images.
|
|
||||||
|
|
||||||
Run them using commands like:
|
|
||||||
```
|
```
|
||||||
|
cargo run --example whisper --release
|
||||||
|
cargo run --example llama --release
|
||||||
|
cargo run --example falcon --release
|
||||||
|
cargo run --example bert --release
|
||||||
|
cargo run --example bigcode --release
|
||||||
|
cargo run --example stable-diffusion --release -- --prompt "a rusty robot holding a fire torch"
|
||||||
|
cargo run --example dinov2 --release -- --image path/to/myinput.jpg
|
||||||
cargo run --example quantized --release
|
cargo run --example quantized --release
|
||||||
|
cargo run --example yolo-v3 --release -- myimage.jpg
|
||||||
|
cargo run --example yolo-v8 --release -- myimage.jpg # for pose estimation, add --task pose
|
||||||
|
cargo run --example segment-anything --release -- --image myimage.jpg
|
||||||
```
|
```
|
||||||
|
|
||||||
In order to use **CUDA** add `--features cuda` to the example command line. If
|
In order to use **CUDA** add `--features cuda` to the example command line. If
|
||||||
@ -153,10 +88,7 @@ There are also some wasm examples for whisper and
|
|||||||
[llama2.c](https://github.com/karpathy/llama2.c). You can either build them with
|
[llama2.c](https://github.com/karpathy/llama2.c). You can either build them with
|
||||||
`trunk` or try them online:
|
`trunk` or try them online:
|
||||||
[whisper](https://huggingface.co/spaces/lmz/candle-whisper),
|
[whisper](https://huggingface.co/spaces/lmz/candle-whisper),
|
||||||
[llama2](https://huggingface.co/spaces/lmz/candle-llama2),
|
[llama2](https://huggingface.co/spaces/lmz/candle-llama2).
|
||||||
[T5](https://huggingface.co/spaces/radames/Candle-T5-Generation-Wasm),
|
|
||||||
[Phi-1.5, and Phi-2](https://huggingface.co/spaces/radames/Candle-Phi-1.5-Wasm),
|
|
||||||
[Segment Anything Model](https://huggingface.co/spaces/radames/candle-segment-anything-wasm).
|
|
||||||
|
|
||||||
For LLaMA2, run the following command to retrieve the weight files and start a
|
For LLaMA2, run the following command to retrieve the weight files and start a
|
||||||
test server:
|
test server:
|
||||||
@ -169,32 +101,6 @@ trunk serve --release --port 8081
|
|||||||
And then head over to
|
And then head over to
|
||||||
[http://localhost:8081/](http://localhost:8081/).
|
[http://localhost:8081/](http://localhost:8081/).
|
||||||
|
|
||||||
<!--- ANCHOR: useful_libraries --->
|
|
||||||
|
|
||||||
## Useful External Resources
|
|
||||||
- [`candle-tutorial`](https://github.com/ToluClassics/candle-tutorial): A
|
|
||||||
very detailed tutorial showing how to convert a PyTorch model to Candle.
|
|
||||||
- [`candle-lora`](https://github.com/EricLBuehler/candle-lora): Efficient and
|
|
||||||
ergonomic LoRA implementation for Candle. `candle-lora` has
|
|
||||||
out-of-the-box LoRA support for many models from Candle, which can be found
|
|
||||||
[here](https://github.com/EricLBuehler/candle-lora/tree/master/candle-lora-transformers/examples).
|
|
||||||
- [`optimisers`](https://github.com/KGrewal1/optimisers): A collection of optimisers
|
|
||||||
including SGD with momentum, AdaGrad, AdaDelta, AdaMax, NAdam, RAdam, and RMSprop.
|
|
||||||
- [`candle-vllm`](https://github.com/EricLBuehler/candle-vllm): Efficient platform for inference and
|
|
||||||
serving local LLMs including an OpenAI compatible API server.
|
|
||||||
- [`candle-ext`](https://github.com/mokeyish/candle-ext): An extension library to Candle that provides PyTorch functions not currently available in Candle.
|
|
||||||
- [`candle-coursera-ml`](https://github.com/vishpat/candle-coursera-ml): Implementation of ML algorithms from Coursera's [Machine Learning Specialization](https://www.coursera.org/specializations/machine-learning-introduction) course.
|
|
||||||
- [`kalosm`](https://github.com/floneum/floneum/tree/master/interfaces/kalosm): A multi-modal meta-framework in Rust for interfacing with local pre-trained models with support for controlled generation, custom samplers, in-memory vector databases, audio transcription, and more.
|
|
||||||
- [`candle-sampling`](https://github.com/EricLBuehler/candle-sampling): Sampling techniques for Candle.
|
|
||||||
- [`gpt-from-scratch-rs`](https://github.com/jeroenvlek/gpt-from-scratch-rs): A port of Andrej Karpathy's _Let's build GPT_ tutorial on YouTube showcasing the Candle API on a toy problem.
|
|
||||||
- [`candle-einops`](https://github.com/tomsanbear/candle-einops): A pure rust implementation of the python [einops](https://github.com/arogozhnikov/einops) library.
|
|
||||||
- [`atoma-infer`](https://github.com/atoma-network/atoma-infer): A Rust library for fast inference at scale, leveraging FlashAttention2 for efficient attention computation, PagedAttention for efficient KV-cache memory management, and multi-GPU support. It is OpenAI api compatible.
|
|
||||||
- [`llms-from-scratch-rs`](https://github.com/nerdai/llms-from-scratch-rs): A comprehensive Rust translation of the code from Sebastian Raschka's Build an LLM from Scratch book.
|
|
||||||
|
|
||||||
If you have an addition to this list, please submit a pull request.
|
|
||||||
|
|
||||||
<!--- ANCHOR_END: useful_libraries --->
|
|
||||||
|
|
||||||
<!--- ANCHOR: features --->
|
<!--- ANCHOR: features --->
|
||||||
|
|
||||||
## Features
|
## Features
|
||||||
@ -207,47 +113,10 @@ If you have an addition to this list, please submit a pull request.
|
|||||||
- CUDA backend for efficiently running on GPUs, multiple GPU distribution via NCCL.
|
- CUDA backend for efficiently running on GPUs, multiple GPU distribution via NCCL.
|
||||||
- WASM support, run your models in a browser.
|
- WASM support, run your models in a browser.
|
||||||
- Included models.
|
- Included models.
|
||||||
- Language Models.
|
- LLMs: LLaMA v1 and v2, Falcon, StarCoder.
|
||||||
- LLaMA v1, v2, and v3 with variants such as SOLAR-10.7B.
|
- Whisper (multi-lingual support).
|
||||||
- Falcon.
|
- Stable Diffusion.
|
||||||
- StarCoder, StarCoder2.
|
- Computer Vision: DINOv2, EfficientNet, yolo-v3, yolo-v8.
|
||||||
- Phi 1, 1.5, 2, and 3.
|
|
||||||
- Mamba, Minimal Mamba
|
|
||||||
- Gemma v1 2b and 7b+, v2 2b and 9b.
|
|
||||||
- Mistral 7b v0.1.
|
|
||||||
- Mixtral 8x7b v0.1.
|
|
||||||
- StableLM-3B-4E1T, StableLM-2-1.6B, Stable-Code-3B.
|
|
||||||
- Replit-code-v1.5-3B.
|
|
||||||
- Bert.
|
|
||||||
- Yi-6B and Yi-34B.
|
|
||||||
- Qwen1.5, Qwen1.5 MoE.
|
|
||||||
- RWKV v5 and v6.
|
|
||||||
- Quantized LLMs.
|
|
||||||
- Llama 7b, 13b, 70b, as well as the chat and code variants.
|
|
||||||
- Mistral 7b, and 7b instruct.
|
|
||||||
- Mixtral 8x7b.
|
|
||||||
- Zephyr 7b a and b (Mistral-7b based).
|
|
||||||
- OpenChat 3.5 (Mistral-7b based).
|
|
||||||
- Text to text.
|
|
||||||
- T5 and its variants: FlanT5, UL2, MADLAD400 (translation), CoEdit (Grammar correction).
|
|
||||||
- Marian MT (Machine Translation).
|
|
||||||
- Text to image.
|
|
||||||
- Stable Diffusion v1.5, v2.1, XL v1.0.
|
|
||||||
- Wurstchen v2.
|
|
||||||
- Image to text.
|
|
||||||
- BLIP.
|
|
||||||
- TrOCR.
|
|
||||||
- Audio.
|
|
||||||
- Whisper, multi-lingual speech-to-text.
|
|
||||||
- EnCodec, audio compression model.
|
|
||||||
- MetaVoice-1B, text-to-speech model.
|
|
||||||
- Parler-TTS, text-to-speech model.
|
|
||||||
- Computer Vision Models.
|
|
||||||
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG, ConvNeXT,
|
|
||||||
ConvNeXTv2, MobileOne, EfficientVit (MSRA), MobileNetv4, Hiera, FastViT.
|
|
||||||
- yolo-v3, yolo-v8.
|
|
||||||
- Segment-Anything Model (SAM).
|
|
||||||
- SegFormer.
|
|
||||||
- File formats: load models from safetensors, npz, ggml, or PyTorch files.
|
- File formats: load models from safetensors, npz, ggml, or PyTorch files.
|
||||||
- Serverless (on CPU), small and fast deployments.
|
- Serverless (on CPU), small and fast deployments.
|
||||||
- Quantization support using the llama.cpp quantized types.
|
- Quantization support using the llama.cpp quantized types.
|
||||||
@ -284,7 +153,6 @@ Cheatsheet:
|
|||||||
- [candle-datasets](./candle-datasets/): Datasets and data loaders.
|
- [candle-datasets](./candle-datasets/): Datasets and data loaders.
|
||||||
- [candle-transformers](./candle-transformers): transformers-related utilities.
|
- [candle-transformers](./candle-transformers): transformers-related utilities.
|
||||||
- [candle-flash-attn](./candle-flash-attn): Flash attention v2 layer.
|
- [candle-flash-attn](./candle-flash-attn): Flash attention v2 layer.
|
||||||
- [candle-onnx](./candle-onnx/): ONNX model evaluation.
|
|
||||||
|
|
||||||
## FAQ
|
## FAQ
|
||||||
|
|
||||||
@ -384,42 +252,12 @@ git submodule update --init
|
|||||||
/usr/include/c++/11/bits/std_function.h:530:146: error: parameter packs not expanded with ‘...’:
|
/usr/include/c++/11/bits/std_function.h:530:146: error: parameter packs not expanded with ‘...’:
|
||||||
```
|
```
|
||||||
|
|
||||||
This is a bug in gcc-11 triggered by the Cuda compiler. To fix this, install a different, supported gcc version - for example gcc-10, and specify the path to the compiler in the NVCC_CCBIN environment variable.
|
This is a bug in gcc-11 triggered by the Cuda compiler. To fix this, install a different, supported gcc version - for example gcc-10, and specify the path to the compiler in the CANDLE_NVCC_CCBIN environment variable.
|
||||||
```
|
```
|
||||||
env NVCC_CCBIN=/usr/lib/gcc/x86_64-linux-gnu/10 cargo ...
|
env CANDLE_NVCC_CCBIN=/usr/lib/gcc/x86_64-linux-gnu/10 cargo ...
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Linking error on windows when running rustdoc or mdbook tests
|
|
||||||
|
|
||||||
```
|
|
||||||
Couldn't compile the test.
|
|
||||||
---- .\candle-book\src\inference\hub.md - Using_the_hub::Using_in_a_real_model_ (line 50) stdout ----
|
|
||||||
error: linking with `link.exe` failed: exit code: 1181
|
|
||||||
//very long chain of linking
|
|
||||||
= note: LINK : fatal error LNK1181: cannot open input file 'windows.0.48.5.lib'
|
|
||||||
```
|
|
||||||
|
|
||||||
Make sure you link all native libraries that might be located outside a project target, e.g., to run mdbook tests, you should run:
|
|
||||||
|
|
||||||
```
|
|
||||||
mdbook test candle-book -L .\target\debug\deps\ `
|
|
||||||
-L native=$env:USERPROFILE\.cargo\registry\src\index.crates.io-6f17d22bba15001f\windows_x86_64_msvc-0.42.2\lib `
|
|
||||||
-L native=$env:USERPROFILE\.cargo\registry\src\index.crates.io-6f17d22bba15001f\windows_x86_64_msvc-0.48.5\lib
|
|
||||||
```
|
|
||||||
|
|
||||||
#### Extremely slow model load time with WSL
|
|
||||||
|
|
||||||
This may be caused by the models being loaded from `/mnt/c`, more details on
|
|
||||||
[stackoverflow](https://stackoverflow.com/questions/68972448/why-is-wsl-extremely-slow-when-compared-with-native-windows-npm-yarn-processing).
|
|
||||||
|
|
||||||
#### Tracking down errors
|
#### Tracking down errors
|
||||||
|
|
||||||
You can set `RUST_BACKTRACE=1` to be provided with backtraces when a candle
|
You can set `RUST_BACKTRACE=1` to be provided with backtraces when a candle
|
||||||
error is generated.
|
error is generated.
|
||||||
|
|
||||||
#### CudaRC error
|
|
||||||
|
|
||||||
If you encounter an error like this one `called `Result::unwrap()` on an `Err` value: LoadLibraryExW { source: Os { code: 126, kind: Uncategorized, message: "The specified module could not be found." } }` on windows. To fix copy and rename these 3 files (make sure they are in path). The paths depend on your cuda version.
|
|
||||||
`c:\Windows\System32\nvcuda.dll` -> `cuda.dll`
|
|
||||||
`c:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin\cublas64_12.dll` -> `cublas.dll`
|
|
||||||
`c:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin\curand64_10.dll` -> `curand.dll`
|
|
||||||
|
@ -11,11 +11,11 @@ readme = "README.md"
|
|||||||
|
|
||||||
[dependencies]
|
[dependencies]
|
||||||
accelerate-src = { workspace = true, optional = true }
|
accelerate-src = { workspace = true, optional = true }
|
||||||
candle = { workspace = true }
|
candle = { path = "../candle-core", version = "0.2.1", package = "candle-core" }
|
||||||
candle-datasets = { workspace = true }
|
candle-datasets = { path = "../candle-datasets", version = "0.2.1" }
|
||||||
candle-nn = { workspace = true }
|
candle-nn = { path = "../candle-nn", version = "0.2.1" }
|
||||||
candle-transformers = { workspace = true }
|
candle-transformers = { path = "../candle-transformers", version = "0.2.1" }
|
||||||
candle-flash-attn = { workspace = true, optional = true }
|
candle-flash-attn = { path = "../candle-flash-attn", version = "0.2.1", optional = true }
|
||||||
safetensors = { workspace = true }
|
safetensors = { workspace = true }
|
||||||
serde = { workspace = true }
|
serde = { workspace = true }
|
||||||
serde_json = { workspace = true }
|
serde_json = { workspace = true }
|
||||||
@ -24,10 +24,9 @@ intel-mkl-src = { workspace = true, optional = true }
|
|||||||
cudarc = { workspace = true, optional = true }
|
cudarc = { workspace = true, optional = true }
|
||||||
half = { workspace = true, optional = true }
|
half = { workspace = true, optional = true }
|
||||||
image = { workspace = true, optional = true }
|
image = { workspace = true, optional = true }
|
||||||
anyhow = { workspace = true }
|
|
||||||
tokio = "1.43.0"
|
|
||||||
|
|
||||||
[dev-dependencies]
|
[dev-dependencies]
|
||||||
|
anyhow = { workspace = true }
|
||||||
byteorder = { workspace = true }
|
byteorder = { workspace = true }
|
||||||
hf-hub = { workspace = true, features=["tokio"]}
|
hf-hub = { workspace = true, features=["tokio"]}
|
||||||
clap = { workspace = true }
|
clap = { workspace = true }
|
||||||
@ -37,7 +36,9 @@ tokenizers = { workspace = true, features = ["onig"] }
|
|||||||
tracing = { workspace = true }
|
tracing = { workspace = true }
|
||||||
tracing-chrome = { workspace = true }
|
tracing-chrome = { workspace = true }
|
||||||
tracing-subscriber = { workspace = true }
|
tracing-subscriber = { workspace = true }
|
||||||
|
wav = { workspace = true }
|
||||||
# Necessary to disambiguate with tokio in wasm examples which are 1.28.1
|
# Necessary to disambiguate with tokio in wasm examples which are 1.28.1
|
||||||
|
tokio = "1.29.1"
|
||||||
parquet = { workspace = true }
|
parquet = { workspace = true }
|
||||||
image = { workspace = true }
|
image = { workspace = true }
|
||||||
|
|
||||||
|
@ -10,11 +10,10 @@
|
|||||||
|
|
||||||
# Reference Guide
|
# Reference Guide
|
||||||
|
|
||||||
- [Running a model](inference/inference.md)
|
- [Running a model](inference/README.md)
|
||||||
- [Using the hub](inference/hub.md)
|
- [Using the hub](inference/hub.md)
|
||||||
- [Error management](error_manage.md)
|
- [Error management](error_manage.md)
|
||||||
- [Training](training/training.md)
|
- [Training](training/README.md)
|
||||||
- [Simplified](training/simplified.md)
|
|
||||||
- [MNIST](training/mnist.md)
|
- [MNIST](training/mnist.md)
|
||||||
- [Fine-tuning]()
|
- [Fine-tuning]()
|
||||||
- [Serialization]()
|
- [Serialization]()
|
||||||
|
@ -29,7 +29,7 @@ After adding `RUST_BACKTRACE=1`:
|
|||||||
Error: WithBacktrace { inner: ShapeMismatchBinaryOp { lhs: [1, 784], rhs: [1, 784], op: "matmul" }, backtrace: Backtrace [{ fn: "candle::error::Error::bt", file: "/home/nicolas/.cargo/git/checkouts/candle-5bb8ef7e0626d693/f291065/candle-core/src/error.rs", line: 200 }, { fn: "candle::tensor::Tensor::matmul", file: "/home/nicolas/.cargo/git/checkouts/candle-5bb8ef7e0626d693/f291065/candle-core/src/tensor.rs", line: 816 }, { fn: "myapp::main", file: "./src/main.rs", line: 29 }, { fn: "core::ops::function::FnOnce::call_once", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/core/src/ops/function.rs", line: 250 }, { fn: "std::sys_common::backtrace::__rust_begin_short_backtrace", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/sys_common/backtrace.rs", line: 135 }, { fn: "std::rt::lang_start::{{closure}}", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/rt.rs", line: 166 }, { fn: "core::ops::function::impls::<impl core::ops::function::FnOnce<A> for &F>::call_once", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/core/src/ops/function.rs", line: 284 }, { fn: "std::panicking::try::do_call", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/panicking.rs", line: 500 }, { fn: "std::panicking::try", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/panicking.rs", line: 464 }, { fn: "std::panic::catch_unwind", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/panic.rs", line: 142 }, { fn: "std::rt::lang_start_internal::{{closure}}", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/rt.rs", line: 148 }, { fn: "std::panicking::try::do_call", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/panicking.rs", line: 500 }, { fn: "std::panicking::try", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/panicking.rs", line: 464 }, { fn: "std::panic::catch_unwind", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/panic.rs", line: 142 }, { fn: "std::rt::lang_start_internal", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/rt.rs", line: 148 }, { fn: "std::rt::lang_start", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/rt.rs", line: 165 }, { fn: "main" }, { fn: "__libc_start_main" }, { fn: "_start" }] }
|
Error: WithBacktrace { inner: ShapeMismatchBinaryOp { lhs: [1, 784], rhs: [1, 784], op: "matmul" }, backtrace: Backtrace [{ fn: "candle::error::Error::bt", file: "/home/nicolas/.cargo/git/checkouts/candle-5bb8ef7e0626d693/f291065/candle-core/src/error.rs", line: 200 }, { fn: "candle::tensor::Tensor::matmul", file: "/home/nicolas/.cargo/git/checkouts/candle-5bb8ef7e0626d693/f291065/candle-core/src/tensor.rs", line: 816 }, { fn: "myapp::main", file: "./src/main.rs", line: 29 }, { fn: "core::ops::function::FnOnce::call_once", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/core/src/ops/function.rs", line: 250 }, { fn: "std::sys_common::backtrace::__rust_begin_short_backtrace", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/sys_common/backtrace.rs", line: 135 }, { fn: "std::rt::lang_start::{{closure}}", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/rt.rs", line: 166 }, { fn: "core::ops::function::impls::<impl core::ops::function::FnOnce<A> for &F>::call_once", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/core/src/ops/function.rs", line: 284 }, { fn: "std::panicking::try::do_call", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/panicking.rs", line: 500 }, { fn: "std::panicking::try", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/panicking.rs", line: 464 }, { fn: "std::panic::catch_unwind", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/panic.rs", line: 142 }, { fn: "std::rt::lang_start_internal::{{closure}}", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/rt.rs", line: 148 }, { fn: "std::panicking::try::do_call", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/panicking.rs", line: 500 }, { fn: "std::panicking::try", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/panicking.rs", line: 464 }, { fn: "std::panic::catch_unwind", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/panic.rs", line: 142 }, { fn: "std::rt::lang_start_internal", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/rt.rs", line: 148 }, { fn: "std::rt::lang_start", file: "/rustc/8ede3aae28fe6e4d52b38157d7bfe0d3bceef225/library/std/src/rt.rs", line: 165 }, { fn: "main" }, { fn: "__libc_start_main" }, { fn: "_start" }] }
|
||||||
```
|
```
|
||||||
|
|
||||||
Not super pretty at the moment, but we can see error occurred on `{ fn: "myapp::main", file: "./src/main.rs", line: 29 }`
|
Not super pretty at the moment, but we can see error occured on `{ fn: "myapp::main", file: "./src/main.rs", line: 29 }`
|
||||||
|
|
||||||
|
|
||||||
Another thing to note, is that since Rust is compiled it is not necessarily as easy to recover proper stacktraces
|
Another thing to note, is that since Rust is compiled it is not necessarily as easy to recover proper stacktraces
|
||||||
|
@ -6,7 +6,7 @@ Open `src/main.rs` and fill in this content:
|
|||||||
|
|
||||||
```rust
|
```rust
|
||||||
# extern crate candle_core;
|
# extern crate candle_core;
|
||||||
use candle_core::{Device, Result, Tensor};
|
use candle_core::{DType, Device, Result, Tensor};
|
||||||
|
|
||||||
struct Model {
|
struct Model {
|
||||||
first: Tensor,
|
first: Tensor,
|
||||||
@ -25,11 +25,11 @@ fn main() -> Result<()> {
|
|||||||
// Use Device::new_cuda(0)?; to use the GPU.
|
// Use Device::new_cuda(0)?; to use the GPU.
|
||||||
let device = Device::Cpu;
|
let device = Device::Cpu;
|
||||||
|
|
||||||
let first = Tensor::randn(0f32, 1.0, (784, 100), &device)?;
|
let first = Tensor::zeros((784, 100), DType::F32, &device)?;
|
||||||
let second = Tensor::randn(0f32, 1.0, (100, 10), &device)?;
|
let second = Tensor::zeros((100, 10), DType::F32, &device)?;
|
||||||
let model = Model { first, second };
|
let model = Model { first, second };
|
||||||
|
|
||||||
let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?;
|
let dummy_image = Tensor::zeros((1, 784), DType::F32, &device)?;
|
||||||
|
|
||||||
let digit = model.forward(&dummy_image)?;
|
let digit = model.forward(&dummy_image)?;
|
||||||
println!("Digit {digit:?} digit");
|
println!("Digit {digit:?} digit");
|
||||||
@ -50,7 +50,7 @@ the classical `Linear` layer. We can do as such
|
|||||||
|
|
||||||
```rust
|
```rust
|
||||||
# extern crate candle_core;
|
# extern crate candle_core;
|
||||||
# use candle_core::{Device, Result, Tensor};
|
# use candle_core::{DType, Device, Result, Tensor};
|
||||||
struct Linear{
|
struct Linear{
|
||||||
weight: Tensor,
|
weight: Tensor,
|
||||||
bias: Tensor,
|
bias: Tensor,
|
||||||
@ -80,7 +80,7 @@ This will change the model running code into a new function
|
|||||||
|
|
||||||
```rust
|
```rust
|
||||||
# extern crate candle_core;
|
# extern crate candle_core;
|
||||||
# use candle_core::{Device, Result, Tensor};
|
# use candle_core::{DType, Device, Result, Tensor};
|
||||||
# struct Linear{
|
# struct Linear{
|
||||||
# weight: Tensor,
|
# weight: Tensor,
|
||||||
# bias: Tensor,
|
# bias: Tensor,
|
||||||
@ -110,15 +110,15 @@ fn main() -> Result<()> {
|
|||||||
let device = Device::cuda_if_available(0)?;
|
let device = Device::cuda_if_available(0)?;
|
||||||
|
|
||||||
// Creating a dummy model
|
// Creating a dummy model
|
||||||
let weight = Tensor::randn(0f32, 1.0, (784, 100), &device)?;
|
let weight = Tensor::zeros((784, 100), DType::F32, &device)?;
|
||||||
let bias = Tensor::randn(0f32, 1.0, (100, ), &device)?;
|
let bias = Tensor::zeros((100, ), DType::F32, &device)?;
|
||||||
let first = Linear{weight, bias};
|
let first = Linear{weight, bias};
|
||||||
let weight = Tensor::randn(0f32, 1.0, (100, 10), &device)?;
|
let weight = Tensor::zeros((100, 10), DType::F32, &device)?;
|
||||||
let bias = Tensor::randn(0f32, 1.0, (10, ), &device)?;
|
let bias = Tensor::zeros((10, ), DType::F32, &device)?;
|
||||||
let second = Linear{weight, bias};
|
let second = Linear{weight, bias};
|
||||||
let model = Model { first, second };
|
let model = Model { first, second };
|
||||||
|
|
||||||
let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?;
|
let dummy_image = Tensor::zeros((1, 784), DType::F32, &device)?;
|
||||||
|
|
||||||
// Inference on the model
|
// Inference on the model
|
||||||
let digit = model.forward(&dummy_image)?;
|
let digit = model.forward(&dummy_image)?;
|
||||||
@ -146,7 +146,7 @@ And rewrite our examples using it
|
|||||||
```rust
|
```rust
|
||||||
# extern crate candle_core;
|
# extern crate candle_core;
|
||||||
# extern crate candle_nn;
|
# extern crate candle_nn;
|
||||||
use candle_core::{Device, Result, Tensor};
|
use candle_core::{DType, Device, Result, Tensor};
|
||||||
use candle_nn::{Linear, Module};
|
use candle_nn::{Linear, Module};
|
||||||
|
|
||||||
struct Model {
|
struct Model {
|
||||||
@ -167,15 +167,15 @@ fn main() -> Result<()> {
|
|||||||
let device = Device::Cpu;
|
let device = Device::Cpu;
|
||||||
|
|
||||||
// This has changed (784, 100) -> (100, 784) !
|
// This has changed (784, 100) -> (100, 784) !
|
||||||
let weight = Tensor::randn(0f32, 1.0, (100, 784), &device)?;
|
let weight = Tensor::zeros((100, 784), DType::F32, &device)?;
|
||||||
let bias = Tensor::randn(0f32, 1.0, (100, ), &device)?;
|
let bias = Tensor::zeros((100, ), DType::F32, &device)?;
|
||||||
let first = Linear::new(weight, Some(bias));
|
let first = Linear::new(weight, Some(bias));
|
||||||
let weight = Tensor::randn(0f32, 1.0, (10, 100), &device)?;
|
let weight = Tensor::zeros((10, 100), DType::F32, &device)?;
|
||||||
let bias = Tensor::randn(0f32, 1.0, (10, ), &device)?;
|
let bias = Tensor::zeros((10, ), DType::F32, &device)?;
|
||||||
let second = Linear::new(weight, Some(bias));
|
let second = Linear::new(weight, Some(bias));
|
||||||
let model = Model { first, second };
|
let model = Model { first, second };
|
||||||
|
|
||||||
let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?;
|
let dummy_image = Tensor::zeros((1, 784), DType::F32, &device)?;
|
||||||
|
|
||||||
let digit = model.forward(&dummy_image)?;
|
let digit = model.forward(&dummy_image)?;
|
||||||
println!("Digit {digit:?} digit");
|
println!("Digit {digit:?} digit");
|
||||||
@ -188,8 +188,8 @@ Feel free to modify this example to use `Conv2d` to create a classical convnet i
|
|||||||
|
|
||||||
Now that we have the running dummy code we can get to more advanced topics:
|
Now that we have the running dummy code we can get to more advanced topics:
|
||||||
|
|
||||||
- [For PyTorch users](../guide/cheatsheet.md)
|
- [For PyTorch users](./guide/cheatsheet.md)
|
||||||
- [Running existing models](../inference/inference.md)
|
- [Running existing models](./inference/README.md)
|
||||||
- [Training models](../training/training.md)
|
- [Training models](./training/README.md)
|
||||||
|
|
||||||
|
|
||||||
|
@ -12,9 +12,6 @@ compute_cap
|
|||||||
8.9
|
8.9
|
||||||
```
|
```
|
||||||
|
|
||||||
You can also compile the Cuda kernels for a specific compute cap using the
|
|
||||||
`CUDA_COMPUTE_CAP=<compute cap>` environment variable.
|
|
||||||
|
|
||||||
If any of the above commands errors out, please make sure to update your Cuda version.
|
If any of the above commands errors out, please make sure to update your Cuda version.
|
||||||
|
|
||||||
2. Create a new app and add [`candle-core`](https://github.com/huggingface/candle/tree/main/candle-core) with Cuda support.
|
2. Create a new app and add [`candle-core`](https://github.com/huggingface/candle/tree/main/candle-core) with Cuda support.
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
#[cfg(test)]
|
|
||||||
pub mod simplified;
|
|
||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
mod tests {
|
mod tests {
|
||||||
use anyhow::Result;
|
use anyhow::Result;
|
||||||
@ -28,7 +25,6 @@ let weights = candle::safetensors::load(weights_filename, &Device::Cpu).unwrap()
|
|||||||
#[rustfmt::skip]
|
#[rustfmt::skip]
|
||||||
#[test]
|
#[test]
|
||||||
fn book_hub_2() {
|
fn book_hub_2() {
|
||||||
{
|
|
||||||
// ANCHOR: book_hub_2
|
// ANCHOR: book_hub_2
|
||||||
use candle::Device;
|
use candle::Device;
|
||||||
use hf_hub::api::sync::Api;
|
use hf_hub::api::sync::Api;
|
||||||
@ -46,10 +42,9 @@ let weights = candle::safetensors::load_buffer(&mmap[..], &Device::Cpu).unwrap()
|
|||||||
assert_eq!(weights.len(), 206);
|
assert_eq!(weights.len(), 206);
|
||||||
}
|
}
|
||||||
|
|
||||||
// #[rustfmt::skip]
|
#[rustfmt::skip]
|
||||||
// #[test]
|
#[test]
|
||||||
// fn book_hub_3() {
|
fn book_hub_3() {
|
||||||
{
|
|
||||||
// ANCHOR: book_hub_3
|
// ANCHOR: book_hub_3
|
||||||
use candle::{DType, Device, Tensor};
|
use candle::{DType, Device, Tensor};
|
||||||
use hf_hub::api::sync::Api;
|
use hf_hub::api::sync::Api;
|
||||||
@ -81,7 +76,7 @@ let mut tp_shape = view.shape().to_vec();
|
|||||||
let size = tp_shape[0];
|
let size = tp_shape[0];
|
||||||
|
|
||||||
if size % world_size != 0 {
|
if size % world_size != 0 {
|
||||||
panic!("The dimension is not divisible by `world_size`");
|
panic!("The dimension is not divisble by `world_size`");
|
||||||
}
|
}
|
||||||
let block_size = size / world_size;
|
let block_size = size / world_size;
|
||||||
let start = rank * block_size;
|
let start = rank * block_size;
|
||||||
@ -104,10 +99,9 @@ let tp_tensor = Tensor::from_raw_buffer(&raw, dtype, &tp_shape, &Device::Cpu).un
|
|||||||
assert_eq!(view.shape(), &[768, 768]);
|
assert_eq!(view.shape(), &[768, 768]);
|
||||||
assert_eq!(tp_tensor.dims(), &[192, 768]);
|
assert_eq!(tp_tensor.dims(), &[192, 768]);
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
#[allow(unused)]
|
|
||||||
#[rustfmt::skip]
|
#[rustfmt::skip]
|
||||||
|
#[test]
|
||||||
fn book_training_1() -> Result<()>{
|
fn book_training_1() -> Result<()>{
|
||||||
// ANCHOR: book_training_1
|
// ANCHOR: book_training_1
|
||||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||||
|
@ -1,196 +0,0 @@
|
|||||||
//! #A simplified example in Rust of training a neural network and then using it based on the Candle Framework by Hugging Face.
|
|
||||||
//! Author: Evgeny Igumnov 2023 igumnovnsk@gmail.com
|
|
||||||
//! This program implements a neural network to predict the winner of the second round of elections based on the results of the first round.
|
|
||||||
//!
|
|
||||||
//! ##Basic moments:
|
|
||||||
//!
|
|
||||||
//! A multilayer perceptron with two hidden layers is used. The first hidden layer has 4 neurons, the second has 2 neurons.
|
|
||||||
//! The input is a vector of 2 numbers - the percentage of votes for the first and second candidates in the first stage.
|
|
||||||
//! The output is the number 0 or 1, where 1 means that the first candidate will win in the second stage, 0 means that he will lose.
|
|
||||||
//! For training, samples with real data on the results of the first and second stages of different elections are used.
|
|
||||||
//! The model is trained by backpropagation using gradient descent and the cross-entropy loss function.
|
|
||||||
//! Model parameters (weights of neurons) are initialized randomly, then optimized during training.
|
|
||||||
//! After training, the model is tested on a deferred sample to evaluate the accuracy.
|
|
||||||
//! If the accuracy on the test set is below 100%, the model is considered underfit and the learning process is repeated.
|
|
||||||
//! Thus, this neural network learns to find hidden relationships between the results of the first and second rounds of voting in order to make predictions for new data.
|
|
||||||
|
|
||||||
#[rustfmt::skip]
|
|
||||||
mod tests {
|
|
||||||
|
|
||||||
use candle::{DType, Result, Tensor, D, Device};
|
|
||||||
use candle_nn::{loss, ops, Linear, Module, VarBuilder, VarMap, Optimizer};
|
|
||||||
|
|
||||||
// ANCHOR: book_training_simplified1
|
|
||||||
const VOTE_DIM: usize = 2;
|
|
||||||
const RESULTS: usize = 1;
|
|
||||||
const EPOCHS: usize = 10;
|
|
||||||
const LAYER1_OUT_SIZE: usize = 4;
|
|
||||||
const LAYER2_OUT_SIZE: usize = 2;
|
|
||||||
const LEARNING_RATE: f64 = 0.05;
|
|
||||||
|
|
||||||
#[derive(Clone)]
|
|
||||||
pub struct Dataset {
|
|
||||||
pub train_votes: Tensor,
|
|
||||||
pub train_results: Tensor,
|
|
||||||
pub test_votes: Tensor,
|
|
||||||
pub test_results: Tensor,
|
|
||||||
}
|
|
||||||
|
|
||||||
struct MultiLevelPerceptron {
|
|
||||||
ln1: Linear,
|
|
||||||
ln2: Linear,
|
|
||||||
ln3: Linear,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl MultiLevelPerceptron {
|
|
||||||
fn new(vs: VarBuilder) -> Result<Self> {
|
|
||||||
let ln1 = candle_nn::linear(VOTE_DIM, LAYER1_OUT_SIZE, vs.pp("ln1"))?;
|
|
||||||
let ln2 = candle_nn::linear(LAYER1_OUT_SIZE, LAYER2_OUT_SIZE, vs.pp("ln2"))?;
|
|
||||||
let ln3 = candle_nn::linear(LAYER2_OUT_SIZE, RESULTS + 1, vs.pp("ln3"))?;
|
|
||||||
Ok(Self { ln1, ln2, ln3 })
|
|
||||||
}
|
|
||||||
|
|
||||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
||||||
let xs = self.ln1.forward(xs)?;
|
|
||||||
let xs = xs.relu()?;
|
|
||||||
let xs = self.ln2.forward(&xs)?;
|
|
||||||
let xs = xs.relu()?;
|
|
||||||
self.ln3.forward(&xs)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// ANCHOR_END: book_training_simplified1
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// ANCHOR: book_training_simplified3
|
|
||||||
#[tokio::test]
|
|
||||||
async fn simplified() -> anyhow::Result<()> {
|
|
||||||
|
|
||||||
let dev = Device::cuda_if_available(0)?;
|
|
||||||
|
|
||||||
let train_votes_vec: Vec<u32> = vec![
|
|
||||||
15, 10,
|
|
||||||
10, 15,
|
|
||||||
5, 12,
|
|
||||||
30, 20,
|
|
||||||
16, 12,
|
|
||||||
13, 25,
|
|
||||||
6, 14,
|
|
||||||
31, 21,
|
|
||||||
];
|
|
||||||
let train_votes_tensor = Tensor::from_vec(train_votes_vec.clone(), (train_votes_vec.len() / VOTE_DIM, VOTE_DIM), &dev)?.to_dtype(DType::F32)?;
|
|
||||||
|
|
||||||
let train_results_vec: Vec<u32> = vec![
|
|
||||||
1,
|
|
||||||
0,
|
|
||||||
0,
|
|
||||||
1,
|
|
||||||
1,
|
|
||||||
0,
|
|
||||||
0,
|
|
||||||
1,
|
|
||||||
];
|
|
||||||
let train_results_tensor = Tensor::from_vec(train_results_vec, train_votes_vec.len() / VOTE_DIM, &dev)?;
|
|
||||||
|
|
||||||
let test_votes_vec: Vec<u32> = vec![
|
|
||||||
13, 9,
|
|
||||||
8, 14,
|
|
||||||
3, 10,
|
|
||||||
];
|
|
||||||
let test_votes_tensor = Tensor::from_vec(test_votes_vec.clone(), (test_votes_vec.len() / VOTE_DIM, VOTE_DIM), &dev)?.to_dtype(DType::F32)?;
|
|
||||||
|
|
||||||
let test_results_vec: Vec<u32> = vec![
|
|
||||||
1,
|
|
||||||
0,
|
|
||||||
0,
|
|
||||||
];
|
|
||||||
let test_results_tensor = Tensor::from_vec(test_results_vec.clone(), test_results_vec.len(), &dev)?;
|
|
||||||
|
|
||||||
let m = Dataset {
|
|
||||||
train_votes: train_votes_tensor,
|
|
||||||
train_results: train_results_tensor,
|
|
||||||
test_votes: test_votes_tensor,
|
|
||||||
test_results: test_results_tensor,
|
|
||||||
};
|
|
||||||
|
|
||||||
let trained_model: MultiLevelPerceptron;
|
|
||||||
loop {
|
|
||||||
println!("Trying to train neural network.");
|
|
||||||
match train(m.clone(), &dev) {
|
|
||||||
Ok(model) => {
|
|
||||||
trained_model = model;
|
|
||||||
break;
|
|
||||||
},
|
|
||||||
Err(e) => {
|
|
||||||
println!("Error: {}", e);
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
let real_world_votes: Vec<u32> = vec![
|
|
||||||
13, 22,
|
|
||||||
];
|
|
||||||
|
|
||||||
let tensor_test_votes = Tensor::from_vec(real_world_votes.clone(), (1, VOTE_DIM), &dev)?.to_dtype(DType::F32)?;
|
|
||||||
|
|
||||||
let final_result = trained_model.forward(&tensor_test_votes)?;
|
|
||||||
|
|
||||||
let result = final_result
|
|
||||||
.argmax(D::Minus1)?
|
|
||||||
.to_dtype(DType::F32)?
|
|
||||||
.get(0).map(|x| x.to_scalar::<f32>())??;
|
|
||||||
println!("real_life_votes: {:?}", real_world_votes);
|
|
||||||
println!("neural_network_prediction_result: {:?}", result);
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
|
|
||||||
}
|
|
||||||
// ANCHOR_END: book_training_simplified3
|
|
||||||
|
|
||||||
// ANCHOR: book_training_simplified2
|
|
||||||
fn train(m: Dataset, dev: &Device) -> anyhow::Result<MultiLevelPerceptron> {
|
|
||||||
let train_results = m.train_results.to_device(dev)?;
|
|
||||||
let train_votes = m.train_votes.to_device(dev)?;
|
|
||||||
let varmap = VarMap::new();
|
|
||||||
let vs = VarBuilder::from_varmap(&varmap, DType::F32, dev);
|
|
||||||
let model = MultiLevelPerceptron::new(vs.clone())?;
|
|
||||||
let mut sgd = candle_nn::SGD::new(varmap.all_vars(), LEARNING_RATE)?;
|
|
||||||
let test_votes = m.test_votes.to_device(dev)?;
|
|
||||||
let test_results = m.test_results.to_device(dev)?;
|
|
||||||
let mut final_accuracy: f32 = 0.0;
|
|
||||||
for epoch in 1..EPOCHS + 1 {
|
|
||||||
let logits = model.forward(&train_votes)?;
|
|
||||||
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
|
|
||||||
let loss = loss::nll(&log_sm, &train_results)?;
|
|
||||||
sgd.backward_step(&loss)?;
|
|
||||||
|
|
||||||
let test_logits = model.forward(&test_votes)?;
|
|
||||||
let sum_ok = test_logits
|
|
||||||
.argmax(D::Minus1)?
|
|
||||||
.eq(&test_results)?
|
|
||||||
.to_dtype(DType::F32)?
|
|
||||||
.sum_all()?
|
|
||||||
.to_scalar::<f32>()?;
|
|
||||||
let test_accuracy = sum_ok / test_results.dims1()? as f32;
|
|
||||||
final_accuracy = 100. * test_accuracy;
|
|
||||||
println!("Epoch: {epoch:3} Train loss: {:8.5} Test accuracy: {:5.2}%",
|
|
||||||
loss.to_scalar::<f32>()?,
|
|
||||||
final_accuracy
|
|
||||||
);
|
|
||||||
if final_accuracy == 100.0 {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if final_accuracy < 100.0 {
|
|
||||||
Err(anyhow::Error::msg("The model is not trained well enough."))
|
|
||||||
} else {
|
|
||||||
Ok(model)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// ANCHOR_END: book_training_simplified2
|
|
||||||
|
|
||||||
|
|
||||||
}
|
|
@ -1,45 +0,0 @@
|
|||||||
# Simplified
|
|
||||||
|
|
||||||
## How its works
|
|
||||||
|
|
||||||
This program implements a neural network to predict the winner of the second round of elections based on the results of the first round.
|
|
||||||
|
|
||||||
Basic moments:
|
|
||||||
|
|
||||||
1. A multilayer perceptron with two hidden layers is used. The first hidden layer has 4 neurons, the second has 2 neurons.
|
|
||||||
2. The input is a vector of 2 numbers - the percentage of votes for the first and second candidates in the first stage.
|
|
||||||
3. The output is the number 0 or 1, where 1 means that the first candidate will win in the second stage, 0 means that he will lose.
|
|
||||||
4. For training, samples with real data on the results of the first and second stages of different elections are used.
|
|
||||||
5. The model is trained by backpropagation using gradient descent and the cross-entropy loss function.
|
|
||||||
6. Model parameters (weights of neurons) are initialized randomly, then optimized during training.
|
|
||||||
7. After training, the model is tested on a deferred sample to evaluate the accuracy.
|
|
||||||
8. If the accuracy on the test set is below 100%, the model is considered underfit and the learning process is repeated.
|
|
||||||
|
|
||||||
Thus, this neural network learns to find hidden relationships between the results of the first and second rounds of voting in order to make predictions for new data.
|
|
||||||
|
|
||||||
|
|
||||||
```rust,ignore
|
|
||||||
{{#include ../simplified.rs:book_training_simplified1}}
|
|
||||||
```
|
|
||||||
|
|
||||||
```rust,ignore
|
|
||||||
{{#include ../simplified.rs:book_training_simplified2}}
|
|
||||||
```
|
|
||||||
|
|
||||||
```rust,ignore
|
|
||||||
{{#include ../simplified.rs:book_training_simplified3}}
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
## Example output
|
|
||||||
|
|
||||||
```bash
|
|
||||||
Trying to train neural network.
|
|
||||||
Epoch: 1 Train loss: 4.42555 Test accuracy: 0.00%
|
|
||||||
Epoch: 2 Train loss: 0.84677 Test accuracy: 33.33%
|
|
||||||
Epoch: 3 Train loss: 2.54335 Test accuracy: 33.33%
|
|
||||||
Epoch: 4 Train loss: 0.37806 Test accuracy: 33.33%
|
|
||||||
Epoch: 5 Train loss: 0.36647 Test accuracy: 100.00%
|
|
||||||
real_life_votes: [13, 22]
|
|
||||||
neural_network_prediction_result: 0.0
|
|
||||||
```
|
|
@ -12,9 +12,7 @@ readme = "README.md"
|
|||||||
[dependencies]
|
[dependencies]
|
||||||
accelerate-src = { workspace = true, optional = true }
|
accelerate-src = { workspace = true, optional = true }
|
||||||
byteorder = { workspace = true }
|
byteorder = { workspace = true }
|
||||||
candle-kernels = { workspace = true, optional = true }
|
candle-kernels = { path = "../candle-kernels", version = "0.2.1", optional = true }
|
||||||
candle-metal-kernels = { workspace = true, optional = true }
|
|
||||||
metal = { workspace = true, optional = true }
|
|
||||||
cudarc = { workspace = true, optional = true }
|
cudarc = { workspace = true, optional = true }
|
||||||
gemm = { workspace = true }
|
gemm = { workspace = true }
|
||||||
half = { workspace = true }
|
half = { workspace = true }
|
||||||
@ -28,35 +26,15 @@ rand_distr = { workspace = true }
|
|||||||
rayon = { workspace = true }
|
rayon = { workspace = true }
|
||||||
safetensors = { workspace = true }
|
safetensors = { workspace = true }
|
||||||
thiserror = { workspace = true }
|
thiserror = { workspace = true }
|
||||||
ug-cuda = { workspace = true, optional = true }
|
|
||||||
ug-metal = { workspace = true, optional = true }
|
|
||||||
yoke = { workspace = true }
|
|
||||||
zip = { workspace = true }
|
zip = { workspace = true }
|
||||||
|
|
||||||
[target.'cfg(not(target_arch = "wasm32"))'.dependencies]
|
|
||||||
ug = { workspace = true }
|
|
||||||
|
|
||||||
[dev-dependencies]
|
[dev-dependencies]
|
||||||
anyhow = { workspace = true }
|
anyhow = { workspace = true }
|
||||||
clap = { workspace = true }
|
clap = { workspace = true }
|
||||||
criterion = { workspace = true }
|
|
||||||
|
|
||||||
[features]
|
[features]
|
||||||
default = []
|
default = []
|
||||||
cuda = ["cudarc", "dep:candle-kernels", "dep:ug-cuda"]
|
cuda = ["cudarc", "dep:candle-kernels"]
|
||||||
cudnn = ["cuda", "cudarc/cudnn"]
|
cudnn = ["cuda", "cudarc/cudnn"]
|
||||||
mkl = ["dep:libc", "dep:intel-mkl-src"]
|
mkl = ["dep:libc", "dep:intel-mkl-src"]
|
||||||
accelerate = ["dep:libc", "dep:accelerate-src"]
|
accelerate = ["dep:libc", "dep:accelerate-src"]
|
||||||
metal = ["dep:metal", "dep:candle-metal-kernels", "dep:ug-metal"]
|
|
||||||
|
|
||||||
[[bench]]
|
|
||||||
name = "bench_main"
|
|
||||||
harness = false
|
|
||||||
|
|
||||||
[[example]]
|
|
||||||
name = "metal_basics"
|
|
||||||
required-features = ["metal"]
|
|
||||||
|
|
||||||
[[example]]
|
|
||||||
name = "cuda_basics"
|
|
||||||
required-features = ["cuda"]
|
|
||||||
|
@ -1,14 +0,0 @@
|
|||||||
mod benchmarks;
|
|
||||||
|
|
||||||
use criterion::criterion_main;
|
|
||||||
|
|
||||||
criterion_main!(
|
|
||||||
benchmarks::affine::benches,
|
|
||||||
benchmarks::matmul::benches,
|
|
||||||
benchmarks::random::benches,
|
|
||||||
benchmarks::reduce::benches,
|
|
||||||
benchmarks::where_cond::benches,
|
|
||||||
benchmarks::conv_transpose2d::benches,
|
|
||||||
benchmarks::qmatmul::benches,
|
|
||||||
benchmarks::unary::benches
|
|
||||||
);
|
|
@ -1,43 +0,0 @@
|
|||||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
|
||||||
use candle_core::{DType, Device, Tensor};
|
|
||||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
|
||||||
use std::time::Instant;
|
|
||||||
|
|
||||||
fn run(a: &Tensor) {
|
|
||||||
a.affine(12.34, 56.78).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn run_affine_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
|
|
||||||
let b = 1;
|
|
||||||
let m = 1024;
|
|
||||||
let k = 1024;
|
|
||||||
|
|
||||||
let tensor = Tensor::zeros((b, m, k), dtype, device).unwrap();
|
|
||||||
|
|
||||||
let flops = b * m * k * dtype.size_in_bytes();
|
|
||||||
|
|
||||||
let mut group = c.benchmark_group(device.bench_name(name));
|
|
||||||
group.throughput(Throughput::Bytes(flops as u64));
|
|
||||||
group.bench_function("iter", move |b| {
|
|
||||||
b.iter_custom(|iters| {
|
|
||||||
let start = Instant::now();
|
|
||||||
for _i in 0..iters {
|
|
||||||
run(black_box(&tensor));
|
|
||||||
}
|
|
||||||
device.sync().unwrap();
|
|
||||||
start.elapsed()
|
|
||||||
})
|
|
||||||
});
|
|
||||||
group.finish();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn criterion_benchmark(c: &mut Criterion) {
|
|
||||||
let handler = BenchDeviceHandler::new().unwrap();
|
|
||||||
for device in handler.devices {
|
|
||||||
run_affine_benchmark(c, &device, DType::F32, "affine_f32");
|
|
||||||
run_affine_benchmark(c, &device, DType::F16, "affine_f16");
|
|
||||||
run_affine_benchmark(c, &device, DType::BF16, "affine_bf16");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
criterion_group!(benches, criterion_benchmark);
|
|
@ -1,59 +0,0 @@
|
|||||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
|
||||||
use candle_core::{DType, Device, Tensor};
|
|
||||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
|
||||||
use std::time::Instant;
|
|
||||||
|
|
||||||
fn run(
|
|
||||||
x: &Tensor,
|
|
||||||
k: &Tensor,
|
|
||||||
padding: usize,
|
|
||||||
output_padding: usize,
|
|
||||||
stride: usize,
|
|
||||||
dilation: usize,
|
|
||||||
) {
|
|
||||||
x.conv_transpose2d(k, padding, output_padding, stride, dilation)
|
|
||||||
.unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn run_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
|
|
||||||
let t = Tensor::arange(0.0f32, 10000.0, device)
|
|
||||||
.unwrap()
|
|
||||||
.reshape((1, 4, 50, 50))
|
|
||||||
.unwrap()
|
|
||||||
.to_dtype(dtype)
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
let kernel = Tensor::arange(0.0f32, 100.0, device)
|
|
||||||
.unwrap()
|
|
||||||
.reshape((4, 1, 5, 5))
|
|
||||||
.unwrap()
|
|
||||||
.to_dtype(dtype)
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
let flops = t.dims().iter().product::<usize>() * dtype.size_in_bytes();
|
|
||||||
|
|
||||||
let mut group = c.benchmark_group(device.bench_name(name));
|
|
||||||
group.throughput(Throughput::Bytes(flops as u64));
|
|
||||||
group.bench_function("iter", move |b| {
|
|
||||||
b.iter_custom(|iters| {
|
|
||||||
let start = Instant::now();
|
|
||||||
for _i in 0..iters {
|
|
||||||
run(black_box(&t), black_box(&kernel), 1, 0, 1, 2);
|
|
||||||
}
|
|
||||||
device.sync().unwrap();
|
|
||||||
start.elapsed()
|
|
||||||
})
|
|
||||||
});
|
|
||||||
group.finish();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn criterion_benchmark(c: &mut Criterion) {
|
|
||||||
let handler = BenchDeviceHandler::new().unwrap();
|
|
||||||
for device in handler.devices {
|
|
||||||
run_benchmark(c, &device, DType::F32, "conv_transpose2d_f32");
|
|
||||||
run_benchmark(c, &device, DType::F16, "conv_transpose2d_f16");
|
|
||||||
run_benchmark(c, &device, DType::BF16, "conv_transpose2d_bf16");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
criterion_group!(benches, criterion_benchmark);
|
|
@ -1,44 +0,0 @@
|
|||||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
|
||||||
use candle_core::{DType, Device, Tensor};
|
|
||||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
|
||||||
use std::time::Instant;
|
|
||||||
|
|
||||||
fn run(a: &Tensor, b: &Tensor) {
|
|
||||||
a.matmul(&b.t().unwrap()).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn run_bench(c: &mut Criterion, device: &Device) {
|
|
||||||
let b = 1;
|
|
||||||
let m = 1;
|
|
||||||
let n = 2048;
|
|
||||||
let k = 2048;
|
|
||||||
|
|
||||||
let dtype = DType::F32;
|
|
||||||
let lhs = Tensor::zeros((b, m, k), dtype, device).unwrap();
|
|
||||||
let rhs = Tensor::zeros((b, n, k), dtype, device).unwrap();
|
|
||||||
|
|
||||||
let flops = b * m * n * k;
|
|
||||||
|
|
||||||
let mut group = c.benchmark_group(device.bench_name("matmul"));
|
|
||||||
group.throughput(Throughput::Bytes(flops as u64));
|
|
||||||
group.bench_function("iter", move |b| {
|
|
||||||
b.iter_custom(|iters| {
|
|
||||||
let start = Instant::now();
|
|
||||||
for _i in 0..iters {
|
|
||||||
run(black_box(&lhs), black_box(&rhs));
|
|
||||||
}
|
|
||||||
device.sync().unwrap();
|
|
||||||
start.elapsed()
|
|
||||||
})
|
|
||||||
});
|
|
||||||
group.finish();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn criterion_benchmark(c: &mut Criterion) {
|
|
||||||
let handler = BenchDeviceHandler::new().unwrap();
|
|
||||||
for device in handler.devices {
|
|
||||||
run_bench(c, &device);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
criterion_group!(benches, criterion_benchmark);
|
|
@ -1,72 +0,0 @@
|
|||||||
pub(crate) mod affine;
|
|
||||||
pub(crate) mod conv_transpose2d;
|
|
||||||
pub(crate) mod matmul;
|
|
||||||
pub(crate) mod qmatmul;
|
|
||||||
pub(crate) mod random;
|
|
||||||
pub(crate) mod reduce;
|
|
||||||
pub(crate) mod unary;
|
|
||||||
pub(crate) mod where_cond;
|
|
||||||
|
|
||||||
use candle_core::{Device, Result};
|
|
||||||
|
|
||||||
pub(crate) trait BenchDevice {
|
|
||||||
fn sync(&self) -> Result<()>;
|
|
||||||
|
|
||||||
fn bench_name<S: Into<String>>(&self, name: S) -> String;
|
|
||||||
}
|
|
||||||
|
|
||||||
impl BenchDevice for Device {
|
|
||||||
fn sync(&self) -> Result<()> {
|
|
||||||
match self {
|
|
||||||
Device::Cpu => Ok(()),
|
|
||||||
Device::Cuda(device) => {
|
|
||||||
#[cfg(feature = "cuda")]
|
|
||||||
return Ok(device
|
|
||||||
.synchronize()
|
|
||||||
.map_err(|e| candle_core::Error::Cuda(Box::new(e)))?);
|
|
||||||
#[cfg(not(feature = "cuda"))]
|
|
||||||
panic!("Cuda device without cuda feature enabled: {:?}", device)
|
|
||||||
}
|
|
||||||
Device::Metal(device) => {
|
|
||||||
#[cfg(feature = "metal")]
|
|
||||||
return Ok(device.wait_until_completed()?);
|
|
||||||
#[cfg(not(feature = "metal"))]
|
|
||||||
panic!("Metal device without metal feature enabled: {:?}", device)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn bench_name<S: Into<String>>(&self, name: S) -> String {
|
|
||||||
match self {
|
|
||||||
Device::Cpu => {
|
|
||||||
let cpu_type = if cfg!(feature = "accelerate") {
|
|
||||||
"accelerate"
|
|
||||||
} else if cfg!(feature = "mkl") {
|
|
||||||
"mkl"
|
|
||||||
} else {
|
|
||||||
"cpu"
|
|
||||||
};
|
|
||||||
format!("{}_{}", cpu_type, name.into())
|
|
||||||
}
|
|
||||||
Device::Cuda(_) => format!("cuda_{}", name.into()),
|
|
||||||
Device::Metal(_) => format!("metal_{}", name.into()),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
struct BenchDeviceHandler {
|
|
||||||
devices: Vec<Device>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl BenchDeviceHandler {
|
|
||||||
pub fn new() -> Result<Self> {
|
|
||||||
let mut devices = Vec::new();
|
|
||||||
if cfg!(feature = "metal") {
|
|
||||||
devices.push(Device::new_metal(0)?);
|
|
||||||
} else if cfg!(feature = "cuda") {
|
|
||||||
devices.push(Device::new_cuda(0)?);
|
|
||||||
}
|
|
||||||
devices.push(Device::Cpu);
|
|
||||||
Ok(Self { devices })
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,72 +0,0 @@
|
|||||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
|
||||||
use candle_core::{
|
|
||||||
quantized::{self, GgmlDType, QMatMul},
|
|
||||||
Device, Module, Tensor,
|
|
||||||
};
|
|
||||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
|
||||||
use std::time::Instant;
|
|
||||||
|
|
||||||
fn run(matmul: &QMatMul, x: &Tensor) {
|
|
||||||
matmul.forward(x).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn run_bench(c: &mut Criterion, device: &Device, dtype: GgmlDType) {
|
|
||||||
let b = 1;
|
|
||||||
let m = 1;
|
|
||||||
let n = 1024;
|
|
||||||
let k = 1024;
|
|
||||||
|
|
||||||
let lhs = (0..(m * k))
|
|
||||||
.map(|v| v as f32 / (m * k) as f32)
|
|
||||||
.collect::<Vec<_>>();
|
|
||||||
let rhs = (0..(k * n))
|
|
||||||
.map(|v| v as f32 / (n * k) as f32)
|
|
||||||
.collect::<Vec<_>>();
|
|
||||||
|
|
||||||
let lhs = Tensor::from_slice(&lhs, (m, k), device).unwrap();
|
|
||||||
let rhs = Tensor::from_slice(&rhs, (k, n), device).unwrap();
|
|
||||||
|
|
||||||
let qtensor = quantized::QTensor::quantize(&rhs.t().unwrap(), dtype).unwrap();
|
|
||||||
let matmul = quantized::QMatMul::from_qtensor(qtensor).unwrap();
|
|
||||||
|
|
||||||
let flops = b * m * n * k;
|
|
||||||
|
|
||||||
let mut group = c.benchmark_group(device.bench_name(format!("qmatmul_{:?}", dtype)));
|
|
||||||
group.sample_size(200);
|
|
||||||
group.throughput(Throughput::Bytes(flops as u64));
|
|
||||||
group.bench_function("iter", move |b| {
|
|
||||||
b.iter_custom(|iters| {
|
|
||||||
let start = Instant::now();
|
|
||||||
for _i in 0..iters {
|
|
||||||
run(black_box(&matmul), black_box(&lhs));
|
|
||||||
}
|
|
||||||
device.sync().unwrap();
|
|
||||||
start.elapsed()
|
|
||||||
})
|
|
||||||
});
|
|
||||||
group.finish();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn criterion_benchmark(c: &mut Criterion) {
|
|
||||||
let handler = BenchDeviceHandler::new().unwrap();
|
|
||||||
for device in handler.devices {
|
|
||||||
for dtype in [
|
|
||||||
GgmlDType::F32,
|
|
||||||
GgmlDType::F16,
|
|
||||||
GgmlDType::Q4_0,
|
|
||||||
GgmlDType::Q4_1,
|
|
||||||
GgmlDType::Q5_0,
|
|
||||||
GgmlDType::Q5_1,
|
|
||||||
GgmlDType::Q8_0,
|
|
||||||
GgmlDType::Q2K,
|
|
||||||
GgmlDType::Q3K,
|
|
||||||
GgmlDType::Q4K,
|
|
||||||
GgmlDType::Q5K,
|
|
||||||
GgmlDType::Q6K,
|
|
||||||
] {
|
|
||||||
run_bench(c, &device, dtype);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
criterion_group!(benches, criterion_benchmark);
|
|
@ -1,63 +0,0 @@
|
|||||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
|
||||||
use candle_core::{DType, Device, Tensor};
|
|
||||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
|
||||||
use std::time::Instant;
|
|
||||||
|
|
||||||
fn rand_uniform(a: &Tensor) {
|
|
||||||
a.rand_like(-1.0, 123.0).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn rand_normal(a: &Tensor) {
|
|
||||||
a.randn_like(100.0, 15.0).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn run_random_bench(c: &mut Criterion, device: &Device) {
|
|
||||||
let b = 1;
|
|
||||||
|
|
||||||
let rows = 2048;
|
|
||||||
let cols = 2048;
|
|
||||||
|
|
||||||
let dtype = DType::F32;
|
|
||||||
let tensor = Tensor::zeros((b, rows, cols), dtype, device).unwrap();
|
|
||||||
|
|
||||||
let flops = b * rows * cols * dtype.size_in_bytes();
|
|
||||||
|
|
||||||
let mut group = c.benchmark_group(device.bench_name("random_uniform"));
|
|
||||||
group.throughput(Throughput::Bytes(flops as u64));
|
|
||||||
group.bench_function("iter", move |benches| {
|
|
||||||
benches.iter_custom(|iters| {
|
|
||||||
let start = Instant::now();
|
|
||||||
for _i in 0..iters {
|
|
||||||
rand_uniform(black_box(&tensor));
|
|
||||||
}
|
|
||||||
device.sync().unwrap();
|
|
||||||
start.elapsed()
|
|
||||||
})
|
|
||||||
});
|
|
||||||
group.finish();
|
|
||||||
|
|
||||||
let tensor = Tensor::zeros((b, rows, cols), dtype, device).unwrap();
|
|
||||||
|
|
||||||
let mut group = c.benchmark_group(device.bench_name("random_normal"));
|
|
||||||
group.throughput(Throughput::Bytes(flops as u64));
|
|
||||||
group.bench_function("iter", move |benches| {
|
|
||||||
benches.iter_custom(|iters| {
|
|
||||||
let start = Instant::now();
|
|
||||||
for _i in 0..iters {
|
|
||||||
rand_normal(black_box(&tensor));
|
|
||||||
}
|
|
||||||
device.sync().unwrap();
|
|
||||||
start.elapsed()
|
|
||||||
})
|
|
||||||
});
|
|
||||||
group.finish();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn criterion_benchmark(c: &mut Criterion) {
|
|
||||||
let handler = BenchDeviceHandler::new().unwrap();
|
|
||||||
for device in handler.devices {
|
|
||||||
run_random_bench(c, &device);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
criterion_group!(benches, criterion_benchmark);
|
|
@ -1,158 +0,0 @@
|
|||||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
|
||||||
use candle_core::{DType, Device, Tensor};
|
|
||||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
|
||||||
use half::{bf16, f16};
|
|
||||||
use std::time::Instant;
|
|
||||||
|
|
||||||
fn run_sum(a: &Tensor) {
|
|
||||||
a.sum_keepdim(2).unwrap();
|
|
||||||
}
|
|
||||||
fn run_arg_min(a: &Tensor) {
|
|
||||||
a.argmin_keepdim(2).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn criterion_benchmark(c: &mut Criterion) {
|
|
||||||
let handler = BenchDeviceHandler::new().unwrap();
|
|
||||||
let (lo, up) = (-1000.0f32, 1000.0f32);
|
|
||||||
for device in handler.devices {
|
|
||||||
run_reduce(c, &device, (lo, up), false);
|
|
||||||
run_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)), false);
|
|
||||||
run_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)), false);
|
|
||||||
|
|
||||||
run_arg_reduce(c, &device, (lo, up), false);
|
|
||||||
run_arg_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)), false);
|
|
||||||
run_arg_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)), false);
|
|
||||||
|
|
||||||
run_reduce(c, &device, (lo, up), true);
|
|
||||||
run_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)), true);
|
|
||||||
run_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)), true);
|
|
||||||
|
|
||||||
run_arg_reduce(c, &device, (lo, up), true);
|
|
||||||
run_arg_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)), true);
|
|
||||||
run_arg_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)), true);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn run_reduce<T: candle_core::FloatDType>(
|
|
||||||
c: &mut Criterion,
|
|
||||||
device: &Device,
|
|
||||||
(lo, up): (T, T),
|
|
||||||
strided: bool,
|
|
||||||
) {
|
|
||||||
let b = 1;
|
|
||||||
let m = 1024;
|
|
||||||
let k = 1024;
|
|
||||||
|
|
||||||
let a = if strided {
|
|
||||||
Tensor::rand(lo, up, (b, m, k), &device)
|
|
||||||
.unwrap()
|
|
||||||
.transpose(0, 2)
|
|
||||||
.unwrap()
|
|
||||||
} else {
|
|
||||||
Tensor::rand(lo, up, (b, m, k), &device).unwrap()
|
|
||||||
};
|
|
||||||
|
|
||||||
let flops = b * m * k * T::DTYPE.size_in_bytes();
|
|
||||||
|
|
||||||
let name = match T::DTYPE {
|
|
||||||
DType::F32 => {
|
|
||||||
if strided {
|
|
||||||
"reduce_f32_strided"
|
|
||||||
} else {
|
|
||||||
"reduce_f32"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
DType::F16 => {
|
|
||||||
if strided {
|
|
||||||
"reduce_f16_strided"
|
|
||||||
} else {
|
|
||||||
"reduce_f16"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
DType::BF16 => {
|
|
||||||
if strided {
|
|
||||||
"reduce_bf16_strided"
|
|
||||||
} else {
|
|
||||||
"reduce_bf16"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
_ => "unknown",
|
|
||||||
};
|
|
||||||
|
|
||||||
let mut group = c.benchmark_group(device.bench_name(name));
|
|
||||||
group.throughput(Throughput::Bytes(flops as u64));
|
|
||||||
group.bench_function("iter", move |b| {
|
|
||||||
b.iter_custom(|iters| {
|
|
||||||
let start = Instant::now();
|
|
||||||
for _i in 0..iters {
|
|
||||||
run_sum(black_box(&a));
|
|
||||||
}
|
|
||||||
device.sync().unwrap();
|
|
||||||
start.elapsed()
|
|
||||||
})
|
|
||||||
});
|
|
||||||
group.finish();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn run_arg_reduce<T: candle_core::FloatDType>(
|
|
||||||
c: &mut Criterion,
|
|
||||||
device: &Device,
|
|
||||||
(lo, up): (T, T),
|
|
||||||
strided: bool,
|
|
||||||
) {
|
|
||||||
let b = 1;
|
|
||||||
let m = 1024;
|
|
||||||
let k = 1024;
|
|
||||||
|
|
||||||
let a = if strided {
|
|
||||||
Tensor::rand(lo, up, (b, m, k), &device)
|
|
||||||
.unwrap()
|
|
||||||
.transpose(0, 2)
|
|
||||||
.unwrap()
|
|
||||||
} else {
|
|
||||||
Tensor::rand(lo, up, (b, m, k), &device).unwrap()
|
|
||||||
};
|
|
||||||
|
|
||||||
let flops = b * m * k * T::DTYPE.size_in_bytes();
|
|
||||||
|
|
||||||
let name = match T::DTYPE {
|
|
||||||
DType::F32 => {
|
|
||||||
if strided {
|
|
||||||
"arg_reduce_f32_strided"
|
|
||||||
} else {
|
|
||||||
"arg_reduce_f32"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
DType::F16 => {
|
|
||||||
if strided {
|
|
||||||
"arg_reduce_f16_strided"
|
|
||||||
} else {
|
|
||||||
"arg_reduce_f16"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
DType::BF16 => {
|
|
||||||
if strided {
|
|
||||||
"arg_reduce_bf16_strided"
|
|
||||||
} else {
|
|
||||||
"arg_reduce_bf16"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
_ => "unknown",
|
|
||||||
};
|
|
||||||
|
|
||||||
let mut group = c.benchmark_group(device.bench_name(name));
|
|
||||||
group.throughput(Throughput::Bytes(flops as u64));
|
|
||||||
group.bench_function("iter", move |b| {
|
|
||||||
b.iter_custom(|iters| {
|
|
||||||
let start = Instant::now();
|
|
||||||
for _i in 0..iters {
|
|
||||||
run_arg_min(black_box(&a));
|
|
||||||
}
|
|
||||||
device.sync().unwrap();
|
|
||||||
start.elapsed()
|
|
||||||
})
|
|
||||||
});
|
|
||||||
group.finish();
|
|
||||||
}
|
|
||||||
|
|
||||||
criterion_group!(benches, criterion_benchmark);
|
|
@ -1,49 +0,0 @@
|
|||||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
|
||||||
use candle_core::{DType, Device, Tensor};
|
|
||||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
|
||||||
use std::time::Instant;
|
|
||||||
|
|
||||||
fn run(a: &Tensor) {
|
|
||||||
a.sqrt().unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn run_unary_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
|
|
||||||
let b = 1;
|
|
||||||
let m = 1024;
|
|
||||||
let k = 1024;
|
|
||||||
|
|
||||||
let tensor = Tensor::arange(0.0f32, (b * m * k) as f32, device)
|
|
||||||
.unwrap()
|
|
||||||
.to_dtype(dtype)
|
|
||||||
.unwrap()
|
|
||||||
.reshape((b, m, k))
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
let flops = b * m * k * dtype.size_in_bytes();
|
|
||||||
|
|
||||||
let mut group = c.benchmark_group(device.bench_name(name));
|
|
||||||
group.throughput(Throughput::Bytes(flops as u64));
|
|
||||||
group.bench_function("iter", move |b| {
|
|
||||||
b.iter_custom(|iters| {
|
|
||||||
let start = Instant::now();
|
|
||||||
for _i in 0..iters {
|
|
||||||
run(black_box(&tensor));
|
|
||||||
}
|
|
||||||
device.sync().unwrap();
|
|
||||||
start.elapsed()
|
|
||||||
})
|
|
||||||
});
|
|
||||||
group.finish();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn criterion_benchmark(c: &mut Criterion) {
|
|
||||||
let handler = BenchDeviceHandler::new().unwrap();
|
|
||||||
for device in handler.devices {
|
|
||||||
for dtype in [DType::F32, DType::BF16, DType::F16] {
|
|
||||||
let name = format!("sqrt_{:?}", dtype);
|
|
||||||
run_unary_benchmark(c, &device, dtype, &name);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
criterion_group!(benches, criterion_benchmark);
|
|
@ -1,64 +0,0 @@
|
|||||||
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
|
||||||
use candle_core::{DType, Device, Tensor};
|
|
||||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
|
||||||
use std::time::Instant;
|
|
||||||
|
|
||||||
fn run(a: &Tensor, b: &Tensor, c: &Tensor) {
|
|
||||||
a.where_cond(b, c).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
const fn create_cond_arr<const N: usize>() -> [u8; N] {
|
|
||||||
let mut arr = [0u8; N];
|
|
||||||
let mut i = 0;
|
|
||||||
while i < N {
|
|
||||||
arr[i] = (i % 2) as u8;
|
|
||||||
i += 1;
|
|
||||||
}
|
|
||||||
arr
|
|
||||||
}
|
|
||||||
|
|
||||||
const B: usize = 1;
|
|
||||||
const M: usize = 1024;
|
|
||||||
const K: usize = 1024;
|
|
||||||
const SIZE: usize = B * M * K;
|
|
||||||
|
|
||||||
const DATA: [u8; SIZE] = create_cond_arr::<SIZE>();
|
|
||||||
|
|
||||||
fn run_where_cond_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
|
|
||||||
let tensor = Tensor::from_slice(DATA.as_slice(), (B, M, K), device).unwrap();
|
|
||||||
let on_true = Tensor::ones((B, M, K), dtype, device).unwrap();
|
|
||||||
let on_false = Tensor::zeros((B, M, K), dtype, device).unwrap();
|
|
||||||
|
|
||||||
let elements = B * M * K;
|
|
||||||
// E.g. 2 f32 tensors + 1 u8 tensor
|
|
||||||
let flops = (2 * elements * dtype.size_in_bytes()) + elements;
|
|
||||||
|
|
||||||
let mut group = c.benchmark_group(device.bench_name(name));
|
|
||||||
group.throughput(Throughput::Bytes(flops as u64));
|
|
||||||
group.bench_function("iter", move |b| {
|
|
||||||
b.iter_custom(|iters| {
|
|
||||||
let start = Instant::now();
|
|
||||||
for _i in 0..iters {
|
|
||||||
run(
|
|
||||||
black_box(&tensor),
|
|
||||||
black_box(&on_true),
|
|
||||||
black_box(&on_false),
|
|
||||||
);
|
|
||||||
}
|
|
||||||
device.sync().unwrap();
|
|
||||||
start.elapsed()
|
|
||||||
})
|
|
||||||
});
|
|
||||||
group.finish();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn criterion_benchmark(c: &mut Criterion) {
|
|
||||||
let device = BenchDeviceHandler::new().unwrap();
|
|
||||||
for d in device.devices {
|
|
||||||
run_where_cond_benchmark(c, &d, DType::F32, "where_cond_f32");
|
|
||||||
run_where_cond_benchmark(c, &d, DType::BF16, "where_cond_bf16");
|
|
||||||
run_where_cond_benchmark(c, &d, DType::F16, "where_cond_f16");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
criterion_group!(benches, criterion_benchmark);
|
|
@ -8,10 +8,11 @@ use anyhow::Result;
|
|||||||
use candle_core::{Device, Tensor};
|
use candle_core::{Device, Tensor};
|
||||||
|
|
||||||
fn main() -> Result<()> {
|
fn main() -> Result<()> {
|
||||||
let a = Tensor::new(&[[0.0f32, 1.0, 2.0], [3.0, 4.0, 5.0]], &Device::Cpu)?;
|
let inp = Tensor::randn(0f32, 1., (2, 320, 96, 96), &Device::Cpu)?;
|
||||||
let b = Tensor::new(&[[88.0f32, 99.0]], &Device::Cpu)?;
|
let w = Tensor::randn(0f32, 1., (320, 320, 3, 3), &Device::Cpu)?;
|
||||||
let new_a = a.slice_scatter(&b, 1, 2)?;
|
let start = std::time::Instant::now();
|
||||||
assert_eq!(a.to_vec2::<f32>()?, [[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]]);
|
let res = inp.conv2d(&w, 0, 1, 1, 1)?;
|
||||||
assert_eq!(new_a.to_vec2::<f32>()?, [[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]]);
|
println!("{:?}", start.elapsed());
|
||||||
|
println!("{res:?}");
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
@ -9,25 +9,21 @@ use candle_core::{Device, Tensor};
|
|||||||
|
|
||||||
fn main() -> Result<()> {
|
fn main() -> Result<()> {
|
||||||
let device = Device::new_cuda(0)?;
|
let device = Device::new_cuda(0)?;
|
||||||
let x = Tensor::randn(0f32, 1.0, (8 * 4096, 8 * 4096), &device)?
|
let in_t = Tensor::rand(-1f32, 1f32, (1, 3, 12, 7), &device)?;
|
||||||
.to_dtype(candle_core::DType::BF16)?;
|
let k_t = Tensor::rand(-1f32, 1f32, (6, 3, 1, 1), &device)?;
|
||||||
candle_core::cuda::set_gemm_reduced_precision_f32(false);
|
let out_t = in_t.conv2d(&k_t, 0, 1, 1, 1)?;
|
||||||
candle_core::cuda::set_gemm_reduced_precision_bf16(false);
|
println!("{out_t}");
|
||||||
let _x1 = x.matmul(&x)?;
|
let in_t = in_t.to_device(&Device::Cpu)?;
|
||||||
drop(_x1);
|
let k_t = k_t.to_device(&Device::Cpu)?;
|
||||||
let start_time = std::time::Instant::now();
|
let out_t2 = in_t.conv2d(&k_t, 0, 1, 1, 1)?;
|
||||||
let _x1 = x.matmul(&x)?;
|
let diff = (out_t.to_device(&Device::Cpu)? - out_t2)?
|
||||||
device.synchronize()?;
|
.sqr()?
|
||||||
println!("fp32: {:?}", start_time.elapsed());
|
.sum_all()?;
|
||||||
drop(_x1);
|
println!("{diff}");
|
||||||
candle_core::cuda::set_gemm_reduced_precision_f32(true);
|
|
||||||
candle_core::cuda::set_gemm_reduced_precision_bf16(true);
|
let t = Tensor::randn(0f32, 1f32, (2, 4, 96, 96), &device)?;
|
||||||
let _x1 = x.matmul(&x)?;
|
let w = Tensor::randn(0f32, 1f32, (320, 4, 3, 3), &device)?;
|
||||||
drop(_x1);
|
let res = t.conv2d(&w, 1, 1, 1, 1)?;
|
||||||
let start_time = std::time::Instant::now();
|
println!("{res:?}");
|
||||||
let _x1 = x.matmul(&x)?;
|
|
||||||
device.synchronize()?;
|
|
||||||
println!("tf32: {:?}", start_time.elapsed());
|
|
||||||
drop(_x1);
|
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
@ -1,28 +0,0 @@
|
|||||||
#[cfg(feature = "accelerate")]
|
|
||||||
extern crate accelerate_src;
|
|
||||||
|
|
||||||
#[cfg(feature = "mkl")]
|
|
||||||
extern crate intel_mkl_src;
|
|
||||||
|
|
||||||
use anyhow::Result;
|
|
||||||
use candle_core::{Device, Tensor};
|
|
||||||
|
|
||||||
fn main() -> Result<()> {
|
|
||||||
// This requires the code to be run with MTL_CAPTURE_ENABLED=1
|
|
||||||
let device = Device::new_metal(0)?;
|
|
||||||
let metal_device = match &device {
|
|
||||||
Device::Metal(m) => m,
|
|
||||||
_ => anyhow::bail!("unexpected device"),
|
|
||||||
};
|
|
||||||
metal_device.capture("/tmp/candle.gputrace")?;
|
|
||||||
// This first synchronize ensures that a new command buffer gets created after setting up the
|
|
||||||
// capture scope.
|
|
||||||
device.synchronize()?;
|
|
||||||
let x = Tensor::randn(0f32, 1.0, (128, 128), &device)?;
|
|
||||||
let x1 = x.add(&x)?;
|
|
||||||
println!("{x1:?}");
|
|
||||||
// This second synchronize ensures that the command buffer gets commited before the end of the
|
|
||||||
// capture scope.
|
|
||||||
device.synchronize()?;
|
|
||||||
Ok(())
|
|
||||||
}
|
|
299
candle-core/examples/tensor-tools.rs
Normal file
299
candle-core/examples/tensor-tools.rs
Normal file
@ -0,0 +1,299 @@
|
|||||||
|
use candle_core::quantized::{gguf_file, k_quants, QTensor};
|
||||||
|
use candle_core::{Device, Result, Tensor};
|
||||||
|
use clap::{Parser, Subcommand, ValueEnum};
|
||||||
|
use rayon::prelude::*;
|
||||||
|
|
||||||
|
#[derive(ValueEnum, Debug, Clone)]
|
||||||
|
enum QuantizationMode {
|
||||||
|
/// The default quantization includes all 2d tensors, except the output tensor which always
|
||||||
|
/// uses Q6_K.
|
||||||
|
Llama,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl QuantizationMode {
|
||||||
|
fn quantize(
|
||||||
|
&self,
|
||||||
|
name: &str,
|
||||||
|
tensor: QTensor,
|
||||||
|
default: fn(&Tensor) -> Result<QTensor>,
|
||||||
|
) -> Result<QTensor> {
|
||||||
|
match self {
|
||||||
|
Self::Llama => {
|
||||||
|
// Same behavior as the llama.cpp quantization.
|
||||||
|
let should_quantize = name.ends_with(".weight") && tensor.rank() == 2;
|
||||||
|
if should_quantize {
|
||||||
|
let tensor = tensor.dequantize(&Device::Cpu)?;
|
||||||
|
if name == "output.weight" {
|
||||||
|
QTensor::quantize::<k_quants::BlockQ6K>(&tensor)
|
||||||
|
} else {
|
||||||
|
default(&tensor)
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
Ok(tensor)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(ValueEnum, Debug, Clone)]
|
||||||
|
enum Quantization {
|
||||||
|
#[value(name = "q4_0")]
|
||||||
|
Q4_0,
|
||||||
|
#[value(name = "q4_1")]
|
||||||
|
Q4_1,
|
||||||
|
#[value(name = "q5_0")]
|
||||||
|
Q5_0,
|
||||||
|
#[value(name = "q5_1")]
|
||||||
|
Q5_1,
|
||||||
|
#[value(name = "q8_0")]
|
||||||
|
Q8_0,
|
||||||
|
#[value(name = "q8_1")]
|
||||||
|
Q8_1,
|
||||||
|
Q2k,
|
||||||
|
Q3k,
|
||||||
|
Q4k,
|
||||||
|
Q5k,
|
||||||
|
Q6k,
|
||||||
|
Q8k,
|
||||||
|
F16,
|
||||||
|
F32,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(ValueEnum, Debug, Clone)]
|
||||||
|
enum Format {
|
||||||
|
Safetensors,
|
||||||
|
Npz,
|
||||||
|
Ggml,
|
||||||
|
Gguf,
|
||||||
|
Pth,
|
||||||
|
Pickle,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Format {
|
||||||
|
fn infer<P: AsRef<std::path::Path>>(p: P) -> Option<Self> {
|
||||||
|
p.as_ref()
|
||||||
|
.extension()
|
||||||
|
.and_then(|e| e.to_str())
|
||||||
|
.and_then(|e| match e {
|
||||||
|
// We don't infer any format for .bin as it can be used for ggml/gguf or pytorch.
|
||||||
|
"safetensors" | "safetensor" => Some(Self::Safetensors),
|
||||||
|
"npz" => Some(Self::Npz),
|
||||||
|
"pth" | "pt" => Some(Self::Pth),
|
||||||
|
"ggml" => Some(Self::Ggml),
|
||||||
|
"gguf" => Some(Self::Gguf),
|
||||||
|
_ => None,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Subcommand, Debug, Clone)]
|
||||||
|
enum Command {
|
||||||
|
Ls {
|
||||||
|
files: Vec<std::path::PathBuf>,
|
||||||
|
|
||||||
|
/// The file format to use, if unspecified infer from the file extension.
|
||||||
|
#[arg(long, value_enum)]
|
||||||
|
format: Option<Format>,
|
||||||
|
|
||||||
|
/// Enable verbose mode.
|
||||||
|
#[arg(short, long)]
|
||||||
|
verbose: bool,
|
||||||
|
},
|
||||||
|
|
||||||
|
Quantize {
|
||||||
|
/// The input file, in gguf format.
|
||||||
|
in_file: std::path::PathBuf,
|
||||||
|
/// The output file, in gguf format.
|
||||||
|
out_file: std::path::PathBuf,
|
||||||
|
|
||||||
|
/// The quantization schema to apply.
|
||||||
|
#[arg(long, value_enum)]
|
||||||
|
quantization: Quantization,
|
||||||
|
|
||||||
|
/// Which tensor to quantize.
|
||||||
|
#[arg(long, value_enum, default_value_t = QuantizationMode::Llama)]
|
||||||
|
mode: QuantizationMode,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Parser, Debug, Clone)]
|
||||||
|
struct Args {
|
||||||
|
#[command(subcommand)]
|
||||||
|
command: Command,
|
||||||
|
}
|
||||||
|
|
||||||
|
fn run_ls(file: &std::path::PathBuf, format: Option<Format>, verbose: bool) -> Result<()> {
|
||||||
|
let format = match format {
|
||||||
|
Some(format) => format,
|
||||||
|
None => match Format::infer(file) {
|
||||||
|
Some(format) => format,
|
||||||
|
None => {
|
||||||
|
println!(
|
||||||
|
"{file:?}: cannot infer format from file extension, use the --format flag"
|
||||||
|
);
|
||||||
|
return Ok(());
|
||||||
|
}
|
||||||
|
},
|
||||||
|
};
|
||||||
|
match format {
|
||||||
|
Format::Npz => {
|
||||||
|
let tensors = candle_core::npy::NpzTensors::new(file)?;
|
||||||
|
let mut names = tensors.names();
|
||||||
|
names.sort();
|
||||||
|
for name in names {
|
||||||
|
let shape_dtype = match tensors.get_shape_and_dtype(name) {
|
||||||
|
Ok((shape, dtype)) => format!("[{shape:?}; {dtype:?}]"),
|
||||||
|
Err(err) => err.to_string(),
|
||||||
|
};
|
||||||
|
println!("{name}: {shape_dtype}")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Format::Safetensors => {
|
||||||
|
let tensors = unsafe { candle_core::safetensors::MmapedFile::new(file)? };
|
||||||
|
let tensors = tensors.deserialize()?;
|
||||||
|
let mut tensors = tensors.tensors();
|
||||||
|
tensors.sort_by(|a, b| a.0.cmp(&b.0));
|
||||||
|
for (name, view) in tensors.iter() {
|
||||||
|
let dtype = view.dtype();
|
||||||
|
let dtype = match candle_core::DType::try_from(dtype) {
|
||||||
|
Ok(dtype) => format!("{dtype:?}"),
|
||||||
|
Err(_) => format!("{dtype:?}"),
|
||||||
|
};
|
||||||
|
let shape = view.shape();
|
||||||
|
println!("{name}: [{shape:?}; {dtype}]")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Format::Pth => {
|
||||||
|
let mut tensors = candle_core::pickle::read_pth_tensor_info(file, verbose)?;
|
||||||
|
tensors.sort_by(|a, b| a.name.cmp(&b.name));
|
||||||
|
for tensor_info in tensors.iter() {
|
||||||
|
println!(
|
||||||
|
"{}: [{:?}; {:?}]",
|
||||||
|
tensor_info.name,
|
||||||
|
tensor_info.layout.shape(),
|
||||||
|
tensor_info.dtype,
|
||||||
|
);
|
||||||
|
if verbose {
|
||||||
|
println!(" {:?}", tensor_info);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Format::Pickle => {
|
||||||
|
let file = std::fs::File::open(file)?;
|
||||||
|
let mut reader = std::io::BufReader::new(file);
|
||||||
|
let mut stack = candle_core::pickle::Stack::empty();
|
||||||
|
stack.read_loop(&mut reader)?;
|
||||||
|
for (i, obj) in stack.stack().iter().enumerate() {
|
||||||
|
println!("{i} {obj:?}");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Format::Ggml => {
|
||||||
|
let mut file = std::fs::File::open(file)?;
|
||||||
|
let content = candle_core::quantized::ggml_file::Content::read(&mut file)?;
|
||||||
|
let mut tensors = content.tensors.into_iter().collect::<Vec<_>>();
|
||||||
|
tensors.sort_by(|a, b| a.0.cmp(&b.0));
|
||||||
|
for (name, qtensor) in tensors.iter() {
|
||||||
|
println!("{name}: [{:?}; {:?}]", qtensor.shape(), qtensor.dtype());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Format::Gguf => {
|
||||||
|
let mut file = std::fs::File::open(file)?;
|
||||||
|
let content = gguf_file::Content::read(&mut file)?;
|
||||||
|
if verbose {
|
||||||
|
let mut metadata = content.metadata.into_iter().collect::<Vec<_>>();
|
||||||
|
metadata.sort_by(|a, b| a.0.cmp(&b.0));
|
||||||
|
println!("metadata entries ({})", metadata.len());
|
||||||
|
for (key, value) in metadata.iter() {
|
||||||
|
println!(" {key}: {value:?}");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
let mut tensors = content.tensor_infos.into_iter().collect::<Vec<_>>();
|
||||||
|
tensors.sort_by(|a, b| a.0.cmp(&b.0));
|
||||||
|
for (name, info) in tensors.iter() {
|
||||||
|
println!("{name}: [{:?}; {:?}]", info.shape, info.ggml_dtype);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn run_quantize(
|
||||||
|
in_file: std::path::PathBuf,
|
||||||
|
out_file: std::path::PathBuf,
|
||||||
|
q: Quantization,
|
||||||
|
qmode: QuantizationMode,
|
||||||
|
) -> Result<()> {
|
||||||
|
// Open the out file early so as to fail directly on missing directories etc.
|
||||||
|
let mut out_file = std::fs::File::create(out_file)?;
|
||||||
|
let mut in_ = std::fs::File::open(&in_file)?;
|
||||||
|
let content = gguf_file::Content::read(&mut in_)?;
|
||||||
|
println!("tensors: {}", content.tensor_infos.len());
|
||||||
|
|
||||||
|
let quantize_fn = match q {
|
||||||
|
Quantization::Q4_0 => QTensor::quantize::<k_quants::BlockQ4_0>,
|
||||||
|
Quantization::Q4_1 => QTensor::quantize::<k_quants::BlockQ4_1>,
|
||||||
|
Quantization::Q5_0 => QTensor::quantize::<k_quants::BlockQ5_0>,
|
||||||
|
Quantization::Q5_1 => QTensor::quantize::<k_quants::BlockQ5_1>,
|
||||||
|
Quantization::Q8_0 => QTensor::quantize::<k_quants::BlockQ8_0>,
|
||||||
|
Quantization::Q8_1 => QTensor::quantize::<k_quants::BlockQ8_1>,
|
||||||
|
Quantization::Q2k => QTensor::quantize::<k_quants::BlockQ2K>,
|
||||||
|
Quantization::Q3k => QTensor::quantize::<k_quants::BlockQ3K>,
|
||||||
|
Quantization::Q4k => QTensor::quantize::<k_quants::BlockQ4K>,
|
||||||
|
Quantization::Q5k => QTensor::quantize::<k_quants::BlockQ5K>,
|
||||||
|
Quantization::Q6k => QTensor::quantize::<k_quants::BlockQ6K>,
|
||||||
|
Quantization::Q8k => QTensor::quantize::<k_quants::BlockQ8K>,
|
||||||
|
Quantization::F16 => QTensor::quantize::<half::f16>,
|
||||||
|
Quantization::F32 => QTensor::quantize::<f32>,
|
||||||
|
};
|
||||||
|
|
||||||
|
let qtensors = content
|
||||||
|
.tensor_infos
|
||||||
|
.par_iter()
|
||||||
|
.map(|(name, _)| {
|
||||||
|
println!(" quantizing {name}");
|
||||||
|
let mut in_file = std::fs::File::open(&in_file)?;
|
||||||
|
let tensor = content.tensor(&mut in_file, name)?;
|
||||||
|
let tensor = qmode.quantize(name, tensor, quantize_fn)?;
|
||||||
|
Ok((name, tensor))
|
||||||
|
})
|
||||||
|
.collect::<Result<Vec<_>>>()?;
|
||||||
|
let qtensors = qtensors
|
||||||
|
.iter()
|
||||||
|
.map(|(k, v)| (k.as_str(), v))
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
|
||||||
|
let metadata = content
|
||||||
|
.metadata
|
||||||
|
.iter()
|
||||||
|
.map(|(k, v)| (k.as_str(), v))
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
gguf_file::write(&mut out_file, metadata.as_slice(), &qtensors)?;
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn main() -> anyhow::Result<()> {
|
||||||
|
let args = Args::parse();
|
||||||
|
match args.command {
|
||||||
|
Command::Ls {
|
||||||
|
files,
|
||||||
|
format,
|
||||||
|
verbose,
|
||||||
|
} => {
|
||||||
|
let multiple_files = files.len() > 1;
|
||||||
|
for file in files.iter() {
|
||||||
|
if multiple_files {
|
||||||
|
println!("--- {file:?} ---");
|
||||||
|
}
|
||||||
|
run_ls(file, format.clone(), verbose)?
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Command::Quantize {
|
||||||
|
in_file,
|
||||||
|
out_file,
|
||||||
|
quantization,
|
||||||
|
mode,
|
||||||
|
} => run_quantize(in_file, out_file, quantization, mode)?,
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
@ -370,70 +370,6 @@ pub fn vd_sqr(a: &[f64], y: &mut [f64]) {
|
|||||||
y.iter_mut().zip(a.iter()).for_each(|(y, a)| *y = *a * *a)
|
y.iter_mut().zip(a.iter()).for_each(|(y, a)| *y = *a * *a)
|
||||||
}
|
}
|
||||||
|
|
||||||
#[inline]
|
|
||||||
pub fn vs_tanh_inplace(y: &mut [f32]) {
|
|
||||||
unsafe { ffi::vvtanhf(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
pub fn vd_tanh_inplace(y: &mut [f64]) {
|
|
||||||
unsafe { ffi::vvtanh(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
pub fn vs_exp_inplace(y: &mut [f32]) {
|
|
||||||
unsafe { ffi::vvexpf(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
pub fn vd_exp_inplace(y: &mut [f64]) {
|
|
||||||
unsafe { ffi::vvexp(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
pub fn vs_gelu(vs: &[f32], ys: &mut [f32]) {
|
|
||||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
|
||||||
*y = (2.0f32 / std::f32::consts::PI).sqrt() * v * (1.0 + 0.044715 * v * v)
|
|
||||||
}
|
|
||||||
vs_tanh_inplace(ys);
|
|
||||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
|
||||||
*y = 0.5 * v * (1.0 + *y)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
pub fn vd_gelu(vs: &[f64], ys: &mut [f64]) {
|
|
||||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
|
||||||
*y = (2.0f64 / std::f64::consts::PI).sqrt() * v * (1.0 + 0.044715 * v * v)
|
|
||||||
}
|
|
||||||
vd_tanh_inplace(ys);
|
|
||||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
|
||||||
*y = 0.5 * v * (1.0 + *y)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
pub fn vs_silu(vs: &[f32], ys: &mut [f32]) {
|
|
||||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
|
||||||
*y = -v
|
|
||||||
}
|
|
||||||
vs_exp_inplace(ys);
|
|
||||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
|
||||||
*y = v / (1.0 + *y)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
pub fn vd_silu(vs: &[f64], ys: &mut [f64]) {
|
|
||||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
|
||||||
*y = -v
|
|
||||||
}
|
|
||||||
vd_exp_inplace(ys);
|
|
||||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
|
||||||
*y = v / (1.0 + *y)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
macro_rules! binary_op {
|
macro_rules! binary_op {
|
||||||
($fn_name:ident, $ty:ty, $accelerate_name:ident) => {
|
($fn_name:ident, $ty:ty, $accelerate_name:ident) => {
|
||||||
#[inline]
|
#[inline]
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
//! Traits to Define Backend Behavior
|
|
||||||
//!
|
|
||||||
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
|
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
|
||||||
use crate::{CpuStorage, DType, Layout, Result, Shape};
|
use crate::{CpuStorage, DType, Layout, Result, Shape};
|
||||||
|
|
||||||
@ -41,14 +39,6 @@ pub trait BackendStorage: Sized {
|
|||||||
_params: &crate::conv::ParamsConv1D,
|
_params: &crate::conv::ParamsConv1D,
|
||||||
) -> Result<Self>;
|
) -> Result<Self>;
|
||||||
|
|
||||||
fn conv_transpose1d(
|
|
||||||
&self,
|
|
||||||
_l: &Layout,
|
|
||||||
_kernel: &Self,
|
|
||||||
_kernel_l: &Layout,
|
|
||||||
_params: &crate::conv::ParamsConvTranspose1D,
|
|
||||||
) -> Result<Self>;
|
|
||||||
|
|
||||||
fn conv2d(
|
fn conv2d(
|
||||||
&self,
|
&self,
|
||||||
_l: &Layout,
|
_l: &Layout,
|
||||||
@ -67,7 +57,6 @@ pub trait BackendStorage: Sized {
|
|||||||
|
|
||||||
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self>;
|
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self>;
|
||||||
fn max_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self>;
|
fn max_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self>;
|
||||||
fn upsample_nearest1d(&self, _: &Layout, _: usize) -> Result<Self>;
|
|
||||||
fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self>;
|
fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self>;
|
||||||
|
|
||||||
fn gather(&self, _: &Layout, _: &Self, _: &Layout, _: usize) -> Result<Self>;
|
fn gather(&self, _: &Layout, _: &Self, _: &Layout, _: usize) -> Result<Self>;
|
||||||
@ -100,19 +89,6 @@ pub trait BackendStorage: Sized {
|
|||||||
) -> Result<Self>;
|
) -> Result<Self>;
|
||||||
|
|
||||||
fn copy_strided_src(&self, _: &mut Self, _: usize, _: &Layout) -> Result<()>;
|
fn copy_strided_src(&self, _: &mut Self, _: usize, _: &Layout) -> Result<()>;
|
||||||
|
|
||||||
#[allow(clippy::too_many_arguments)]
|
|
||||||
// Similar to cudaMemcpy2D, though values are in elements and not in bytes.
|
|
||||||
fn copy2d(
|
|
||||||
&self,
|
|
||||||
_: &mut Self,
|
|
||||||
_d1: usize,
|
|
||||||
_d2: usize,
|
|
||||||
_src_stride1: usize,
|
|
||||||
_dst_stride1: usize,
|
|
||||||
_src_offset: usize,
|
|
||||||
_dst_offset: usize,
|
|
||||||
) -> Result<()>;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub trait BackendDevice: Sized + std::fmt::Debug + Clone {
|
pub trait BackendDevice: Sized + std::fmt::Debug + Clone {
|
||||||
@ -129,24 +105,9 @@ pub trait BackendDevice: Sized + std::fmt::Debug + Clone {
|
|||||||
|
|
||||||
fn ones_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>;
|
fn ones_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>;
|
||||||
|
|
||||||
/// # Safety
|
|
||||||
/// This function is unsafe as it doesn't initialize the underlying data store.
|
|
||||||
/// The caller should ensure that the data is properly initialized as early as possible
|
|
||||||
/// after this call.
|
|
||||||
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>;
|
|
||||||
|
|
||||||
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage>;
|
|
||||||
|
|
||||||
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage>;
|
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage>;
|
||||||
|
|
||||||
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage>;
|
|
||||||
|
|
||||||
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage>;
|
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage>;
|
||||||
|
|
||||||
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage>;
|
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage>;
|
||||||
|
|
||||||
fn set_seed(&self, _: u64) -> Result<()>;
|
|
||||||
|
|
||||||
/// Synchronize should block until all the operations on the device are completed.
|
|
||||||
fn synchronize(&self) -> Result<()>;
|
|
||||||
}
|
}
|
||||||
|
@ -1,4 +1,3 @@
|
|||||||
//! Methods for backpropagation of gradients.
|
|
||||||
use crate::op::{BinaryOp, Op, ReduceOp, UnaryOp};
|
use crate::op::{BinaryOp, Op, ReduceOp, UnaryOp};
|
||||||
use crate::{Error, Result, Tensor, TensorId};
|
use crate::{Error, Result, Tensor, TensorId};
|
||||||
use std::collections::HashMap;
|
use std::collections::HashMap;
|
||||||
@ -16,23 +15,12 @@ fn broadcast_back(arg: &Tensor, node: &Tensor, reduced_dims: &[usize]) -> Result
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
thread_local! {
|
|
||||||
static CANDLE_GRAD_DO_NOT_DETACH: bool = {
|
|
||||||
match std::env::var("CANDLE_GRAD_DO_NOT_DETACH") {
|
|
||||||
Ok(s) => {
|
|
||||||
!s.is_empty() && s != "0"
|
|
||||||
},
|
|
||||||
Err(_) => false,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Tensor {
|
impl Tensor {
|
||||||
/// Return all the nodes that lead to this value in a topologically sorted vec, the first
|
/// Return all the nodes that lead to this value in a topologically sorted vec, the first
|
||||||
/// elements having dependencies on the latter ones, e.g. the first element if any is the
|
/// elements having dependencies on the latter ones, e.g. the first element if any is the
|
||||||
/// argument.
|
/// argument.
|
||||||
/// This assumes that the op graph is a DAG.
|
/// This assumes that the op graph is a DAG.
|
||||||
pub fn sorted_nodes(&self) -> Vec<&Tensor> {
|
fn sorted_nodes(&self) -> Vec<&Tensor> {
|
||||||
// The vec of sorted nodes is passed as an owned value rather than a mutable reference
|
// The vec of sorted nodes is passed as an owned value rather than a mutable reference
|
||||||
// to get around some lifetime limitations.
|
// to get around some lifetime limitations.
|
||||||
fn walk<'a>(
|
fn walk<'a>(
|
||||||
@ -48,8 +36,6 @@ impl Tensor {
|
|||||||
// Do not call recursively on the "leaf" nodes.
|
// Do not call recursively on the "leaf" nodes.
|
||||||
track_grad = true;
|
track_grad = true;
|
||||||
nodes
|
nodes
|
||||||
} else if node.dtype().is_int() {
|
|
||||||
nodes
|
|
||||||
} else if let Some(op) = node.op() {
|
} else if let Some(op) = node.op() {
|
||||||
match op {
|
match op {
|
||||||
Op::IndexAdd(t1, t2, t3, _)
|
Op::IndexAdd(t1, t2, t3, _)
|
||||||
@ -69,11 +55,6 @@ impl Tensor {
|
|||||||
kernel: rhs,
|
kernel: rhs,
|
||||||
..
|
..
|
||||||
}
|
}
|
||||||
| Op::ConvTranspose1D {
|
|
||||||
arg: lhs,
|
|
||||||
kernel: rhs,
|
|
||||||
..
|
|
||||||
}
|
|
||||||
| Op::Conv2D {
|
| Op::Conv2D {
|
||||||
arg: lhs,
|
arg: lhs,
|
||||||
kernel: rhs,
|
kernel: rhs,
|
||||||
@ -88,8 +69,7 @@ impl Tensor {
|
|||||||
| Op::Binary(lhs, rhs, _)
|
| Op::Binary(lhs, rhs, _)
|
||||||
| Op::Gather(lhs, rhs, _)
|
| Op::Gather(lhs, rhs, _)
|
||||||
| Op::IndexSelect(lhs, rhs, _)
|
| Op::IndexSelect(lhs, rhs, _)
|
||||||
| Op::Matmul(lhs, rhs)
|
| Op::Matmul(lhs, rhs) => {
|
||||||
| Op::SliceScatter0(lhs, rhs, _) => {
|
|
||||||
let (tg, nodes) = walk(lhs, nodes, already_seen);
|
let (tg, nodes) = walk(lhs, nodes, already_seen);
|
||||||
track_grad |= tg;
|
track_grad |= tg;
|
||||||
let (tg, nodes) = walk(rhs, nodes, already_seen);
|
let (tg, nodes) = walk(rhs, nodes, already_seen);
|
||||||
@ -110,19 +90,15 @@ impl Tensor {
|
|||||||
nodes
|
nodes
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Op::Unary(_node, UnaryOp::Ceil)
|
|
||||||
| Op::Unary(_node, UnaryOp::Floor)
|
|
||||||
| Op::Unary(_node, UnaryOp::Round)
|
|
||||||
| Op::Unary(_node, UnaryOp::Sign) => nodes,
|
|
||||||
Op::Reshape(node)
|
Op::Reshape(node)
|
||||||
| Op::UpsampleNearest1D { arg: node, .. }
|
| Op::UpsampleNearest2D(node)
|
||||||
| Op::UpsampleNearest2D { arg: node, .. }
|
|
||||||
| Op::AvgPool2D { arg: node, .. }
|
| Op::AvgPool2D { arg: node, .. }
|
||||||
| Op::MaxPool2D { arg: node, .. }
|
| Op::MaxPool2D { arg: node, .. }
|
||||||
| Op::Copy(node)
|
| Op::Copy(node)
|
||||||
| Op::Broadcast(node)
|
| Op::Broadcast(node)
|
||||||
| Op::Cmp(node, _)
|
| Op::Cmp(node, _)
|
||||||
| Op::Reduce(node, ReduceOp::Min | ReduceOp::Sum | ReduceOp::Max, _)
|
| Op::Reduce(node, _, _)
|
||||||
|
| Op::ToDType(node)
|
||||||
| Op::ToDevice(node)
|
| Op::ToDevice(node)
|
||||||
| Op::Transpose(node, _, _)
|
| Op::Transpose(node, _, _)
|
||||||
| Op::Permute(node, _)
|
| Op::Permute(node, _)
|
||||||
@ -135,16 +111,6 @@ impl Tensor {
|
|||||||
track_grad |= tg;
|
track_grad |= tg;
|
||||||
nodes
|
nodes
|
||||||
}
|
}
|
||||||
Op::ToDType(node) => {
|
|
||||||
if node.dtype().is_float() {
|
|
||||||
let (tg, nodes) = walk(node, nodes, already_seen);
|
|
||||||
track_grad |= tg;
|
|
||||||
nodes
|
|
||||||
} else {
|
|
||||||
nodes
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Op::Reduce(_, ReduceOp::ArgMin | ReduceOp::ArgMax, _) => nodes,
|
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
nodes
|
nodes
|
||||||
@ -168,16 +134,10 @@ impl Tensor {
|
|||||||
if node.is_variable() {
|
if node.is_variable() {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
let grad = grads
|
let grad = grads.remove(node).unwrap();
|
||||||
.remove(node)
|
// TODO: We should perform all these operations in place (or at least not track the
|
||||||
.expect("candle internal error - grad not populated");
|
// whole graph). The only drawback would be if we wanted to support grad of grad but
|
||||||
// https://github.com/huggingface/candle/issues/1241
|
// this is out of scope.
|
||||||
// Ideally, we would make these operations in place where possible to ensure that we
|
|
||||||
// do not have to allocate too often. Here we just call `.detach` to avoid computing
|
|
||||||
// the backprop graph of the backprop itself. This would be an issue for second order
|
|
||||||
// derivatives but these are out of scope at the moment.
|
|
||||||
let do_not_detach = CANDLE_GRAD_DO_NOT_DETACH.with(|b| *b);
|
|
||||||
let grad = if do_not_detach { grad } else { grad.detach() };
|
|
||||||
if let Some(op) = node.op() {
|
if let Some(op) = node.op() {
|
||||||
match op {
|
match op {
|
||||||
Op::Binary(lhs, rhs, BinaryOp::Add) => {
|
Op::Binary(lhs, rhs, BinaryOp::Add) => {
|
||||||
@ -232,45 +192,7 @@ impl Tensor {
|
|||||||
let f_grad = pred.where_cond(&zeros, &grad)?;
|
let f_grad = pred.where_cond(&zeros, &grad)?;
|
||||||
*f_sum_grad = f_sum_grad.add(&f_grad)?;
|
*f_sum_grad = f_sum_grad.add(&f_grad)?;
|
||||||
}
|
}
|
||||||
Op::Conv1D {
|
Op::Conv1D { .. } => Err(Error::BackwardNotSupported { op: "conv1d" })?,
|
||||||
arg,
|
|
||||||
kernel,
|
|
||||||
padding,
|
|
||||||
stride,
|
|
||||||
dilation,
|
|
||||||
} => {
|
|
||||||
// The output height for conv_transpose1d is:
|
|
||||||
// (l_in - 1) * stride - 2 * padding + dilation * (k_size - 1) + out_padding + 1
|
|
||||||
let grad_l_in = grad.dim(2)?;
|
|
||||||
let k_size = kernel.dim(2)?;
|
|
||||||
let out_size =
|
|
||||||
(grad_l_in - 1) * stride + dilation * (k_size - 1) + 1 - 2 * padding;
|
|
||||||
let out_padding = arg.dim(2)? - out_size;
|
|
||||||
let grad_arg = grad.conv_transpose1d(
|
|
||||||
kernel,
|
|
||||||
*padding,
|
|
||||||
out_padding,
|
|
||||||
*stride,
|
|
||||||
*dilation,
|
|
||||||
/* groups */ 1,
|
|
||||||
)?;
|
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
|
||||||
*sum_grad = sum_grad.add(&grad_arg)?;
|
|
||||||
|
|
||||||
let grad_kernel = arg
|
|
||||||
.transpose(0, 1)?
|
|
||||||
.conv1d(&grad.transpose(0, 1)?, *padding, *dilation, *stride, 1)?
|
|
||||||
.transpose(0, 1)?;
|
|
||||||
let sum_grad = grads.or_insert(kernel)?;
|
|
||||||
let (_, _, k0) = kernel.dims3()?;
|
|
||||||
let (_, _, g_k0) = grad_kernel.dims3()?;
|
|
||||||
let grad_kernel = if g_k0 != k0 {
|
|
||||||
grad_kernel.narrow(2, 0, k0)?
|
|
||||||
} else {
|
|
||||||
grad_kernel
|
|
||||||
};
|
|
||||||
*sum_grad = sum_grad.add(&grad_kernel)?;
|
|
||||||
}
|
|
||||||
Op::Conv2D {
|
Op::Conv2D {
|
||||||
arg,
|
arg,
|
||||||
kernel,
|
kernel,
|
||||||
@ -300,44 +222,11 @@ impl Tensor {
|
|||||||
.conv2d(&grad.transpose(0, 1)?, *padding, *dilation, *stride, 1)?
|
.conv2d(&grad.transpose(0, 1)?, *padding, *dilation, *stride, 1)?
|
||||||
.transpose(0, 1)?;
|
.transpose(0, 1)?;
|
||||||
let sum_grad = grads.or_insert(kernel)?;
|
let sum_grad = grads.or_insert(kernel)?;
|
||||||
let (_, _, k0, k1) = kernel.dims4()?;
|
|
||||||
let (_, _, g_k0, g_k1) = grad_kernel.dims4()?;
|
|
||||||
let grad_kernel = if g_k0 != k0 || g_k1 != k1 {
|
|
||||||
grad_kernel.narrow(2, 0, k0)?.narrow(3, 0, k1)?
|
|
||||||
} else {
|
|
||||||
grad_kernel
|
|
||||||
};
|
|
||||||
*sum_grad = sum_grad.add(&grad_kernel)?;
|
*sum_grad = sum_grad.add(&grad_kernel)?;
|
||||||
}
|
}
|
||||||
Op::ConvTranspose1D { .. } => Err(Error::BackwardNotSupported {
|
Op::ConvTranspose2D { .. } => Err(Error::BackwardNotSupported {
|
||||||
op: "conv-transpose1d",
|
op: "conv-transpose2d",
|
||||||
})?,
|
})?,
|
||||||
Op::ConvTranspose2D {
|
|
||||||
arg,
|
|
||||||
kernel,
|
|
||||||
padding,
|
|
||||||
stride,
|
|
||||||
dilation,
|
|
||||||
output_padding: _output_padding,
|
|
||||||
} => {
|
|
||||||
let grad_arg = grad.conv2d(kernel, *padding, *stride, *dilation, 1)?;
|
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
|
||||||
*sum_grad = sum_grad.add(&grad_arg)?;
|
|
||||||
|
|
||||||
let grad_kernel = grad
|
|
||||||
.transpose(0, 1)?
|
|
||||||
.conv2d(&arg.transpose(0, 1)?, *padding, *dilation, *stride, 1)?
|
|
||||||
.transpose(0, 1)?;
|
|
||||||
let sum_grad = grads.or_insert(kernel)?;
|
|
||||||
let (_, _, k0, k1) = kernel.dims4()?;
|
|
||||||
let (_, _, g_k0, g_k1) = grad_kernel.dims4()?;
|
|
||||||
let grad_kernel = if g_k0 != k0 || g_k1 != k1 {
|
|
||||||
grad_kernel.narrow(2, 0, k0)?.narrow(3, 0, k1)?
|
|
||||||
} else {
|
|
||||||
grad_kernel
|
|
||||||
};
|
|
||||||
*sum_grad = sum_grad.add(&grad_kernel)?;
|
|
||||||
}
|
|
||||||
Op::AvgPool2D {
|
Op::AvgPool2D {
|
||||||
arg,
|
arg,
|
||||||
kernel_size,
|
kernel_size,
|
||||||
@ -373,48 +262,9 @@ impl Tensor {
|
|||||||
let sum_grad = grads.or_insert(arg)?;
|
let sum_grad = grads.or_insert(arg)?;
|
||||||
*sum_grad = sum_grad.add(&grad_arg)?;
|
*sum_grad = sum_grad.add(&grad_arg)?;
|
||||||
}
|
}
|
||||||
Op::UpsampleNearest1D { arg, target_size } => {
|
Op::UpsampleNearest2D { .. } => Err(Error::BackwardNotSupported {
|
||||||
let (_n, c, size) = arg.dims3()?;
|
op: "upsample-nearest2d",
|
||||||
if target_size % size != 0 {
|
})?,
|
||||||
crate::bail!("backward not supported for non integer upscaling factors")
|
|
||||||
}
|
|
||||||
let scale = target_size / size;
|
|
||||||
|
|
||||||
let kernel = Tensor::ones((c, 1, scale), arg.dtype(), arg.device())?;
|
|
||||||
let conv_sum = grad.conv1d(&kernel, 0, scale, 1, c)?;
|
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
|
||||||
*sum_grad = conv_sum;
|
|
||||||
}
|
|
||||||
Op::UpsampleNearest2D {
|
|
||||||
arg,
|
|
||||||
target_h,
|
|
||||||
target_w,
|
|
||||||
} => {
|
|
||||||
let (_n, c, h, w) = arg.dims4()?;
|
|
||||||
if target_h % h != 0 || target_w % w != 0 {
|
|
||||||
crate::bail!("backward not supported for non integer upscaling factors")
|
|
||||||
}
|
|
||||||
let scale_h = target_h / h;
|
|
||||||
let scale_w = target_w / w;
|
|
||||||
|
|
||||||
if scale_h != scale_w {
|
|
||||||
crate::bail!("backward not supported for non uniform upscaling factors")
|
|
||||||
};
|
|
||||||
let kernel =
|
|
||||||
Tensor::ones((c, 1, scale_h, scale_w), arg.dtype(), arg.device())?;
|
|
||||||
let conv_sum = grad.conv2d(&kernel, 0, scale_h, 1, c)?;
|
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
|
||||||
*sum_grad = conv_sum;
|
|
||||||
}
|
|
||||||
Op::SliceScatter0(lhs, rhs, start_rhs) => {
|
|
||||||
let rhs_sum_grad = grads.or_insert(rhs)?;
|
|
||||||
let rhs_grad = grad.narrow(0, *start_rhs, rhs.dim(0)?)?;
|
|
||||||
*rhs_sum_grad = rhs_sum_grad.add(&rhs_grad)?;
|
|
||||||
|
|
||||||
let lhs_sum_grad = grads.or_insert(lhs)?;
|
|
||||||
let lhs_grad = grad.slice_scatter0(&rhs.zeros_like()?, *start_rhs)?;
|
|
||||||
*lhs_sum_grad = lhs_sum_grad.add(&lhs_grad)?
|
|
||||||
}
|
|
||||||
Op::Gather(arg, indexes, dim) => {
|
Op::Gather(arg, indexes, dim) => {
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
let sum_grad = grads.or_insert(arg)?;
|
||||||
*sum_grad = sum_grad.scatter_add(indexes, &grad, *dim)?;
|
*sum_grad = sum_grad.scatter_add(indexes, &grad, *dim)?;
|
||||||
@ -489,6 +339,7 @@ impl Tensor {
|
|||||||
let sum_grad = grads.or_insert(arg)?;
|
let sum_grad = grads.or_insert(arg)?;
|
||||||
*sum_grad = sum_grad.add(&grad)?;
|
*sum_grad = sum_grad.add(&grad)?;
|
||||||
}
|
}
|
||||||
|
Op::Cmp(_args, _) => {}
|
||||||
Op::Reduce(arg, ReduceOp::Max, reduced_dims) => {
|
Op::Reduce(arg, ReduceOp::Max, reduced_dims) => {
|
||||||
let node = broadcast_back(arg, node, reduced_dims)?;
|
let node = broadcast_back(arg, node, reduced_dims)?;
|
||||||
let grad = broadcast_back(arg, &grad, reduced_dims)?;
|
let grad = broadcast_back(arg, &grad, reduced_dims)?;
|
||||||
@ -505,7 +356,7 @@ impl Tensor {
|
|||||||
}
|
}
|
||||||
Op::ToDType(arg) => {
|
Op::ToDType(arg) => {
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
let sum_grad = grads.or_insert(arg)?;
|
||||||
*sum_grad = sum_grad.add(&grad.to_dtype(arg.dtype())?)?
|
*sum_grad = sum_grad.add(&grad.to_dtype(node.dtype())?)?
|
||||||
}
|
}
|
||||||
Op::Copy(arg) => {
|
Op::Copy(arg) => {
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
let sum_grad = grads.or_insert(arg)?;
|
||||||
@ -578,67 +429,20 @@ impl Tensor {
|
|||||||
let sum_grad = grads.or_insert(arg)?;
|
let sum_grad = grads.or_insert(arg)?;
|
||||||
*sum_grad = sum_grad.add(&arg_grad)?
|
*sum_grad = sum_grad.add(&arg_grad)?
|
||||||
}
|
}
|
||||||
Op::Unary(_, UnaryOp::Floor)
|
Op::Reduce(_, ReduceOp::ArgMin, _) => {}
|
||||||
| Op::Unary(_, UnaryOp::Round)
|
Op::Reduce(_, ReduceOp::ArgMax, _) => {}
|
||||||
| Op::Reduce(_, ReduceOp::ArgMin, _)
|
|
||||||
| Op::Reduce(_, ReduceOp::ArgMax, _)
|
|
||||||
| Op::Unary(_, UnaryOp::Sign)
|
|
||||||
| Op::Cmp(_, _) => {}
|
|
||||||
Op::Reshape(arg) => {
|
Op::Reshape(arg) => {
|
||||||
let arg_grad = grad.reshape(arg.dims())?;
|
let arg_grad = grad.reshape(arg.dims())?;
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
let sum_grad = grads.or_insert(arg)?;
|
||||||
*sum_grad = sum_grad.add(&arg_grad)?
|
*sum_grad = sum_grad.add(&arg_grad)?
|
||||||
}
|
}
|
||||||
Op::Unary(_, UnaryOp::Ceil) => Err(Error::BackwardNotSupported { op: "ceil" })?,
|
Op::Unary(_, UnaryOp::Gelu) => Err(Error::BackwardNotSupported { op: "gelu" })?,
|
||||||
Op::Unary(arg, UnaryOp::Gelu) => {
|
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
|
||||||
let cube = arg.powf(3.)?;
|
|
||||||
let tanh = (0.0356774 * &cube + (0.797885 * arg)?)?.tanh()?;
|
|
||||||
let gelu_grad = (((0.5 * &tanh)?
|
|
||||||
+ (0.0535161 * cube + (0.398942 * arg)?)? * (1. - tanh.powf(2.)?))?
|
|
||||||
+ 0.5)?;
|
|
||||||
*sum_grad = sum_grad.add(&(&grad * gelu_grad)?)?
|
|
||||||
}
|
|
||||||
Op::Unary(arg, UnaryOp::Erf) => {
|
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
|
||||||
// d/dx erf(x) = 2/sqrt(pi) * e^(-x^2)
|
|
||||||
let erf_grad =
|
|
||||||
(2. / std::f64::consts::PI.sqrt()) * (arg.sqr()?.neg()?).exp()?;
|
|
||||||
*sum_grad = sum_grad.add(&(&grad * erf_grad)?)?
|
|
||||||
}
|
|
||||||
Op::Unary(arg, UnaryOp::GeluErf) => {
|
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
|
||||||
// d/dx gelu_erf(x) = 0.5 + 0.398942 e^(-x^2/2) x + 0.5 erf(x/sqrt(2))
|
|
||||||
let neg_half_square = (arg.sqr()?.neg()? / 2.)?;
|
|
||||||
let scaled_exp_arg = (0.398942 * neg_half_square.exp()? * arg)?;
|
|
||||||
let arg_scaled_sqrt = (arg / 2f64.sqrt())?;
|
|
||||||
let erf_scaled_sqrt = (0.5 * arg_scaled_sqrt.erf()?)?;
|
|
||||||
let gelu_erf_grad = (0.5 + scaled_exp_arg + erf_scaled_sqrt)?;
|
|
||||||
*sum_grad = sum_grad.add(&(&grad * gelu_erf_grad)?)?;
|
|
||||||
}
|
|
||||||
Op::Unary(arg, UnaryOp::Relu) => {
|
Op::Unary(arg, UnaryOp::Relu) => {
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
let sum_grad = grads.or_insert(arg)?;
|
||||||
let relu_grad = arg.ge(&arg.zeros_like()?)?.to_dtype(arg.dtype())?;
|
let relu_grad = arg.ge(&arg.zeros_like()?)?.to_dtype(arg.dtype())?;
|
||||||
*sum_grad = sum_grad.add(&(&grad * relu_grad)?)?
|
*sum_grad = sum_grad.add(&(&grad * relu_grad)?)?
|
||||||
}
|
}
|
||||||
Op::Unary(arg, UnaryOp::Silu) => {
|
Op::Elu(..) => Err(Error::BackwardNotSupported { op: "elu" })?,
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
|
||||||
// d/dx silu = sigmoid(x) * (1 + x * (1 - sigmoid(x))) = sigmoid(x) * (1 - node) + node
|
|
||||||
let sigmoid_arg = (arg.neg()?.exp()? + 1.)?.recip()?;
|
|
||||||
let silu_grad = &sigmoid_arg * (1. - *node) + *node;
|
|
||||||
*sum_grad = sum_grad.add(&(&grad * silu_grad)?)?
|
|
||||||
}
|
|
||||||
Op::Elu(arg, alpha) => {
|
|
||||||
// d/dx elu(x) = 1 for x > 0, alpha * e^x for x <= 0
|
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
|
||||||
let zeros = arg.zeros_like()?;
|
|
||||||
let positive_mask = arg.gt(&zeros)?.to_dtype(arg.dtype())?;
|
|
||||||
let negative_mask = arg.le(&zeros)?.to_dtype(arg.dtype())?;
|
|
||||||
// node == alpha * (e^x - 1) for x <= 0, reuse it
|
|
||||||
let negative_exp_mask = (negative_mask * (*node + *alpha))?;
|
|
||||||
let combined_mask = (positive_mask + negative_exp_mask)?;
|
|
||||||
*sum_grad = sum_grad.add(&(grad * combined_mask)?)?
|
|
||||||
}
|
|
||||||
Op::Powf(arg, e) => {
|
Op::Powf(arg, e) => {
|
||||||
let arg_grad = (&(grad * arg.powf(e - 1.)?)? * *e)?;
|
let arg_grad = (&(grad * arg.powf(e - 1.)?)? * *e)?;
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
let sum_grad = grads.or_insert(arg)?;
|
||||||
@ -713,38 +517,29 @@ impl Tensor {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// A store for gradients, associating a tensor id to the corresponding gradient tensor, used for back propagation.
|
|
||||||
#[derive(Debug)]
|
|
||||||
pub struct GradStore(HashMap<TensorId, Tensor>);
|
pub struct GradStore(HashMap<TensorId, Tensor>);
|
||||||
|
|
||||||
impl GradStore {
|
impl GradStore {
|
||||||
/// Create a new gradient store
|
|
||||||
fn new() -> Self {
|
fn new() -> Self {
|
||||||
GradStore(HashMap::new())
|
GradStore(HashMap::new())
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Get the gradient tensor corresponding to the given tensor id
|
|
||||||
pub fn get_id(&self, id: TensorId) -> Option<&Tensor> {
|
pub fn get_id(&self, id: TensorId) -> Option<&Tensor> {
|
||||||
self.0.get(&id)
|
self.0.get(&id)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Get the gradient tensor associated with the given tensor
|
|
||||||
pub fn get(&self, tensor: &Tensor) -> Option<&Tensor> {
|
pub fn get(&self, tensor: &Tensor) -> Option<&Tensor> {
|
||||||
self.0.get(&tensor.id())
|
self.0.get(&tensor.id())
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Remove the gradient tensor associated with the given tensor, returning it if it exists
|
|
||||||
pub fn remove(&mut self, tensor: &Tensor) -> Option<Tensor> {
|
pub fn remove(&mut self, tensor: &Tensor) -> Option<Tensor> {
|
||||||
self.0.remove(&tensor.id())
|
self.0.remove(&tensor.id())
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Insert a gradient tensor associated with the given tensor, returning the previous gradient tensor if it existed
|
|
||||||
pub fn insert(&mut self, tensor: &Tensor, grad: Tensor) -> Option<Tensor> {
|
pub fn insert(&mut self, tensor: &Tensor, grad: Tensor) -> Option<Tensor> {
|
||||||
self.0.insert(tensor.id(), grad)
|
self.0.insert(tensor.id(), grad)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Get the gradient tensor associated with the given tensor, or, if it does not exist,
|
|
||||||
/// insert a tensor of zeroes, with the same shape and type as the given tensors and return it
|
|
||||||
fn or_insert(&mut self, tensor: &Tensor) -> Result<&mut Tensor> {
|
fn or_insert(&mut self, tensor: &Tensor) -> Result<&mut Tensor> {
|
||||||
use std::collections::hash_map::Entry;
|
use std::collections::hash_map::Entry;
|
||||||
let grad = match self.0.entry(tensor.id()) {
|
let grad = match self.0.entry(tensor.id()) {
|
||||||
@ -756,9 +551,4 @@ impl GradStore {
|
|||||||
};
|
};
|
||||||
Ok(grad)
|
Ok(grad)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Get the tensor ids of the stored gradient tensors
|
|
||||||
pub fn get_ids(&self) -> impl Iterator<Item = &TensorId> {
|
|
||||||
self.0.keys()
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
//! 1D and 2D Convolutions
|
|
||||||
//!
|
|
||||||
use crate::{op::BackpropOp, op::Op, Error, Result, Tensor};
|
use crate::{op::BackpropOp, op::Op, Error, Result, Tensor};
|
||||||
|
|
||||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||||
@ -14,7 +12,6 @@ pub struct ParamsConv1D {
|
|||||||
pub(crate) padding: usize,
|
pub(crate) padding: usize,
|
||||||
pub(crate) stride: usize,
|
pub(crate) stride: usize,
|
||||||
pub(crate) dilation: usize,
|
pub(crate) dilation: usize,
|
||||||
pub(crate) cudnn_fwd_algo: Option<CudnnFwdAlgo>,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ParamsConv1D {
|
impl ParamsConv1D {
|
||||||
@ -28,46 +25,6 @@ impl ParamsConv1D {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
|
||||||
pub struct ParamsConvTranspose1D {
|
|
||||||
pub(crate) b_size: usize,
|
|
||||||
pub(crate) l_in: usize,
|
|
||||||
pub(crate) c_out: usize,
|
|
||||||
pub(crate) c_in: usize,
|
|
||||||
pub(crate) k_size: usize,
|
|
||||||
pub(crate) padding: usize,
|
|
||||||
pub(crate) output_padding: usize,
|
|
||||||
pub(crate) stride: usize,
|
|
||||||
pub(crate) dilation: usize,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl ParamsConvTranspose1D {
|
|
||||||
pub(crate) fn l_out(&self) -> usize {
|
|
||||||
(self.l_in - 1) * self.stride - 2 * self.padding
|
|
||||||
+ self.dilation * (self.k_size - 1)
|
|
||||||
+ self.output_padding
|
|
||||||
+ 1
|
|
||||||
}
|
|
||||||
|
|
||||||
pub(crate) fn out_dims(&self) -> Vec<usize> {
|
|
||||||
let l_out = self.l_out();
|
|
||||||
vec![self.b_size, self.c_out, l_out]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
|
|
||||||
pub enum CudnnFwdAlgo {
|
|
||||||
ImplicitGemm,
|
|
||||||
ImplicitPrecompGemm,
|
|
||||||
Gemm,
|
|
||||||
Direct,
|
|
||||||
Fft,
|
|
||||||
FftTiling,
|
|
||||||
Winograd,
|
|
||||||
WinogradNonFused,
|
|
||||||
Count,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||||
pub struct ParamsConv2D {
|
pub struct ParamsConv2D {
|
||||||
pub(crate) b_size: usize,
|
pub(crate) b_size: usize,
|
||||||
@ -80,7 +37,6 @@ pub struct ParamsConv2D {
|
|||||||
pub(crate) padding: usize,
|
pub(crate) padding: usize,
|
||||||
pub(crate) stride: usize,
|
pub(crate) stride: usize,
|
||||||
pub(crate) dilation: usize,
|
pub(crate) dilation: usize,
|
||||||
pub cudnn_fwd_algo: Option<CudnnFwdAlgo>,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ParamsConv2D {
|
impl ParamsConv2D {
|
||||||
@ -175,7 +131,6 @@ impl Tensor {
|
|||||||
padding,
|
padding,
|
||||||
stride,
|
stride,
|
||||||
dilation,
|
dilation,
|
||||||
cudnn_fwd_algo: None,
|
|
||||||
};
|
};
|
||||||
if groups == 1 {
|
if groups == 1 {
|
||||||
self.conv1d_single_group(kernel, ¶ms)
|
self.conv1d_single_group(kernel, ¶ms)
|
||||||
@ -191,72 +146,6 @@ impl Tensor {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn conv_transpose1d_single_group(
|
|
||||||
&self,
|
|
||||||
kernel: &Self,
|
|
||||||
params: &ParamsConvTranspose1D,
|
|
||||||
) -> Result<Self> {
|
|
||||||
let storage = self.storage().conv_transpose1d(
|
|
||||||
self.layout(),
|
|
||||||
&kernel.storage(),
|
|
||||||
kernel.layout(),
|
|
||||||
params,
|
|
||||||
)?;
|
|
||||||
let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::ConvTranspose1D {
|
|
||||||
arg,
|
|
||||||
kernel,
|
|
||||||
padding: params.padding,
|
|
||||||
output_padding: params.output_padding,
|
|
||||||
stride: params.stride,
|
|
||||||
dilation: params.dilation,
|
|
||||||
});
|
|
||||||
let out_dims = params.out_dims();
|
|
||||||
Ok(crate::tensor::from_storage(storage, out_dims, op, false))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Applies a 1D transposed convolution over the input tensor.
|
|
||||||
pub fn conv_transpose1d(
|
|
||||||
&self,
|
|
||||||
kernel: &Self,
|
|
||||||
padding: usize,
|
|
||||||
output_padding: usize,
|
|
||||||
stride: usize,
|
|
||||||
dilation: usize,
|
|
||||||
groups: usize,
|
|
||||||
) -> Result<Self> {
|
|
||||||
let (c_in_k, c_out, k_size) = kernel.dims3()?;
|
|
||||||
let (b_size, c_in, l_in) = self.dims3()?;
|
|
||||||
if c_in != c_in_k {
|
|
||||||
crate::bail!("in_channel mismatch between input ({c_in}) and kernel ({c_in_k})")
|
|
||||||
}
|
|
||||||
if c_in % groups != 0 {
|
|
||||||
crate::bail!("in_channel {c_in} is not divisible by the number of groups")
|
|
||||||
}
|
|
||||||
let params = ParamsConvTranspose1D {
|
|
||||||
b_size,
|
|
||||||
l_in,
|
|
||||||
k_size,
|
|
||||||
c_out,
|
|
||||||
c_in: c_in / groups,
|
|
||||||
padding,
|
|
||||||
output_padding,
|
|
||||||
stride,
|
|
||||||
dilation,
|
|
||||||
};
|
|
||||||
if groups == 1 {
|
|
||||||
self.conv_transpose1d_single_group(kernel, ¶ms)
|
|
||||||
} else {
|
|
||||||
let blocks = self.chunk(groups, 1)?;
|
|
||||||
let kernel = kernel.chunk(groups, 0)?;
|
|
||||||
let blocks = blocks
|
|
||||||
.iter()
|
|
||||||
.zip(&kernel)
|
|
||||||
.map(|(block, kernel)| block.conv_transpose1d_single_group(kernel, ¶ms))
|
|
||||||
.collect::<Result<Vec<_>>>()?;
|
|
||||||
Tensor::cat(&blocks, 1)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn conv2d_single_group(&self, kernel: &Self, params: &ParamsConv2D) -> Result<Self> {
|
fn conv2d_single_group(&self, kernel: &Self, params: &ParamsConv2D) -> Result<Self> {
|
||||||
let storage =
|
let storage =
|
||||||
self.storage()
|
self.storage()
|
||||||
@ -299,7 +188,6 @@ impl Tensor {
|
|||||||
padding,
|
padding,
|
||||||
stride,
|
stride,
|
||||||
dilation,
|
dilation,
|
||||||
cudnn_fwd_algo: None,
|
|
||||||
};
|
};
|
||||||
if groups == 1 {
|
if groups == 1 {
|
||||||
self.conv2d_single_group(kernel, ¶ms)
|
self.conv2d_single_group(kernel, ¶ms)
|
||||||
|
@ -1,763 +0,0 @@
|
|||||||
#![allow(clippy::excessive_precision)]
|
|
||||||
// Code taken from https://github.com/statrs-dev/statrs
|
|
||||||
//! Provides the [error](https://en.wikipedia.org/wiki/Error_function) and
|
|
||||||
//! related functions
|
|
||||||
|
|
||||||
mod evaluate {
|
|
||||||
//! Provides functions that don't have a numerical solution and must
|
|
||||||
//! be solved computationally (e.g. evaluation of a polynomial)
|
|
||||||
|
|
||||||
/// evaluates a polynomial at `z` where `coeff` are the coeffecients
|
|
||||||
/// to a polynomial of order `k` where `k` is the length of `coeff` and the
|
|
||||||
/// coeffecient
|
|
||||||
/// to the `k`th power is the `k`th element in coeff. E.g. [3,-1,2] equates to
|
|
||||||
/// `2z^2 - z + 3`
|
|
||||||
///
|
|
||||||
/// # Remarks
|
|
||||||
///
|
|
||||||
/// Returns 0 for a 0 length coefficient slice
|
|
||||||
pub fn polynomial(z: f64, coeff: &[f64]) -> f64 {
|
|
||||||
let n = coeff.len();
|
|
||||||
if n == 0 {
|
|
||||||
return 0.0;
|
|
||||||
}
|
|
||||||
|
|
||||||
let mut sum = *coeff.last().unwrap();
|
|
||||||
for c in coeff[0..n - 1].iter().rev() {
|
|
||||||
sum = *c + z * sum;
|
|
||||||
}
|
|
||||||
sum
|
|
||||||
}
|
|
||||||
}
|
|
||||||
use std::f64;
|
|
||||||
|
|
||||||
/// `erf` calculates the error function at `x`.
|
|
||||||
pub fn erf(x: f64) -> f64 {
|
|
||||||
if x.is_nan() {
|
|
||||||
f64::NAN
|
|
||||||
} else if x >= 0.0 && x.is_infinite() {
|
|
||||||
1.0
|
|
||||||
} else if x <= 0.0 && x.is_infinite() {
|
|
||||||
-1.0
|
|
||||||
} else if x == 0. {
|
|
||||||
0.0
|
|
||||||
} else {
|
|
||||||
erf_impl(x, false)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// `erf_inv` calculates the inverse error function
|
|
||||||
/// at `x`.
|
|
||||||
pub fn erf_inv(x: f64) -> f64 {
|
|
||||||
if x == 0.0 {
|
|
||||||
0.0
|
|
||||||
} else if x >= 1.0 {
|
|
||||||
f64::INFINITY
|
|
||||||
} else if x <= -1.0 {
|
|
||||||
f64::NEG_INFINITY
|
|
||||||
} else if x < 0.0 {
|
|
||||||
erf_inv_impl(-x, 1.0 + x, -1.0)
|
|
||||||
} else {
|
|
||||||
erf_inv_impl(x, 1.0 - x, 1.0)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// `erfc` calculates the complementary error function
|
|
||||||
/// at `x`.
|
|
||||||
pub fn erfc(x: f64) -> f64 {
|
|
||||||
if x.is_nan() {
|
|
||||||
f64::NAN
|
|
||||||
} else if x == f64::INFINITY {
|
|
||||||
0.0
|
|
||||||
} else if x == f64::NEG_INFINITY {
|
|
||||||
2.0
|
|
||||||
} else {
|
|
||||||
erf_impl(x, true)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// `erfc_inv` calculates the complementary inverse
|
|
||||||
/// error function at `x`.
|
|
||||||
pub fn erfc_inv(x: f64) -> f64 {
|
|
||||||
if x <= 0.0 {
|
|
||||||
f64::INFINITY
|
|
||||||
} else if x >= 2.0 {
|
|
||||||
f64::NEG_INFINITY
|
|
||||||
} else if x > 1.0 {
|
|
||||||
erf_inv_impl(-1.0 + x, 2.0 - x, -1.0)
|
|
||||||
} else {
|
|
||||||
erf_inv_impl(1.0 - x, x, 1.0)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// **********************************************************
|
|
||||||
// ********** Coefficients for erf_impl polynomial **********
|
|
||||||
// **********************************************************
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator of `erf_impl`
|
|
||||||
/// in the interval [1e-10, 0.5].
|
|
||||||
const ERF_IMPL_AN: &[f64] = &[
|
|
||||||
0.00337916709551257388990745,
|
|
||||||
-0.00073695653048167948530905,
|
|
||||||
-0.374732337392919607868241,
|
|
||||||
0.0817442448733587196071743,
|
|
||||||
-0.0421089319936548595203468,
|
|
||||||
0.0070165709512095756344528,
|
|
||||||
-0.00495091255982435110337458,
|
|
||||||
0.000871646599037922480317225,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator of `erf_impl`
|
|
||||||
/// in the interval [1e-10, 0.5]
|
|
||||||
const ERF_IMPL_AD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
-0.218088218087924645390535,
|
|
||||||
0.412542972725442099083918,
|
|
||||||
-0.0841891147873106755410271,
|
|
||||||
0.0655338856400241519690695,
|
|
||||||
-0.0120019604454941768171266,
|
|
||||||
0.00408165558926174048329689,
|
|
||||||
-0.000615900721557769691924509,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator in `erf_impl`
|
|
||||||
/// in the interval [0.5, 0.75].
|
|
||||||
const ERF_IMPL_BN: &[f64] = &[
|
|
||||||
-0.0361790390718262471360258,
|
|
||||||
0.292251883444882683221149,
|
|
||||||
0.281447041797604512774415,
|
|
||||||
0.125610208862766947294894,
|
|
||||||
0.0274135028268930549240776,
|
|
||||||
0.00250839672168065762786937,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator in `erf_impl`
|
|
||||||
/// in the interval [0.5, 0.75].
|
|
||||||
const ERF_IMPL_BD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
1.8545005897903486499845,
|
|
||||||
1.43575803037831418074962,
|
|
||||||
0.582827658753036572454135,
|
|
||||||
0.124810476932949746447682,
|
|
||||||
0.0113724176546353285778481,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator in `erf_impl`
|
|
||||||
/// in the interval [0.75, 1.25].
|
|
||||||
const ERF_IMPL_CN: &[f64] = &[
|
|
||||||
-0.0397876892611136856954425,
|
|
||||||
0.153165212467878293257683,
|
|
||||||
0.191260295600936245503129,
|
|
||||||
0.10276327061989304213645,
|
|
||||||
0.029637090615738836726027,
|
|
||||||
0.0046093486780275489468812,
|
|
||||||
0.000307607820348680180548455,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator in `erf_impl`
|
|
||||||
/// in the interval [0.75, 1.25].
|
|
||||||
const ERF_IMPL_CD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
1.95520072987627704987886,
|
|
||||||
1.64762317199384860109595,
|
|
||||||
0.768238607022126250082483,
|
|
||||||
0.209793185936509782784315,
|
|
||||||
0.0319569316899913392596356,
|
|
||||||
0.00213363160895785378615014,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator in `erf_impl`
|
|
||||||
/// in the interval [1.25, 2.25].
|
|
||||||
const ERF_IMPL_DN: &[f64] = &[
|
|
||||||
-0.0300838560557949717328341,
|
|
||||||
0.0538578829844454508530552,
|
|
||||||
0.0726211541651914182692959,
|
|
||||||
0.0367628469888049348429018,
|
|
||||||
0.00964629015572527529605267,
|
|
||||||
0.00133453480075291076745275,
|
|
||||||
0.778087599782504251917881e-4,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator in `erf_impl`
|
|
||||||
/// in the interval [1.25, 2.25].
|
|
||||||
const ERF_IMPL_DD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
1.75967098147167528287343,
|
|
||||||
1.32883571437961120556307,
|
|
||||||
0.552528596508757581287907,
|
|
||||||
0.133793056941332861912279,
|
|
||||||
0.0179509645176280768640766,
|
|
||||||
0.00104712440019937356634038,
|
|
||||||
-0.106640381820357337177643e-7,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator in `erf_impl`
|
|
||||||
/// in the interval [2.25, 3.5].
|
|
||||||
const ERF_IMPL_EN: &[f64] = &[
|
|
||||||
-0.0117907570137227847827732,
|
|
||||||
0.014262132090538809896674,
|
|
||||||
0.0202234435902960820020765,
|
|
||||||
0.00930668299990432009042239,
|
|
||||||
0.00213357802422065994322516,
|
|
||||||
0.00025022987386460102395382,
|
|
||||||
0.120534912219588189822126e-4,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator in `erf_impl`
|
|
||||||
/// in the interval [2.25, 3.5].
|
|
||||||
const ERF_IMPL_ED: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
1.50376225203620482047419,
|
|
||||||
0.965397786204462896346934,
|
|
||||||
0.339265230476796681555511,
|
|
||||||
0.0689740649541569716897427,
|
|
||||||
0.00771060262491768307365526,
|
|
||||||
0.000371421101531069302990367,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator in `erf_impl`
|
|
||||||
/// in the interval [3.5, 5.25].
|
|
||||||
const ERF_IMPL_FN: &[f64] = &[
|
|
||||||
-0.00546954795538729307482955,
|
|
||||||
0.00404190278731707110245394,
|
|
||||||
0.0054963369553161170521356,
|
|
||||||
0.00212616472603945399437862,
|
|
||||||
0.000394984014495083900689956,
|
|
||||||
0.365565477064442377259271e-4,
|
|
||||||
0.135485897109932323253786e-5,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator in `erf_impl`
|
|
||||||
/// in the interval [3.5, 5.25].
|
|
||||||
const ERF_IMPL_FD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
1.21019697773630784832251,
|
|
||||||
0.620914668221143886601045,
|
|
||||||
0.173038430661142762569515,
|
|
||||||
0.0276550813773432047594539,
|
|
||||||
0.00240625974424309709745382,
|
|
||||||
0.891811817251336577241006e-4,
|
|
||||||
-0.465528836283382684461025e-11,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator in `erf_impl`
|
|
||||||
/// in the interval [5.25, 8].
|
|
||||||
const ERF_IMPL_GN: &[f64] = &[
|
|
||||||
-0.00270722535905778347999196,
|
|
||||||
0.0013187563425029400461378,
|
|
||||||
0.00119925933261002333923989,
|
|
||||||
0.00027849619811344664248235,
|
|
||||||
0.267822988218331849989363e-4,
|
|
||||||
0.923043672315028197865066e-6,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator in `erf_impl`
|
|
||||||
/// in the interval [5.25, 8].
|
|
||||||
const ERF_IMPL_GD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
0.814632808543141591118279,
|
|
||||||
0.268901665856299542168425,
|
|
||||||
0.0449877216103041118694989,
|
|
||||||
0.00381759663320248459168994,
|
|
||||||
0.000131571897888596914350697,
|
|
||||||
0.404815359675764138445257e-11,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator in `erf_impl`
|
|
||||||
/// in the interval [8, 11.5].
|
|
||||||
const ERF_IMPL_HN: &[f64] = &[
|
|
||||||
-0.00109946720691742196814323,
|
|
||||||
0.000406425442750422675169153,
|
|
||||||
0.000274499489416900707787024,
|
|
||||||
0.465293770646659383436343e-4,
|
|
||||||
0.320955425395767463401993e-5,
|
|
||||||
0.778286018145020892261936e-7,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator in `erf_impl`
|
|
||||||
/// in the interval [8, 11.5].
|
|
||||||
const ERF_IMPL_HD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
0.588173710611846046373373,
|
|
||||||
0.139363331289409746077541,
|
|
||||||
0.0166329340417083678763028,
|
|
||||||
0.00100023921310234908642639,
|
|
||||||
0.24254837521587225125068e-4,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator in `erf_impl`
|
|
||||||
/// in the interval [11.5, 17].
|
|
||||||
const ERF_IMPL_IN: &[f64] = &[
|
|
||||||
-0.00056907993601094962855594,
|
|
||||||
0.000169498540373762264416984,
|
|
||||||
0.518472354581100890120501e-4,
|
|
||||||
0.382819312231928859704678e-5,
|
|
||||||
0.824989931281894431781794e-7,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator in `erf_impl`
|
|
||||||
/// in the interval [11.5, 17].
|
|
||||||
const ERF_IMPL_ID: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
0.339637250051139347430323,
|
|
||||||
0.043472647870310663055044,
|
|
||||||
0.00248549335224637114641629,
|
|
||||||
0.535633305337152900549536e-4,
|
|
||||||
-0.117490944405459578783846e-12,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator in `erf_impl`
|
|
||||||
/// in the interval [17, 24].
|
|
||||||
const ERF_IMPL_JN: &[f64] = &[
|
|
||||||
-0.000241313599483991337479091,
|
|
||||||
0.574224975202501512365975e-4,
|
|
||||||
0.115998962927383778460557e-4,
|
|
||||||
0.581762134402593739370875e-6,
|
|
||||||
0.853971555085673614607418e-8,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator in `erf_impl`
|
|
||||||
/// in the interval [17, 24].
|
|
||||||
const ERF_IMPL_JD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
0.233044138299687841018015,
|
|
||||||
0.0204186940546440312625597,
|
|
||||||
0.000797185647564398289151125,
|
|
||||||
0.117019281670172327758019e-4,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator in `erf_impl`
|
|
||||||
/// in the interval [24, 38].
|
|
||||||
const ERF_IMPL_KN: &[f64] = &[
|
|
||||||
-0.000146674699277760365803642,
|
|
||||||
0.162666552112280519955647e-4,
|
|
||||||
0.269116248509165239294897e-5,
|
|
||||||
0.979584479468091935086972e-7,
|
|
||||||
0.101994647625723465722285e-8,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator in `erf_impl`
|
|
||||||
/// in the interval [24, 38].
|
|
||||||
const ERF_IMPL_KD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
0.165907812944847226546036,
|
|
||||||
0.0103361716191505884359634,
|
|
||||||
0.000286593026373868366935721,
|
|
||||||
0.298401570840900340874568e-5,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator in `erf_impl`
|
|
||||||
/// in the interval [38, 60].
|
|
||||||
const ERF_IMPL_LN: &[f64] = &[
|
|
||||||
-0.583905797629771786720406e-4,
|
|
||||||
0.412510325105496173512992e-5,
|
|
||||||
0.431790922420250949096906e-6,
|
|
||||||
0.993365155590013193345569e-8,
|
|
||||||
0.653480510020104699270084e-10,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator in `erf_impl`
|
|
||||||
/// in the interval [38, 60].
|
|
||||||
const ERF_IMPL_LD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
0.105077086072039915406159,
|
|
||||||
0.00414278428675475620830226,
|
|
||||||
0.726338754644523769144108e-4,
|
|
||||||
0.477818471047398785369849e-6,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator in `erf_impl`
|
|
||||||
/// in the interval [60, 85].
|
|
||||||
const ERF_IMPL_MN: &[f64] = &[
|
|
||||||
-0.196457797609229579459841e-4,
|
|
||||||
0.157243887666800692441195e-5,
|
|
||||||
0.543902511192700878690335e-7,
|
|
||||||
0.317472492369117710852685e-9,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator in `erf_impl`
|
|
||||||
/// in the interval [60, 85].
|
|
||||||
const ERF_IMPL_MD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
0.052803989240957632204885,
|
|
||||||
0.000926876069151753290378112,
|
|
||||||
0.541011723226630257077328e-5,
|
|
||||||
0.535093845803642394908747e-15,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator in `erf_impl`
|
|
||||||
/// in the interval [85, 110].
|
|
||||||
const ERF_IMPL_NN: &[f64] = &[
|
|
||||||
-0.789224703978722689089794e-5,
|
|
||||||
0.622088451660986955124162e-6,
|
|
||||||
0.145728445676882396797184e-7,
|
|
||||||
0.603715505542715364529243e-10,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator in `erf_impl`
|
|
||||||
/// in the interval [85, 110].
|
|
||||||
const ERF_IMPL_ND: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
0.0375328846356293715248719,
|
|
||||||
0.000467919535974625308126054,
|
|
||||||
0.193847039275845656900547e-5,
|
|
||||||
];
|
|
||||||
|
|
||||||
// **********************************************************
|
|
||||||
// ********** Coefficients for erf_inv_impl polynomial ******
|
|
||||||
// **********************************************************
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator of `erf_inv_impl`
|
|
||||||
/// in the interval [0, 0.5].
|
|
||||||
const ERF_INV_IMPL_AN: &[f64] = &[
|
|
||||||
-0.000508781949658280665617,
|
|
||||||
-0.00836874819741736770379,
|
|
||||||
0.0334806625409744615033,
|
|
||||||
-0.0126926147662974029034,
|
|
||||||
-0.0365637971411762664006,
|
|
||||||
0.0219878681111168899165,
|
|
||||||
0.00822687874676915743155,
|
|
||||||
-0.00538772965071242932965,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator of `erf_inv_impl`
|
|
||||||
/// in the interval [0, 0.5].
|
|
||||||
const ERF_INV_IMPL_AD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
-0.970005043303290640362,
|
|
||||||
-1.56574558234175846809,
|
|
||||||
1.56221558398423026363,
|
|
||||||
0.662328840472002992063,
|
|
||||||
-0.71228902341542847553,
|
|
||||||
-0.0527396382340099713954,
|
|
||||||
0.0795283687341571680018,
|
|
||||||
-0.00233393759374190016776,
|
|
||||||
0.000886216390456424707504,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator of `erf_inv_impl`
|
|
||||||
/// in the interval [0.5, 0.75].
|
|
||||||
const ERF_INV_IMPL_BN: &[f64] = &[
|
|
||||||
-0.202433508355938759655,
|
|
||||||
0.105264680699391713268,
|
|
||||||
8.37050328343119927838,
|
|
||||||
17.6447298408374015486,
|
|
||||||
-18.8510648058714251895,
|
|
||||||
-44.6382324441786960818,
|
|
||||||
17.445385985570866523,
|
|
||||||
21.1294655448340526258,
|
|
||||||
-3.67192254707729348546,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator of `erf_inv_impl`
|
|
||||||
/// in the interval [0.5, 0.75].
|
|
||||||
const ERF_INV_IMPL_BD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
6.24264124854247537712,
|
|
||||||
3.9713437953343869095,
|
|
||||||
-28.6608180499800029974,
|
|
||||||
-20.1432634680485188801,
|
|
||||||
48.5609213108739935468,
|
|
||||||
10.8268667355460159008,
|
|
||||||
-22.6436933413139721736,
|
|
||||||
1.72114765761200282724,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator of `erf_inv_impl`
|
|
||||||
/// in the interval [0.75, 1] with x less than 3.
|
|
||||||
const ERF_INV_IMPL_CN: &[f64] = &[
|
|
||||||
-0.131102781679951906451,
|
|
||||||
-0.163794047193317060787,
|
|
||||||
0.117030156341995252019,
|
|
||||||
0.387079738972604337464,
|
|
||||||
0.337785538912035898924,
|
|
||||||
0.142869534408157156766,
|
|
||||||
0.0290157910005329060432,
|
|
||||||
0.00214558995388805277169,
|
|
||||||
-0.679465575181126350155e-6,
|
|
||||||
0.285225331782217055858e-7,
|
|
||||||
-0.681149956853776992068e-9,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator of `erf_inv_impl`
|
|
||||||
/// in the interval [0.75, 1] with x less than 3.
|
|
||||||
const ERF_INV_IMPL_CD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
3.46625407242567245975,
|
|
||||||
5.38168345707006855425,
|
|
||||||
4.77846592945843778382,
|
|
||||||
2.59301921623620271374,
|
|
||||||
0.848854343457902036425,
|
|
||||||
0.152264338295331783612,
|
|
||||||
0.01105924229346489121,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator of `erf_inv_impl`
|
|
||||||
/// in the interval [0.75, 1] with x between 3 and 6.
|
|
||||||
const ERF_INV_IMPL_DN: &[f64] = &[
|
|
||||||
-0.0350353787183177984712,
|
|
||||||
-0.00222426529213447927281,
|
|
||||||
0.0185573306514231072324,
|
|
||||||
0.00950804701325919603619,
|
|
||||||
0.00187123492819559223345,
|
|
||||||
0.000157544617424960554631,
|
|
||||||
0.460469890584317994083e-5,
|
|
||||||
-0.230404776911882601748e-9,
|
|
||||||
0.266339227425782031962e-11,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator of `erf_inv_impl`
|
|
||||||
/// in the interval [0.75, 1] with x between 3 and 6.
|
|
||||||
const ERF_INV_IMPL_DD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
1.3653349817554063097,
|
|
||||||
0.762059164553623404043,
|
|
||||||
0.220091105764131249824,
|
|
||||||
0.0341589143670947727934,
|
|
||||||
0.00263861676657015992959,
|
|
||||||
0.764675292302794483503e-4,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator of `erf_inv_impl`
|
|
||||||
/// in the interval [0.75, 1] with x between 6 and 18.
|
|
||||||
const ERF_INV_IMPL_EN: &[f64] = &[
|
|
||||||
-0.0167431005076633737133,
|
|
||||||
-0.00112951438745580278863,
|
|
||||||
0.00105628862152492910091,
|
|
||||||
0.000209386317487588078668,
|
|
||||||
0.149624783758342370182e-4,
|
|
||||||
0.449696789927706453732e-6,
|
|
||||||
0.462596163522878599135e-8,
|
|
||||||
-0.281128735628831791805e-13,
|
|
||||||
0.99055709973310326855e-16,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator of `erf_inv_impl`
|
|
||||||
/// in the interval [0.75, 1] with x between 6 and 18.
|
|
||||||
const ERF_INV_IMPL_ED: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
0.591429344886417493481,
|
|
||||||
0.138151865749083321638,
|
|
||||||
0.0160746087093676504695,
|
|
||||||
0.000964011807005165528527,
|
|
||||||
0.275335474764726041141e-4,
|
|
||||||
0.282243172016108031869e-6,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator of `erf_inv_impl`
|
|
||||||
/// in the interval [0.75, 1] with x between 18 and 44.
|
|
||||||
const ERF_INV_IMPL_FN: &[f64] = &[
|
|
||||||
-0.0024978212791898131227,
|
|
||||||
-0.779190719229053954292e-5,
|
|
||||||
0.254723037413027451751e-4,
|
|
||||||
0.162397777342510920873e-5,
|
|
||||||
0.396341011304801168516e-7,
|
|
||||||
0.411632831190944208473e-9,
|
|
||||||
0.145596286718675035587e-11,
|
|
||||||
-0.116765012397184275695e-17,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator of `erf_inv_impl`
|
|
||||||
/// in the interval [0.75, 1] with x between 18 and 44.
|
|
||||||
const ERF_INV_IMPL_FD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
0.207123112214422517181,
|
|
||||||
0.0169410838120975906478,
|
|
||||||
0.000690538265622684595676,
|
|
||||||
0.145007359818232637924e-4,
|
|
||||||
0.144437756628144157666e-6,
|
|
||||||
0.509761276599778486139e-9,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a numerator of `erf_inv_impl`
|
|
||||||
/// in the interval [0.75, 1] with x greater than 44.
|
|
||||||
const ERF_INV_IMPL_GN: &[f64] = &[
|
|
||||||
-0.000539042911019078575891,
|
|
||||||
-0.28398759004727721098e-6,
|
|
||||||
0.899465114892291446442e-6,
|
|
||||||
0.229345859265920864296e-7,
|
|
||||||
0.225561444863500149219e-9,
|
|
||||||
0.947846627503022684216e-12,
|
|
||||||
0.135880130108924861008e-14,
|
|
||||||
-0.348890393399948882918e-21,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// Polynomial coefficients for a denominator of `erf_inv_impl`
|
|
||||||
/// in the interval [0.75, 1] with x greater than 44.
|
|
||||||
const ERF_INV_IMPL_GD: &[f64] = &[
|
|
||||||
1.0,
|
|
||||||
0.0845746234001899436914,
|
|
||||||
0.00282092984726264681981,
|
|
||||||
0.468292921940894236786e-4,
|
|
||||||
0.399968812193862100054e-6,
|
|
||||||
0.161809290887904476097e-8,
|
|
||||||
0.231558608310259605225e-11,
|
|
||||||
];
|
|
||||||
|
|
||||||
/// `erf_impl` computes the error function at `z`.
|
|
||||||
/// If `inv` is true, `1 - erf` is calculated as opposed to `erf`
|
|
||||||
fn erf_impl(z: f64, inv: bool) -> f64 {
|
|
||||||
if z < 0.0 {
|
|
||||||
if !inv {
|
|
||||||
return -erf_impl(-z, false);
|
|
||||||
}
|
|
||||||
if z < -0.5 {
|
|
||||||
return 2.0 - erf_impl(-z, true);
|
|
||||||
}
|
|
||||||
return 1.0 + erf_impl(-z, false);
|
|
||||||
}
|
|
||||||
|
|
||||||
let result = if z < 0.5 {
|
|
||||||
if z < 1e-10 {
|
|
||||||
z * 1.125 + z * 0.003379167095512573896158903121545171688
|
|
||||||
} else {
|
|
||||||
z * 1.125
|
|
||||||
+ z * evaluate::polynomial(z, ERF_IMPL_AN) / evaluate::polynomial(z, ERF_IMPL_AD)
|
|
||||||
}
|
|
||||||
} else if z < 110.0 {
|
|
||||||
let (r, b) = if z < 0.75 {
|
|
||||||
(
|
|
||||||
evaluate::polynomial(z - 0.5, ERF_IMPL_BN)
|
|
||||||
/ evaluate::polynomial(z - 0.5, ERF_IMPL_BD),
|
|
||||||
0.3440242112,
|
|
||||||
)
|
|
||||||
} else if z < 1.25 {
|
|
||||||
(
|
|
||||||
evaluate::polynomial(z - 0.75, ERF_IMPL_CN)
|
|
||||||
/ evaluate::polynomial(z - 0.75, ERF_IMPL_CD),
|
|
||||||
0.419990927,
|
|
||||||
)
|
|
||||||
} else if z < 2.25 {
|
|
||||||
(
|
|
||||||
evaluate::polynomial(z - 1.25, ERF_IMPL_DN)
|
|
||||||
/ evaluate::polynomial(z - 1.25, ERF_IMPL_DD),
|
|
||||||
0.4898625016,
|
|
||||||
)
|
|
||||||
} else if z < 3.5 {
|
|
||||||
(
|
|
||||||
evaluate::polynomial(z - 2.25, ERF_IMPL_EN)
|
|
||||||
/ evaluate::polynomial(z - 2.25, ERF_IMPL_ED),
|
|
||||||
0.5317370892,
|
|
||||||
)
|
|
||||||
} else if z < 5.25 {
|
|
||||||
(
|
|
||||||
evaluate::polynomial(z - 3.5, ERF_IMPL_FN)
|
|
||||||
/ evaluate::polynomial(z - 3.5, ERF_IMPL_FD),
|
|
||||||
0.5489973426,
|
|
||||||
)
|
|
||||||
} else if z < 8.0 {
|
|
||||||
(
|
|
||||||
evaluate::polynomial(z - 5.25, ERF_IMPL_GN)
|
|
||||||
/ evaluate::polynomial(z - 5.25, ERF_IMPL_GD),
|
|
||||||
0.5571740866,
|
|
||||||
)
|
|
||||||
} else if z < 11.5 {
|
|
||||||
(
|
|
||||||
evaluate::polynomial(z - 8.0, ERF_IMPL_HN)
|
|
||||||
/ evaluate::polynomial(z - 8.0, ERF_IMPL_HD),
|
|
||||||
0.5609807968,
|
|
||||||
)
|
|
||||||
} else if z < 17.0 {
|
|
||||||
(
|
|
||||||
evaluate::polynomial(z - 11.5, ERF_IMPL_IN)
|
|
||||||
/ evaluate::polynomial(z - 11.5, ERF_IMPL_ID),
|
|
||||||
0.5626493692,
|
|
||||||
)
|
|
||||||
} else if z < 24.0 {
|
|
||||||
(
|
|
||||||
evaluate::polynomial(z - 17.0, ERF_IMPL_JN)
|
|
||||||
/ evaluate::polynomial(z - 17.0, ERF_IMPL_JD),
|
|
||||||
0.5634598136,
|
|
||||||
)
|
|
||||||
} else if z < 38.0 {
|
|
||||||
(
|
|
||||||
evaluate::polynomial(z - 24.0, ERF_IMPL_KN)
|
|
||||||
/ evaluate::polynomial(z - 24.0, ERF_IMPL_KD),
|
|
||||||
0.5638477802,
|
|
||||||
)
|
|
||||||
} else if z < 60.0 {
|
|
||||||
(
|
|
||||||
evaluate::polynomial(z - 38.0, ERF_IMPL_LN)
|
|
||||||
/ evaluate::polynomial(z - 38.0, ERF_IMPL_LD),
|
|
||||||
0.5640528202,
|
|
||||||
)
|
|
||||||
} else if z < 85.0 {
|
|
||||||
(
|
|
||||||
evaluate::polynomial(z - 60.0, ERF_IMPL_MN)
|
|
||||||
/ evaluate::polynomial(z - 60.0, ERF_IMPL_MD),
|
|
||||||
0.5641309023,
|
|
||||||
)
|
|
||||||
} else {
|
|
||||||
(
|
|
||||||
evaluate::polynomial(z - 85.0, ERF_IMPL_NN)
|
|
||||||
/ evaluate::polynomial(z - 85.0, ERF_IMPL_ND),
|
|
||||||
0.5641584396,
|
|
||||||
)
|
|
||||||
};
|
|
||||||
let g = (-z * z).exp() / z;
|
|
||||||
g * b + g * r
|
|
||||||
} else {
|
|
||||||
0.0
|
|
||||||
};
|
|
||||||
|
|
||||||
if inv && z >= 0.5 {
|
|
||||||
result
|
|
||||||
} else if z >= 0.5 || inv {
|
|
||||||
1.0 - result
|
|
||||||
} else {
|
|
||||||
result
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// `erf_inv_impl` computes the inverse error function where
|
|
||||||
// `p`,`q`, and `s` are the first, second, and third intermediate
|
|
||||||
// parameters respectively
|
|
||||||
fn erf_inv_impl(p: f64, q: f64, s: f64) -> f64 {
|
|
||||||
let result = if p <= 0.5 {
|
|
||||||
let y = 0.0891314744949340820313;
|
|
||||||
let g = p * (p + 10.0);
|
|
||||||
let r = evaluate::polynomial(p, ERF_INV_IMPL_AN) / evaluate::polynomial(p, ERF_INV_IMPL_AD);
|
|
||||||
g * y + g * r
|
|
||||||
} else if q >= 0.25 {
|
|
||||||
let y = 2.249481201171875;
|
|
||||||
let g = (-2.0 * q.ln()).sqrt();
|
|
||||||
let xs = q - 0.25;
|
|
||||||
let r =
|
|
||||||
evaluate::polynomial(xs, ERF_INV_IMPL_BN) / evaluate::polynomial(xs, ERF_INV_IMPL_BD);
|
|
||||||
g / (y + r)
|
|
||||||
} else {
|
|
||||||
let x = (-q.ln()).sqrt();
|
|
||||||
if x < 3.0 {
|
|
||||||
let y = 0.807220458984375;
|
|
||||||
let xs = x - 1.125;
|
|
||||||
let r = evaluate::polynomial(xs, ERF_INV_IMPL_CN)
|
|
||||||
/ evaluate::polynomial(xs, ERF_INV_IMPL_CD);
|
|
||||||
y * x + r * x
|
|
||||||
} else if x < 6.0 {
|
|
||||||
let y = 0.93995571136474609375;
|
|
||||||
let xs = x - 3.0;
|
|
||||||
let r = evaluate::polynomial(xs, ERF_INV_IMPL_DN)
|
|
||||||
/ evaluate::polynomial(xs, ERF_INV_IMPL_DD);
|
|
||||||
y * x + r * x
|
|
||||||
} else if x < 18.0 {
|
|
||||||
let y = 0.98362827301025390625;
|
|
||||||
let xs = x - 6.0;
|
|
||||||
let r = evaluate::polynomial(xs, ERF_INV_IMPL_EN)
|
|
||||||
/ evaluate::polynomial(xs, ERF_INV_IMPL_ED);
|
|
||||||
y * x + r * x
|
|
||||||
} else if x < 44.0 {
|
|
||||||
let y = 0.99714565277099609375;
|
|
||||||
let xs = x - 18.0;
|
|
||||||
let r = evaluate::polynomial(xs, ERF_INV_IMPL_FN)
|
|
||||||
/ evaluate::polynomial(xs, ERF_INV_IMPL_FD);
|
|
||||||
y * x + r * x
|
|
||||||
} else {
|
|
||||||
let y = 0.99941349029541015625;
|
|
||||||
let xs = x - 44.0;
|
|
||||||
let r = evaluate::polynomial(xs, ERF_INV_IMPL_GN)
|
|
||||||
/ evaluate::polynomial(xs, ERF_INV_IMPL_GD);
|
|
||||||
y * x + r * x
|
|
||||||
}
|
|
||||||
};
|
|
||||||
s * result
|
|
||||||
}
|
|
@ -1,9 +1,5 @@
|
|||||||
//! Traits and methods for CPU-backed Tensors
|
|
||||||
|
|
||||||
pub mod erf;
|
|
||||||
pub mod kernels;
|
pub mod kernels;
|
||||||
|
|
||||||
#[allow(unused)]
|
|
||||||
trait Cpu<const ARR: usize> {
|
trait Cpu<const ARR: usize> {
|
||||||
type Unit;
|
type Unit;
|
||||||
type Array;
|
type Array;
|
||||||
@ -21,7 +17,6 @@ trait Cpu<const ARR: usize> {
|
|||||||
unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit);
|
unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[allow(unused)]
|
|
||||||
trait CpuF16<const ARR: usize> {
|
trait CpuF16<const ARR: usize> {
|
||||||
type Unit;
|
type Unit;
|
||||||
type Array;
|
type Array;
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -1,360 +0,0 @@
|
|||||||
/// Helper functions to write CPU kernels.
|
|
||||||
use crate::backend::BackendStorage;
|
|
||||||
use crate::{Error, Layout, Result, WithDType};
|
|
||||||
|
|
||||||
type C = super::CpuStorage;
|
|
||||||
pub trait Map1 {
|
|
||||||
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>>;
|
|
||||||
|
|
||||||
fn map(&self, vs: &C, layout: &Layout) -> Result<C> {
|
|
||||||
match vs {
|
|
||||||
C::U8(vs) => Ok(C::U8(self.f(vs, layout)?)),
|
|
||||||
C::U32(vs) => Ok(C::U32(self.f(vs, layout)?)),
|
|
||||||
C::I64(vs) => Ok(C::I64(self.f(vs, layout)?)),
|
|
||||||
C::BF16(vs) => Ok(C::BF16(self.f(vs, layout)?)),
|
|
||||||
C::F16(vs) => Ok(C::F16(self.f(vs, layout)?)),
|
|
||||||
C::F32(vs) => Ok(C::F32(self.f(vs, layout)?)),
|
|
||||||
C::F64(vs) => Ok(C::F64(self.f(vs, layout)?)),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub trait Map1Any {
|
|
||||||
fn f<T: WithDType, W: Fn(Vec<T>) -> C>(&self, vs: &[T], layout: &Layout, wrap: W) -> Result<C>;
|
|
||||||
|
|
||||||
fn map(&self, vs: &C, layout: &Layout) -> Result<C> {
|
|
||||||
match vs {
|
|
||||||
C::U8(vs) => Ok(self.f(vs, layout, C::U8)?),
|
|
||||||
C::U32(vs) => Ok(self.f(vs, layout, C::U32)?),
|
|
||||||
C::I64(vs) => Ok(self.f(vs, layout, C::I64)?),
|
|
||||||
C::BF16(vs) => Ok(self.f(vs, layout, C::BF16)?),
|
|
||||||
C::F16(vs) => Ok(self.f(vs, layout, C::F16)?),
|
|
||||||
C::F32(vs) => Ok(self.f(vs, layout, C::F32)?),
|
|
||||||
C::F64(vs) => Ok(self.f(vs, layout, C::F64)?),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub trait Map2 {
|
|
||||||
const OP: &'static str;
|
|
||||||
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<T>>;
|
|
||||||
|
|
||||||
fn map(&self, v1: &C, l1: &Layout, v2: &C, l2: &Layout) -> Result<C> {
|
|
||||||
match (v1, v2) {
|
|
||||||
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
|
||||||
(C::U32(v1), C::U32(v2)) => Ok(C::U32(self.f(v1, l1, v2, l2)?)),
|
|
||||||
(C::I64(v1), C::I64(v2)) => Ok(C::I64(self.f(v1, l1, v2, l2)?)),
|
|
||||||
(C::BF16(v1), C::BF16(v2)) => Ok(C::BF16(self.f(v1, l1, v2, l2)?)),
|
|
||||||
(C::F16(v1), C::F16(v2)) => Ok(C::F16(self.f(v1, l1, v2, l2)?)),
|
|
||||||
(C::F32(v1), C::F32(v2)) => Ok(C::F32(self.f(v1, l1, v2, l2)?)),
|
|
||||||
(C::F64(v1), C::F64(v2)) => Ok(C::F64(self.f(v1, l1, v2, l2)?)),
|
|
||||||
_ => Err(Error::DTypeMismatchBinaryOp {
|
|
||||||
lhs: v1.dtype(),
|
|
||||||
rhs: v2.dtype(),
|
|
||||||
op: Self::OP,
|
|
||||||
}
|
|
||||||
.bt()),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub trait Map2U8 {
|
|
||||||
const OP: &'static str;
|
|
||||||
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<u8>>;
|
|
||||||
|
|
||||||
fn map(&self, v1: &C, l1: &Layout, v2: &C, l2: &Layout) -> Result<C> {
|
|
||||||
match (v1, v2) {
|
|
||||||
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
|
||||||
(C::U32(v1), C::U32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
|
||||||
(C::I64(v1), C::I64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
|
||||||
(C::BF16(v1), C::BF16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
|
||||||
(C::F16(v1), C::F16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
|
||||||
(C::F32(v1), C::F32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
|
||||||
(C::F64(v1), C::F64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
|
|
||||||
_ => Err(Error::DTypeMismatchBinaryOp {
|
|
||||||
lhs: v1.dtype(),
|
|
||||||
rhs: v2.dtype(),
|
|
||||||
op: Self::OP,
|
|
||||||
}
|
|
||||||
.bt()),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn binary_map<T: Copy, U: Copy, F: FnMut(T, T) -> U>(
|
|
||||||
lhs_l: &Layout,
|
|
||||||
rhs_l: &Layout,
|
|
||||||
lhs: &[T],
|
|
||||||
rhs: &[T],
|
|
||||||
mut f: F,
|
|
||||||
) -> Vec<U> {
|
|
||||||
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
|
|
||||||
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => lhs[o_l1..o_l2]
|
|
||||||
.iter()
|
|
||||||
.zip(rhs[o_r1..o_r2].iter())
|
|
||||||
.map(|(&l, &r)| f(l, r))
|
|
||||||
.collect(),
|
|
||||||
(Some((o_l1, o_l2)), None) => {
|
|
||||||
// TODO: Maybe we want to avoid going through the layout twice.
|
|
||||||
match rhs_l.offsets_b() {
|
|
||||||
Some(ob) => {
|
|
||||||
let mut i_in_block = 0;
|
|
||||||
let mut i_right_broadcast = 0;
|
|
||||||
lhs[o_l1..o_l2]
|
|
||||||
.iter()
|
|
||||||
.map(|&l| {
|
|
||||||
let r = unsafe { rhs.get_unchecked(i_in_block + ob.start) };
|
|
||||||
i_right_broadcast += 1;
|
|
||||||
if i_right_broadcast >= ob.right_broadcast {
|
|
||||||
i_in_block += 1;
|
|
||||||
i_right_broadcast = 0;
|
|
||||||
}
|
|
||||||
if i_in_block >= ob.len {
|
|
||||||
i_in_block = 0
|
|
||||||
}
|
|
||||||
f(l, *r)
|
|
||||||
})
|
|
||||||
.collect()
|
|
||||||
}
|
|
||||||
None => lhs_l
|
|
||||||
.strided_index()
|
|
||||||
.zip(rhs_l.strided_index())
|
|
||||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
|
||||||
.collect(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
(None, Some((o_r1, o_r2))) => {
|
|
||||||
// TODO: Maybe we want to avoid going through the layout twice.
|
|
||||||
match lhs_l.offsets_b() {
|
|
||||||
Some(ob) => {
|
|
||||||
let mut i_in_block = 0;
|
|
||||||
let mut i_right_broadcast = 0;
|
|
||||||
rhs[o_r1..o_r2]
|
|
||||||
.iter()
|
|
||||||
.map(|&r| {
|
|
||||||
let l = unsafe { lhs.get_unchecked(i_in_block + ob.start) };
|
|
||||||
i_right_broadcast += 1;
|
|
||||||
if i_right_broadcast >= ob.right_broadcast {
|
|
||||||
i_in_block += 1;
|
|
||||||
i_right_broadcast = 0;
|
|
||||||
}
|
|
||||||
if i_in_block >= ob.len {
|
|
||||||
i_in_block = 0
|
|
||||||
}
|
|
||||||
f(*l, r)
|
|
||||||
})
|
|
||||||
.collect()
|
|
||||||
}
|
|
||||||
None => lhs_l
|
|
||||||
.strided_index()
|
|
||||||
.zip(rhs_l.strided_index())
|
|
||||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
|
||||||
.collect(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
_ => lhs_l
|
|
||||||
.strided_index()
|
|
||||||
.zip(rhs_l.strided_index())
|
|
||||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
|
||||||
.collect(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Similar to binary_map but with vectorized variants.
|
|
||||||
pub fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>(
|
|
||||||
lhs_l: &Layout,
|
|
||||||
rhs_l: &Layout,
|
|
||||||
lhs: &[T],
|
|
||||||
rhs: &[T],
|
|
||||||
mut f: F,
|
|
||||||
mut f_vec: FV,
|
|
||||||
) -> Vec<T> {
|
|
||||||
let el_count = lhs_l.shape().elem_count();
|
|
||||||
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
|
|
||||||
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => {
|
|
||||||
let mut ys: Vec<T> = Vec::with_capacity(el_count);
|
|
||||||
let ys_to_set = ys.spare_capacity_mut();
|
|
||||||
let ys_to_set = unsafe {
|
|
||||||
std::mem::transmute::<&mut [std::mem::MaybeUninit<T>], &mut [T]>(ys_to_set)
|
|
||||||
};
|
|
||||||
f_vec(&lhs[o_l1..o_l2], &rhs[o_r1..o_r2], ys_to_set);
|
|
||||||
// SAFETY: values are all set by f_vec.
|
|
||||||
unsafe { ys.set_len(el_count) };
|
|
||||||
ys
|
|
||||||
}
|
|
||||||
(Some((o_l1, o_l2)), None) => match rhs_l.offsets_b() {
|
|
||||||
Some(ob) if ob.right_broadcast == 1 => {
|
|
||||||
let rhs = &rhs[ob.start..ob.start + ob.len];
|
|
||||||
let mut ys: Vec<T> = Vec::with_capacity(el_count);
|
|
||||||
let ys_to_set = ys.spare_capacity_mut();
|
|
||||||
let ys_to_set = unsafe {
|
|
||||||
std::mem::transmute::<&mut [std::mem::MaybeUninit<T>], &mut [T]>(ys_to_set)
|
|
||||||
};
|
|
||||||
let mut dst_i = 0;
|
|
||||||
for src_i in (o_l1..o_l2).step_by(ob.len) {
|
|
||||||
f_vec(
|
|
||||||
&lhs[src_i..src_i + ob.len],
|
|
||||||
rhs,
|
|
||||||
&mut ys_to_set[dst_i..dst_i + ob.len],
|
|
||||||
);
|
|
||||||
dst_i += ob.len;
|
|
||||||
}
|
|
||||||
// SAFETY: values are all set by f_vec.
|
|
||||||
unsafe { ys.set_len(el_count) };
|
|
||||||
ys
|
|
||||||
}
|
|
||||||
Some(ob) => {
|
|
||||||
let rhs = &rhs[ob.start..ob.start + ob.len];
|
|
||||||
let mut ys = lhs[o_l1..o_l2].to_vec();
|
|
||||||
for idx_l in 0..ob.left_broadcast {
|
|
||||||
let start = idx_l * ob.len * ob.right_broadcast;
|
|
||||||
for (i, &r) in rhs.iter().enumerate() {
|
|
||||||
let start = start + i * ob.right_broadcast;
|
|
||||||
for v in ys[start..start + ob.right_broadcast].iter_mut() {
|
|
||||||
*v = f(*v, r)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
ys
|
|
||||||
}
|
|
||||||
None => lhs_l
|
|
||||||
.strided_index()
|
|
||||||
.zip(rhs_l.strided_index())
|
|
||||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
|
||||||
.collect(),
|
|
||||||
},
|
|
||||||
(None, Some((o_r1, o_r2))) => match lhs_l.offsets_b() {
|
|
||||||
Some(ob) if ob.right_broadcast == 1 => {
|
|
||||||
let lhs = &lhs[ob.start..ob.start + ob.len];
|
|
||||||
let mut ys: Vec<T> = Vec::with_capacity(el_count);
|
|
||||||
let ys_to_set = ys.spare_capacity_mut();
|
|
||||||
let ys_to_set = unsafe {
|
|
||||||
std::mem::transmute::<&mut [std::mem::MaybeUninit<T>], &mut [T]>(ys_to_set)
|
|
||||||
};
|
|
||||||
let mut dst_i = 0;
|
|
||||||
for src_i in (o_r1..o_r2).step_by(ob.len) {
|
|
||||||
f_vec(
|
|
||||||
lhs,
|
|
||||||
&rhs[src_i..src_i + ob.len],
|
|
||||||
&mut ys_to_set[dst_i..dst_i + ob.len],
|
|
||||||
);
|
|
||||||
dst_i += ob.len;
|
|
||||||
}
|
|
||||||
// SAFETY: values are all set by f_vec.
|
|
||||||
unsafe { ys.set_len(el_count) };
|
|
||||||
ys
|
|
||||||
}
|
|
||||||
Some(ob) => {
|
|
||||||
let lhs = &lhs[ob.start..ob.start + ob.len];
|
|
||||||
let mut ys = rhs[o_r1..o_r2].to_vec();
|
|
||||||
for idx_l in 0..ob.left_broadcast {
|
|
||||||
let start = idx_l * ob.len * ob.right_broadcast;
|
|
||||||
for (i, &l) in lhs.iter().enumerate() {
|
|
||||||
let start = start + i * ob.right_broadcast;
|
|
||||||
for v in ys[start..start + ob.right_broadcast].iter_mut() {
|
|
||||||
*v = f(l, *v)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
ys
|
|
||||||
}
|
|
||||||
None => lhs_l
|
|
||||||
.strided_index()
|
|
||||||
.zip(rhs_l.strided_index())
|
|
||||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
|
||||||
.collect(),
|
|
||||||
},
|
|
||||||
_ => lhs_l
|
|
||||||
.strided_index()
|
|
||||||
.zip(rhs_l.strided_index())
|
|
||||||
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
|
|
||||||
.collect(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn unary_map<T: Copy, U: Copy, F: FnMut(T) -> U>(
|
|
||||||
vs: &[T],
|
|
||||||
layout: &Layout,
|
|
||||||
mut f: F,
|
|
||||||
) -> Vec<U> {
|
|
||||||
match layout.strided_blocks() {
|
|
||||||
crate::StridedBlocks::SingleBlock { start_offset, len } => vs
|
|
||||||
[start_offset..start_offset + len]
|
|
||||||
.iter()
|
|
||||||
.map(|&v| f(v))
|
|
||||||
.collect(),
|
|
||||||
crate::StridedBlocks::MultipleBlocks {
|
|
||||||
block_start_index,
|
|
||||||
block_len,
|
|
||||||
} => {
|
|
||||||
let mut result = Vec::with_capacity(layout.shape().elem_count());
|
|
||||||
// Specialize the case where block_len is one to avoid the second loop.
|
|
||||||
if block_len == 1 {
|
|
||||||
for index in block_start_index {
|
|
||||||
let v = unsafe { vs.get_unchecked(index) };
|
|
||||||
result.push(f(*v))
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
for index in block_start_index {
|
|
||||||
for offset in 0..block_len {
|
|
||||||
let v = unsafe { vs.get_unchecked(index + offset) };
|
|
||||||
result.push(f(*v))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
result
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn unary_map_vec<T: Copy, U: Copy, F: FnMut(T) -> U, FV: FnMut(&[T], &mut [U])>(
|
|
||||||
vs: &[T],
|
|
||||||
layout: &Layout,
|
|
||||||
mut f: F,
|
|
||||||
mut f_vec: FV,
|
|
||||||
) -> Vec<U> {
|
|
||||||
match layout.strided_blocks() {
|
|
||||||
crate::StridedBlocks::SingleBlock { start_offset, len } => {
|
|
||||||
let mut ys: Vec<U> = Vec::with_capacity(len);
|
|
||||||
let ys_to_set = ys.spare_capacity_mut();
|
|
||||||
let ys_to_set = unsafe {
|
|
||||||
std::mem::transmute::<&mut [std::mem::MaybeUninit<U>], &mut [U]>(ys_to_set)
|
|
||||||
};
|
|
||||||
f_vec(&vs[start_offset..start_offset + len], ys_to_set);
|
|
||||||
// SAFETY: values are all set by f_vec.
|
|
||||||
unsafe { ys.set_len(len) };
|
|
||||||
ys
|
|
||||||
}
|
|
||||||
crate::StridedBlocks::MultipleBlocks {
|
|
||||||
block_start_index,
|
|
||||||
block_len,
|
|
||||||
} => {
|
|
||||||
let el_count = layout.shape().elem_count();
|
|
||||||
// Specialize the case where block_len is one to avoid the second loop.
|
|
||||||
if block_len == 1 {
|
|
||||||
let mut result = Vec::with_capacity(el_count);
|
|
||||||
for index in block_start_index {
|
|
||||||
let v = unsafe { vs.get_unchecked(index) };
|
|
||||||
result.push(f(*v))
|
|
||||||
}
|
|
||||||
result
|
|
||||||
} else {
|
|
||||||
let mut ys: Vec<U> = Vec::with_capacity(el_count);
|
|
||||||
let ys_to_set = ys.spare_capacity_mut();
|
|
||||||
let ys_to_set = unsafe {
|
|
||||||
std::mem::transmute::<&mut [std::mem::MaybeUninit<U>], &mut [U]>(ys_to_set)
|
|
||||||
};
|
|
||||||
let mut dst_index = 0;
|
|
||||||
for src_index in block_start_index {
|
|
||||||
let vs = &vs[src_index..src_index + block_len];
|
|
||||||
let ys = &mut ys_to_set[dst_index..dst_index + block_len];
|
|
||||||
f_vec(vs, ys);
|
|
||||||
dst_index += block_len;
|
|
||||||
}
|
|
||||||
// SAFETY: values are all set by f_vec.
|
|
||||||
unsafe { ys.set_len(el_count) };
|
|
||||||
ys
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
1989
candle-core/src/cuda_backend.rs
Normal file
1989
candle-core/src/cuda_backend.rs
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,225 +0,0 @@
|
|||||||
use crate::WithDType;
|
|
||||||
use cudarc;
|
|
||||||
use cudarc::cudnn::safe::{ConvForward, Cudnn};
|
|
||||||
use cudarc::driver::{CudaSlice, CudaView, DeviceRepr, ValidAsZeroBits};
|
|
||||||
use std::cell::RefCell;
|
|
||||||
use std::collections::HashMap;
|
|
||||||
use std::sync::Arc;
|
|
||||||
|
|
||||||
// The cudnn handles are stored per thread here rather than on the CudaDevice as they are neither
|
|
||||||
// send nor sync.
|
|
||||||
thread_local! {
|
|
||||||
static CUDNN: RefCell<HashMap<crate::cuda_backend::DeviceId, Arc<Cudnn>>> = HashMap::new().into();
|
|
||||||
}
|
|
||||||
|
|
||||||
impl From<cudarc::cudnn::CudnnError> for crate::Error {
|
|
||||||
fn from(err: cudarc::cudnn::CudnnError) -> Self {
|
|
||||||
crate::Error::wrap(err)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl From<cudarc::driver::DriverError> for crate::Error {
|
|
||||||
fn from(err: cudarc::driver::DriverError) -> Self {
|
|
||||||
crate::Error::wrap(err)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub(crate) fn launch_conv2d<
|
|
||||||
T: DeviceRepr + WithDType + ValidAsZeroBits + cudarc::cudnn::CudnnDataType,
|
|
||||||
Y: cudarc::cudnn::CudnnDataType,
|
|
||||||
>(
|
|
||||||
src: &CudaView<T>,
|
|
||||||
src_l: &crate::Layout,
|
|
||||||
filter: &CudaView<T>,
|
|
||||||
dst: &mut CudaSlice<T>,
|
|
||||||
params: &crate::conv::ParamsConv2D,
|
|
||||||
dev: &crate::cuda_backend::CudaDevice,
|
|
||||||
) -> crate::Result<()> {
|
|
||||||
use crate::conv::CudnnFwdAlgo as CandleAlgo;
|
|
||||||
use cudarc::cudnn::sys::cudnnConvolutionFwdAlgo_t as A;
|
|
||||||
|
|
||||||
let device_id = dev.id();
|
|
||||||
let cudnn = CUDNN.with(|cudnn| {
|
|
||||||
if let Some(cudnn) = cudnn.borrow().get(&device_id) {
|
|
||||||
return Ok(cudnn.clone());
|
|
||||||
}
|
|
||||||
let c = Cudnn::new(dev.cuda_stream());
|
|
||||||
if let Ok(c) = &c {
|
|
||||||
cudnn.borrow_mut().insert(device_id, c.clone());
|
|
||||||
}
|
|
||||||
c
|
|
||||||
})?;
|
|
||||||
let conv = cudnn.create_conv2d::<Y>(
|
|
||||||
/* pad */ [params.padding as i32, params.padding as i32],
|
|
||||||
/* stride */ [params.stride as i32, params.stride as i32],
|
|
||||||
/* dilation */ [params.dilation as i32, params.dilation as i32],
|
|
||||||
cudarc::cudnn::sys::cudnnConvolutionMode_t::CUDNN_CROSS_CORRELATION,
|
|
||||||
)?;
|
|
||||||
let x_shape = [
|
|
||||||
params.b_size as i32,
|
|
||||||
params.c_in as i32,
|
|
||||||
params.i_h as i32,
|
|
||||||
params.i_w as i32,
|
|
||||||
];
|
|
||||||
// Note that `src` already starts at the proper offset.
|
|
||||||
let x = if src_l.is_contiguous() {
|
|
||||||
cudnn.create_4d_tensor::<T>(
|
|
||||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
|
||||||
x_shape,
|
|
||||||
)?
|
|
||||||
} else {
|
|
||||||
let s = src_l.stride();
|
|
||||||
cudnn.create_4d_tensor_ex::<T>(
|
|
||||||
x_shape,
|
|
||||||
[s[0] as i32, s[1] as i32, s[2] as i32, s[3] as i32],
|
|
||||||
)?
|
|
||||||
};
|
|
||||||
let w = cudnn.create_4d_filter::<T>(
|
|
||||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
|
||||||
[
|
|
||||||
params.c_out as i32,
|
|
||||||
params.c_in as i32,
|
|
||||||
params.k_h as i32,
|
|
||||||
params.k_w as i32,
|
|
||||||
],
|
|
||||||
)?;
|
|
||||||
let (w_out, h_out) = (params.out_w() as i32, params.out_h() as i32);
|
|
||||||
let y = cudnn.create_4d_tensor::<T>(
|
|
||||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
|
||||||
[params.b_size as i32, params.c_out as i32, h_out, w_out],
|
|
||||||
)?;
|
|
||||||
let conv2d = ConvForward {
|
|
||||||
conv: &conv,
|
|
||||||
x: &x,
|
|
||||||
w: &w,
|
|
||||||
y: &y,
|
|
||||||
};
|
|
||||||
let alg = match params.cudnn_fwd_algo {
|
|
||||||
None => conv2d.pick_algorithm()?,
|
|
||||||
Some(CandleAlgo::ImplicitGemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM,
|
|
||||||
Some(CandleAlgo::ImplicitPrecompGemm) => {
|
|
||||||
A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
|
|
||||||
}
|
|
||||||
Some(CandleAlgo::Gemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_GEMM,
|
|
||||||
Some(CandleAlgo::Direct) => A::CUDNN_CONVOLUTION_FWD_ALGO_DIRECT,
|
|
||||||
Some(CandleAlgo::Fft) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT,
|
|
||||||
Some(CandleAlgo::FftTiling) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING,
|
|
||||||
Some(CandleAlgo::Winograd) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD,
|
|
||||||
Some(CandleAlgo::WinogradNonFused) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED,
|
|
||||||
Some(CandleAlgo::Count) => A::CUDNN_CONVOLUTION_FWD_ALGO_COUNT,
|
|
||||||
};
|
|
||||||
let workspace_size = conv2d.get_workspace_size(alg)?;
|
|
||||||
let mut workspace = dev.cuda_stream().alloc_zeros::<u8>(workspace_size)?;
|
|
||||||
unsafe {
|
|
||||||
conv2d.launch::<CudaSlice<u8>, _, _, _>(
|
|
||||||
alg,
|
|
||||||
Some(&mut workspace),
|
|
||||||
(T::one(), T::zero()),
|
|
||||||
src,
|
|
||||||
filter,
|
|
||||||
dst,
|
|
||||||
)?;
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
pub(crate) fn launch_conv1d<
|
|
||||||
T: DeviceRepr + WithDType + ValidAsZeroBits + cudarc::cudnn::CudnnDataType,
|
|
||||||
Y: cudarc::cudnn::CudnnDataType,
|
|
||||||
>(
|
|
||||||
src: &CudaView<T>,
|
|
||||||
src_l: &crate::Layout,
|
|
||||||
filter: &CudaView<T>,
|
|
||||||
dst: &mut CudaSlice<T>,
|
|
||||||
params: &crate::conv::ParamsConv1D,
|
|
||||||
dev: &crate::cuda_backend::CudaDevice,
|
|
||||||
) -> crate::Result<()> {
|
|
||||||
use crate::conv::CudnnFwdAlgo as CandleAlgo;
|
|
||||||
use cudarc::cudnn::sys::cudnnConvolutionFwdAlgo_t as A;
|
|
||||||
|
|
||||||
let device_id = dev.id();
|
|
||||||
let cudnn = CUDNN.with(|cudnn| {
|
|
||||||
if let Some(cudnn) = cudnn.borrow().get(&device_id) {
|
|
||||||
return Ok(cudnn.clone());
|
|
||||||
}
|
|
||||||
let c = Cudnn::new(dev.cuda_stream());
|
|
||||||
if let Ok(c) = &c {
|
|
||||||
cudnn.borrow_mut().insert(device_id, c.clone());
|
|
||||||
}
|
|
||||||
c
|
|
||||||
})?;
|
|
||||||
let conv = cudnn.create_conv2d::<Y>(
|
|
||||||
/* pad */ [params.padding as i32, 0],
|
|
||||||
/* stride */ [params.stride as i32, 1],
|
|
||||||
/* dilation */ [params.dilation as i32, 1],
|
|
||||||
cudarc::cudnn::sys::cudnnConvolutionMode_t::CUDNN_CROSS_CORRELATION,
|
|
||||||
)?;
|
|
||||||
// https://docs.nvidia.com/deeplearning/cudnn/backend/latest/api/cudnn-ops-library.html#cudnnsettensornddescriptor
|
|
||||||
// > Tensors are restricted to having at least 4 dimensions, and at most CUDNN_DIM_MAX
|
|
||||||
// > dimensions (defined in cudnn.h). When working with lower dimensional data, it is
|
|
||||||
// > recommended that the user create a 4D tensor, and set the size along unused dimensions
|
|
||||||
// > to 1.
|
|
||||||
let x_shape = [
|
|
||||||
params.b_size as i32,
|
|
||||||
params.c_in as i32,
|
|
||||||
params.l_in as i32,
|
|
||||||
1,
|
|
||||||
];
|
|
||||||
// Note that `src` already starts at the proper offset.
|
|
||||||
let x = if src_l.is_contiguous() {
|
|
||||||
cudnn.create_4d_tensor::<T>(
|
|
||||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
|
||||||
x_shape,
|
|
||||||
)?
|
|
||||||
} else {
|
|
||||||
let s = src_l.stride();
|
|
||||||
cudnn.create_4d_tensor_ex::<T>(x_shape, [s[0] as i32, s[1] as i32, s[2] as i32, 1i32])?
|
|
||||||
};
|
|
||||||
let w = cudnn.create_4d_filter::<T>(
|
|
||||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
|
||||||
[
|
|
||||||
params.c_out as i32,
|
|
||||||
params.c_in as i32,
|
|
||||||
params.k_size as i32,
|
|
||||||
1,
|
|
||||||
],
|
|
||||||
)?;
|
|
||||||
let l_out = params.l_out() as i32;
|
|
||||||
let y = cudnn.create_4d_tensor::<T>(
|
|
||||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
|
||||||
[params.b_size as i32, params.c_out as i32, l_out, 1],
|
|
||||||
)?;
|
|
||||||
let conv1d = ConvForward {
|
|
||||||
conv: &conv,
|
|
||||||
x: &x,
|
|
||||||
w: &w,
|
|
||||||
y: &y,
|
|
||||||
};
|
|
||||||
let alg = match params.cudnn_fwd_algo {
|
|
||||||
None => conv1d.pick_algorithm()?,
|
|
||||||
Some(CandleAlgo::ImplicitGemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM,
|
|
||||||
Some(CandleAlgo::ImplicitPrecompGemm) => {
|
|
||||||
A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
|
|
||||||
}
|
|
||||||
Some(CandleAlgo::Gemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_GEMM,
|
|
||||||
Some(CandleAlgo::Direct) => A::CUDNN_CONVOLUTION_FWD_ALGO_DIRECT,
|
|
||||||
Some(CandleAlgo::Fft) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT,
|
|
||||||
Some(CandleAlgo::FftTiling) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING,
|
|
||||||
Some(CandleAlgo::Winograd) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD,
|
|
||||||
Some(CandleAlgo::WinogradNonFused) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED,
|
|
||||||
Some(CandleAlgo::Count) => A::CUDNN_CONVOLUTION_FWD_ALGO_COUNT,
|
|
||||||
};
|
|
||||||
let workspace_size = conv1d.get_workspace_size(alg)?;
|
|
||||||
let mut workspace = dev.cuda_stream().alloc_zeros::<u8>(workspace_size)?;
|
|
||||||
unsafe {
|
|
||||||
conv1d.launch::<CudaSlice<u8>, _, _, _>(
|
|
||||||
alg,
|
|
||||||
Some(&mut workspace),
|
|
||||||
(T::one(), T::zero()),
|
|
||||||
src,
|
|
||||||
filter,
|
|
||||||
dst,
|
|
||||||
)?;
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
@ -1,646 +0,0 @@
|
|||||||
use crate::backend::BackendDevice;
|
|
||||||
use crate::{CpuStorage, CpuStorageRef, DType, Layout, Result, Shape};
|
|
||||||
pub use candle_kernels as kernels;
|
|
||||||
pub use cudarc;
|
|
||||||
use cudarc::driver::{CudaFunction, LaunchConfig, PushKernelArg};
|
|
||||||
use half::{bf16, f16};
|
|
||||||
use std::collections::HashMap;
|
|
||||||
use std::sync::{Arc, Mutex};
|
|
||||||
|
|
||||||
use super::{CudaError, CudaStorage, CudaStorageSlice, WrapErr};
|
|
||||||
|
|
||||||
/// Unique identifier for cuda devices.
|
|
||||||
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
|
||||||
pub struct DeviceId(usize);
|
|
||||||
|
|
||||||
impl DeviceId {
|
|
||||||
fn new() -> Self {
|
|
||||||
// https://users.rust-lang.org/t/idiomatic-rust-way-to-generate-unique-id/33805
|
|
||||||
use std::sync::atomic;
|
|
||||||
static COUNTER: atomic::AtomicUsize = atomic::AtomicUsize::new(1);
|
|
||||||
Self(COUNTER.fetch_add(1, atomic::Ordering::Relaxed))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
struct CudaRng(cudarc::curand::CudaRng);
|
|
||||||
unsafe impl Send for CudaRng {}
|
|
||||||
|
|
||||||
pub struct ModuleStore {
|
|
||||||
mdls: [Option<Arc<cudarc::driver::CudaModule>>; kernels::ALL_IDS.len()],
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Clone)]
|
|
||||||
pub struct CudaDevice {
|
|
||||||
id: DeviceId,
|
|
||||||
context: Arc<cudarc::driver::CudaContext>,
|
|
||||||
modules: Arc<std::sync::RwLock<ModuleStore>>,
|
|
||||||
custom_modules: Arc<std::sync::RwLock<HashMap<String, Arc<cudarc::driver::CudaModule>>>>,
|
|
||||||
stream: Arc<cudarc::driver::CudaStream>,
|
|
||||||
pub(crate) blas: Arc<cudarc::cublas::CudaBlas>,
|
|
||||||
curand: Arc<Mutex<CudaRng>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl std::fmt::Debug for CudaDevice {
|
|
||||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
||||||
write!(f, "CudaDevice({:?})", self.id)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl CudaDevice {
|
|
||||||
#[allow(clippy::missing_safety_doc)]
|
|
||||||
pub unsafe fn alloc<T: cudarc::driver::DeviceRepr>(
|
|
||||||
&self,
|
|
||||||
len: usize,
|
|
||||||
) -> Result<cudarc::driver::CudaSlice<T>> {
|
|
||||||
self.stream.alloc::<T>(len).w()
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn alloc_zeros<T: cudarc::driver::DeviceRepr + cudarc::driver::ValidAsZeroBits>(
|
|
||||||
&self,
|
|
||||||
len: usize,
|
|
||||||
) -> Result<cudarc::driver::CudaSlice<T>> {
|
|
||||||
self.stream.alloc_zeros::<T>(len).w()
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn memcpy_htod<
|
|
||||||
T: cudarc::driver::DeviceRepr,
|
|
||||||
Src: cudarc::driver::HostSlice<T> + ?Sized,
|
|
||||||
Dst: cudarc::driver::DevicePtrMut<T>,
|
|
||||||
>(
|
|
||||||
&self,
|
|
||||||
src: &Src,
|
|
||||||
dst: &mut Dst,
|
|
||||||
) -> Result<()> {
|
|
||||||
self.stream.memcpy_htod(src, dst).w()
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn memcpy_dtov<T: cudarc::driver::DeviceRepr, Src: cudarc::driver::DevicePtr<T>>(
|
|
||||||
&self,
|
|
||||||
src: &Src,
|
|
||||||
) -> Result<Vec<T>> {
|
|
||||||
self.stream.memcpy_dtov(src).w()
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn memcpy_dtod<
|
|
||||||
T,
|
|
||||||
Src: cudarc::driver::DevicePtr<T>,
|
|
||||||
Dst: cudarc::driver::DevicePtrMut<T>,
|
|
||||||
>(
|
|
||||||
&self,
|
|
||||||
src: &Src,
|
|
||||||
dst: &mut Dst,
|
|
||||||
) -> Result<()> {
|
|
||||||
self.stream.memcpy_dtod(src, dst).w()
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn memcpy_stod<
|
|
||||||
T: cudarc::driver::DeviceRepr,
|
|
||||||
Src: cudarc::driver::HostSlice<T> + ?Sized,
|
|
||||||
>(
|
|
||||||
&self,
|
|
||||||
src: &Src,
|
|
||||||
) -> Result<cudarc::driver::CudaSlice<T>> {
|
|
||||||
self.stream.memcpy_stod(src).w()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub struct CudaFunc {
|
|
||||||
func: CudaFunction,
|
|
||||||
stream: Arc<cudarc::driver::CudaStream>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl std::ops::Deref for CudaFunc {
|
|
||||||
type Target = CudaFunction;
|
|
||||||
|
|
||||||
fn deref(&self) -> &Self::Target {
|
|
||||||
&self.func
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl CudaFunc {
|
|
||||||
pub fn into_cuda_function(self) -> CudaFunction {
|
|
||||||
self.func
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[macro_export]
|
|
||||||
macro_rules! builder_arg {
|
|
||||||
($b:ident, $($arg:expr),*) => {
|
|
||||||
$(
|
|
||||||
let __arg = $arg;
|
|
||||||
$b.arg(&__arg);
|
|
||||||
)*
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
impl CudaFunc {
|
|
||||||
pub fn builder(&self) -> cudarc::driver::LaunchArgs<'_> {
|
|
||||||
self.stream.launch_builder(&self.func)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl CudaDevice {
|
|
||||||
pub fn cuda_stream(&self) -> Arc<cudarc::driver::CudaStream> {
|
|
||||||
self.stream.clone()
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(not(target_arch = "wasm32"))]
|
|
||||||
pub fn compile(
|
|
||||||
&self,
|
|
||||||
func_name: &'static str,
|
|
||||||
kernel: ug::lang::ssa::Kernel,
|
|
||||||
) -> Result<CudaFunc> {
|
|
||||||
let mut buf = vec![];
|
|
||||||
ug_cuda::code_gen::gen(&mut buf, func_name, &kernel)?;
|
|
||||||
let cuda_code = String::from_utf8(buf)?;
|
|
||||||
let opts = cudarc::nvrtc::CompileOptions {
|
|
||||||
use_fast_math: Some(true),
|
|
||||||
..Default::default()
|
|
||||||
};
|
|
||||||
let ptx = cudarc::nvrtc::safe::compile_ptx_with_opts(cuda_code, opts).w()?;
|
|
||||||
let module = self.context.load_module(ptx).w()?;
|
|
||||||
let func = module.load_function(func_name).w()?;
|
|
||||||
Ok(CudaFunc {
|
|
||||||
func,
|
|
||||||
stream: self.stream.clone(),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn id(&self) -> DeviceId {
|
|
||||||
self.id
|
|
||||||
}
|
|
||||||
|
|
||||||
fn const_impl(&self, v: f64, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
|
|
||||||
let elem_count = shape.elem_count();
|
|
||||||
let cfg = LaunchConfig::for_num_elems(elem_count as u32);
|
|
||||||
let slice = match dtype {
|
|
||||||
DType::U8 => {
|
|
||||||
// SAFETY: Set later by running the fill kernel.
|
|
||||||
let data = unsafe { self.alloc::<u8>(elem_count)? };
|
|
||||||
let func = self.get_or_load_func("fill_u8", &kernels::FILL)?;
|
|
||||||
let mut builder = self.stream.launch_builder(&func);
|
|
||||||
let v = v as u8;
|
|
||||||
builder.arg(&data);
|
|
||||||
builder.arg(&v);
|
|
||||||
builder.arg(&elem_count);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
CudaStorageSlice::U8(data)
|
|
||||||
}
|
|
||||||
DType::U32 => {
|
|
||||||
// SAFETY: Set later by running the fill kernel.
|
|
||||||
let data = unsafe { self.alloc::<u32>(elem_count)? };
|
|
||||||
let func = self.get_or_load_func("fill_u32", &kernels::FILL)?;
|
|
||||||
let mut builder = self.stream.launch_builder(&func);
|
|
||||||
let v = v as u32;
|
|
||||||
builder.arg(&data);
|
|
||||||
builder.arg(&v);
|
|
||||||
builder.arg(&elem_count);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
CudaStorageSlice::U32(data)
|
|
||||||
}
|
|
||||||
DType::I64 => {
|
|
||||||
// SAFETY: Set later by running the fill kernel.
|
|
||||||
let data = unsafe { self.alloc::<i64>(elem_count)? };
|
|
||||||
let func = self.get_or_load_func("fill_i64", &kernels::FILL)?;
|
|
||||||
let mut builder = self.stream.launch_builder(&func);
|
|
||||||
let v = v as i64;
|
|
||||||
builder.arg(&data);
|
|
||||||
builder.arg(&v);
|
|
||||||
builder.arg(&elem_count);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
CudaStorageSlice::I64(data)
|
|
||||||
}
|
|
||||||
DType::BF16 => {
|
|
||||||
// SAFETY: Set later by running the fill kernel.
|
|
||||||
let data = unsafe { self.alloc::<bf16>(elem_count)? };
|
|
||||||
let func = self.get_or_load_func("fill_bf16", &kernels::FILL)?;
|
|
||||||
let mut builder = self.stream.launch_builder(&func);
|
|
||||||
let v = bf16::from_f64(v);
|
|
||||||
builder.arg(&data);
|
|
||||||
builder.arg(&v);
|
|
||||||
builder.arg(&elem_count);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
CudaStorageSlice::BF16(data)
|
|
||||||
}
|
|
||||||
DType::F16 => {
|
|
||||||
// SAFETY: Set later by running the fill kernel.
|
|
||||||
let data = unsafe { self.alloc::<f16>(elem_count)? };
|
|
||||||
let func = self.get_or_load_func("fill_f16", &kernels::FILL)?;
|
|
||||||
let mut builder = self.stream.launch_builder(&func);
|
|
||||||
let v = f16::from_f64(v);
|
|
||||||
builder.arg(&data);
|
|
||||||
builder.arg(&v);
|
|
||||||
builder.arg(&elem_count);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
CudaStorageSlice::F16(data)
|
|
||||||
}
|
|
||||||
DType::F32 => {
|
|
||||||
// SAFETY: Set later by running the fill kernel.
|
|
||||||
let data = unsafe { self.alloc::<f32>(elem_count)? };
|
|
||||||
let func = self.get_or_load_func("fill_f32", &kernels::FILL)?;
|
|
||||||
let mut builder = self.stream.launch_builder(&func);
|
|
||||||
let v = v as f32;
|
|
||||||
builder.arg(&data);
|
|
||||||
builder.arg(&v);
|
|
||||||
builder.arg(&elem_count);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
CudaStorageSlice::F32(data)
|
|
||||||
}
|
|
||||||
DType::F64 => {
|
|
||||||
// SAFETY: Set later by running the fill kernel.
|
|
||||||
let data = unsafe { self.alloc::<f64>(elem_count) }?;
|
|
||||||
let func = self.get_or_load_func("fill_f64", &kernels::FILL)?;
|
|
||||||
let mut builder = self.stream.launch_builder(&func);
|
|
||||||
builder.arg(&data);
|
|
||||||
builder.arg(&v);
|
|
||||||
builder.arg(&elem_count);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
CudaStorageSlice::F64(data)
|
|
||||||
}
|
|
||||||
};
|
|
||||||
Ok(CudaStorage {
|
|
||||||
slice,
|
|
||||||
device: self.clone(),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn get_or_load_custom_func(
|
|
||||||
&self,
|
|
||||||
fn_name: &str,
|
|
||||||
module_name: &str,
|
|
||||||
ptx: &str,
|
|
||||||
) -> Result<CudaFunc> {
|
|
||||||
let ms = self.custom_modules.read().unwrap();
|
|
||||||
if let Some(mdl) = ms.get(module_name).as_ref() {
|
|
||||||
let func = mdl.load_function(fn_name).w()?;
|
|
||||||
return Ok(CudaFunc {
|
|
||||||
func,
|
|
||||||
stream: self.stream.clone(),
|
|
||||||
});
|
|
||||||
}
|
|
||||||
drop(ms);
|
|
||||||
let mut ms = self.custom_modules.write().unwrap();
|
|
||||||
let cuda_module = self.context.load_module(ptx.into()).w()?;
|
|
||||||
ms.insert(module_name.to_string(), cuda_module.clone());
|
|
||||||
let func = cuda_module.load_function(fn_name).w()?;
|
|
||||||
Ok(CudaFunc {
|
|
||||||
func,
|
|
||||||
stream: self.stream.clone(),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn get_or_load_func(&self, fn_name: &str, mdl: &kernels::Module) -> Result<CudaFunc> {
|
|
||||||
let ms = self.modules.read().unwrap();
|
|
||||||
if let Some(mdl) = ms.mdls[mdl.index()].as_ref() {
|
|
||||||
let func = mdl.load_function(fn_name).w()?;
|
|
||||||
return Ok(CudaFunc {
|
|
||||||
func,
|
|
||||||
stream: self.stream.clone(),
|
|
||||||
});
|
|
||||||
}
|
|
||||||
drop(ms);
|
|
||||||
let mut ms = self.modules.write().unwrap();
|
|
||||||
let cuda_module = self.context.load_module(mdl.ptx().into()).w()?;
|
|
||||||
ms.mdls[mdl.index()] = Some(cuda_module.clone());
|
|
||||||
let func = cuda_module.load_function(fn_name).w()?;
|
|
||||||
Ok(CudaFunc {
|
|
||||||
func,
|
|
||||||
stream: self.stream.clone(),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl CudaDevice {
|
|
||||||
pub fn new_with_stream(ordinal: usize) -> Result<Self> {
|
|
||||||
let context = cudarc::driver::CudaContext::new(ordinal).w()?;
|
|
||||||
let stream = context.new_stream().w()?;
|
|
||||||
let blas = cudarc::cublas::CudaBlas::new(stream.clone()).w()?;
|
|
||||||
let curand = cudarc::curand::CudaRng::new(299792458, stream.clone()).w()?;
|
|
||||||
let module_store = ModuleStore {
|
|
||||||
mdls: [const { None }; kernels::ALL_IDS.len()],
|
|
||||||
};
|
|
||||||
Ok(Self {
|
|
||||||
id: DeviceId::new(),
|
|
||||||
context,
|
|
||||||
stream,
|
|
||||||
blas: Arc::new(blas),
|
|
||||||
curand: Arc::new(Mutex::new(CudaRng(curand))),
|
|
||||||
modules: Arc::new(std::sync::RwLock::new(module_store)),
|
|
||||||
custom_modules: Arc::new(std::sync::RwLock::new(HashMap::new())),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl BackendDevice for CudaDevice {
|
|
||||||
type Storage = CudaStorage;
|
|
||||||
|
|
||||||
fn new(ordinal: usize) -> Result<Self> {
|
|
||||||
let context = cudarc::driver::CudaContext::new(ordinal).w()?;
|
|
||||||
let stream = context.default_stream();
|
|
||||||
let blas = cudarc::cublas::CudaBlas::new(stream.clone()).w()?;
|
|
||||||
let curand = cudarc::curand::CudaRng::new(299792458, stream.clone()).w()?;
|
|
||||||
let module_store = ModuleStore {
|
|
||||||
mdls: [const { None }; kernels::ALL_IDS.len()],
|
|
||||||
};
|
|
||||||
Ok(Self {
|
|
||||||
id: DeviceId::new(),
|
|
||||||
context,
|
|
||||||
stream,
|
|
||||||
blas: Arc::new(blas),
|
|
||||||
curand: Arc::new(Mutex::new(CudaRng(curand))),
|
|
||||||
modules: Arc::new(std::sync::RwLock::new(module_store)),
|
|
||||||
custom_modules: Arc::new(std::sync::RwLock::new(HashMap::new())),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
fn set_seed(&self, seed: u64) -> Result<()> {
|
|
||||||
// We do not call set_seed but instead create a new curand object. This ensures that the
|
|
||||||
// state will be identical and the same random numbers will be generated.
|
|
||||||
let mut curand = self.curand.lock().unwrap();
|
|
||||||
curand.0 = cudarc::curand::CudaRng::new(seed, self.stream.clone()).w()?;
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
fn location(&self) -> crate::DeviceLocation {
|
|
||||||
crate::DeviceLocation::Cuda {
|
|
||||||
gpu_id: self.context.ordinal(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn same_device(&self, rhs: &Self) -> bool {
|
|
||||||
self.id == rhs.id
|
|
||||||
}
|
|
||||||
|
|
||||||
fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
|
|
||||||
let elem_count = shape.elem_count();
|
|
||||||
let slice = match dtype {
|
|
||||||
DType::U8 => {
|
|
||||||
let data = self.alloc_zeros::<u8>(elem_count)?;
|
|
||||||
CudaStorageSlice::U8(data)
|
|
||||||
}
|
|
||||||
DType::U32 => {
|
|
||||||
let data = self.alloc_zeros::<u32>(elem_count)?;
|
|
||||||
CudaStorageSlice::U32(data)
|
|
||||||
}
|
|
||||||
DType::I64 => {
|
|
||||||
let data = self.alloc_zeros::<i64>(elem_count)?;
|
|
||||||
CudaStorageSlice::I64(data)
|
|
||||||
}
|
|
||||||
DType::BF16 => {
|
|
||||||
let data = self.alloc_zeros::<bf16>(elem_count)?;
|
|
||||||
CudaStorageSlice::BF16(data)
|
|
||||||
}
|
|
||||||
DType::F16 => {
|
|
||||||
let data = self.alloc_zeros::<f16>(elem_count)?;
|
|
||||||
CudaStorageSlice::F16(data)
|
|
||||||
}
|
|
||||||
DType::F32 => {
|
|
||||||
let data = self.alloc_zeros::<f32>(elem_count)?;
|
|
||||||
CudaStorageSlice::F32(data)
|
|
||||||
}
|
|
||||||
DType::F64 => {
|
|
||||||
let data = self.alloc_zeros::<f64>(elem_count)?;
|
|
||||||
CudaStorageSlice::F64(data)
|
|
||||||
}
|
|
||||||
};
|
|
||||||
Ok(CudaStorage {
|
|
||||||
slice,
|
|
||||||
device: self.clone(),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
fn rand_uniform(&self, shape: &Shape, dtype: DType, lo: f64, up: f64) -> Result<CudaStorage> {
|
|
||||||
let elem_count = shape.elem_count();
|
|
||||||
let curand = self.curand.lock().unwrap();
|
|
||||||
let slice = match dtype {
|
|
||||||
// TODO: Add support for F16 and BF16 though this is likely to require some upstream
|
|
||||||
// cudarc changes.
|
|
||||||
DType::U8 | DType::U32 | DType::I64 | DType::F16 | DType::BF16 => {
|
|
||||||
Err(CudaError::UnsupportedDtype {
|
|
||||||
dtype,
|
|
||||||
op: "rand_uniform",
|
|
||||||
})
|
|
||||||
.w()?
|
|
||||||
}
|
|
||||||
DType::F32 => {
|
|
||||||
let mut data = unsafe { self.alloc::<f32>(elem_count)? };
|
|
||||||
curand.0.fill_with_uniform(&mut data).w()?;
|
|
||||||
CudaStorageSlice::F32(data)
|
|
||||||
}
|
|
||||||
DType::F64 => {
|
|
||||||
let mut data = unsafe { self.alloc::<f64>(elem_count)? };
|
|
||||||
curand.0.fill_with_uniform(&mut data).w()?;
|
|
||||||
CudaStorageSlice::F64(data)
|
|
||||||
}
|
|
||||||
};
|
|
||||||
let slice = if lo == 0. && up == 1.0 {
|
|
||||||
slice
|
|
||||||
} else {
|
|
||||||
use super::utils::Map1;
|
|
||||||
let layout = Layout::contiguous(shape);
|
|
||||||
super::Affine(up - lo, lo).map(&slice, self, &layout)?
|
|
||||||
};
|
|
||||||
Ok(CudaStorage {
|
|
||||||
slice,
|
|
||||||
device: self.clone(),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
fn rand_normal(&self, shape: &Shape, dtype: DType, mean: f64, std: f64) -> Result<CudaStorage> {
|
|
||||||
// TODO: Add support for F16 and BF16 though this is likely to require some upstream
|
|
||||||
// cudarc changes.
|
|
||||||
let elem_count = shape.elem_count();
|
|
||||||
let curand = self.curand.lock().unwrap();
|
|
||||||
// curand can only generate an odd number of values.
|
|
||||||
// https://github.com/huggingface/candle/issues/734
|
|
||||||
let elem_count_round = if elem_count % 2 == 1 {
|
|
||||||
elem_count + 1
|
|
||||||
} else {
|
|
||||||
elem_count
|
|
||||||
};
|
|
||||||
let slice = match dtype {
|
|
||||||
DType::U8 | DType::U32 | DType::I64 | DType::F16 | DType::BF16 => {
|
|
||||||
Err(CudaError::UnsupportedDtype {
|
|
||||||
dtype,
|
|
||||||
op: "rand_normal",
|
|
||||||
})
|
|
||||||
.w()?
|
|
||||||
}
|
|
||||||
DType::F32 => {
|
|
||||||
let mut data = unsafe { self.alloc::<f32>(elem_count_round)? };
|
|
||||||
curand
|
|
||||||
.0
|
|
||||||
.fill_with_normal(&mut data, mean as f32, std as f32)
|
|
||||||
.w()?;
|
|
||||||
CudaStorageSlice::F32(data)
|
|
||||||
}
|
|
||||||
DType::F64 => {
|
|
||||||
let mut data = unsafe { self.alloc::<f64>(elem_count_round)? };
|
|
||||||
curand.0.fill_with_normal(&mut data, mean, std).w()?;
|
|
||||||
CudaStorageSlice::F64(data)
|
|
||||||
}
|
|
||||||
};
|
|
||||||
Ok(CudaStorage {
|
|
||||||
slice,
|
|
||||||
device: self.clone(),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
|
|
||||||
self.const_impl(1., shape, dtype)
|
|
||||||
}
|
|
||||||
|
|
||||||
unsafe fn alloc_uninit(&self, shape: &Shape, dtype: DType) -> Result<Self::Storage> {
|
|
||||||
let elem_count = shape.elem_count();
|
|
||||||
let slice = match dtype {
|
|
||||||
DType::U8 => {
|
|
||||||
let data = self.alloc::<u8>(elem_count)?;
|
|
||||||
CudaStorageSlice::U8(data)
|
|
||||||
}
|
|
||||||
DType::U32 => {
|
|
||||||
let data = self.alloc::<u32>(elem_count)?;
|
|
||||||
CudaStorageSlice::U32(data)
|
|
||||||
}
|
|
||||||
DType::I64 => {
|
|
||||||
let data = self.alloc::<i64>(elem_count)?;
|
|
||||||
CudaStorageSlice::I64(data)
|
|
||||||
}
|
|
||||||
DType::BF16 => {
|
|
||||||
let data = self.alloc::<bf16>(elem_count)?;
|
|
||||||
CudaStorageSlice::BF16(data)
|
|
||||||
}
|
|
||||||
DType::F16 => {
|
|
||||||
let data = self.alloc::<f16>(elem_count)?;
|
|
||||||
CudaStorageSlice::F16(data)
|
|
||||||
}
|
|
||||||
DType::F32 => {
|
|
||||||
let data = self.alloc::<f32>(elem_count)?;
|
|
||||||
CudaStorageSlice::F32(data)
|
|
||||||
}
|
|
||||||
DType::F64 => {
|
|
||||||
let data = self.alloc::<f64>(elem_count)?;
|
|
||||||
CudaStorageSlice::F64(data)
|
|
||||||
}
|
|
||||||
};
|
|
||||||
Ok(CudaStorage {
|
|
||||||
slice,
|
|
||||||
device: self.clone(),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
fn storage_from_slice<T: crate::WithDType>(&self, s: &[T]) -> Result<Self::Storage> {
|
|
||||||
let slice = match T::cpu_storage_ref(s) {
|
|
||||||
CpuStorageRef::U8(storage) => {
|
|
||||||
let data = self.memcpy_stod(storage)?;
|
|
||||||
CudaStorageSlice::U8(data)
|
|
||||||
}
|
|
||||||
CpuStorageRef::U32(storage) => {
|
|
||||||
let data = self.memcpy_stod(storage)?;
|
|
||||||
CudaStorageSlice::U32(data)
|
|
||||||
}
|
|
||||||
CpuStorageRef::I64(storage) => {
|
|
||||||
let data = self.memcpy_stod(storage)?;
|
|
||||||
CudaStorageSlice::I64(data)
|
|
||||||
}
|
|
||||||
CpuStorageRef::BF16(storage) => {
|
|
||||||
let data = self.memcpy_stod(storage)?;
|
|
||||||
CudaStorageSlice::BF16(data)
|
|
||||||
}
|
|
||||||
CpuStorageRef::F16(storage) => {
|
|
||||||
let data = self.memcpy_stod(storage)?;
|
|
||||||
CudaStorageSlice::F16(data)
|
|
||||||
}
|
|
||||||
CpuStorageRef::F32(storage) => {
|
|
||||||
let data = self.memcpy_stod(storage)?;
|
|
||||||
CudaStorageSlice::F32(data)
|
|
||||||
}
|
|
||||||
CpuStorageRef::F64(storage) => {
|
|
||||||
let data = self.memcpy_stod(storage)?;
|
|
||||||
CudaStorageSlice::F64(data)
|
|
||||||
}
|
|
||||||
};
|
|
||||||
Ok(CudaStorage {
|
|
||||||
slice,
|
|
||||||
device: self.clone(),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<CudaStorage> {
|
|
||||||
let slice = match storage {
|
|
||||||
CpuStorage::U8(storage) => {
|
|
||||||
let data = self.memcpy_stod(storage)?;
|
|
||||||
CudaStorageSlice::U8(data)
|
|
||||||
}
|
|
||||||
CpuStorage::U32(storage) => {
|
|
||||||
let data = self.memcpy_stod(storage)?;
|
|
||||||
CudaStorageSlice::U32(data)
|
|
||||||
}
|
|
||||||
CpuStorage::I64(storage) => {
|
|
||||||
let data = self.memcpy_stod(storage)?;
|
|
||||||
CudaStorageSlice::I64(data)
|
|
||||||
}
|
|
||||||
CpuStorage::BF16(storage) => {
|
|
||||||
let data = self.memcpy_stod(storage)?;
|
|
||||||
CudaStorageSlice::BF16(data)
|
|
||||||
}
|
|
||||||
CpuStorage::F16(storage) => {
|
|
||||||
let data = self.memcpy_stod(storage)?;
|
|
||||||
CudaStorageSlice::F16(data)
|
|
||||||
}
|
|
||||||
CpuStorage::F32(storage) => {
|
|
||||||
let data = self.memcpy_stod(storage)?;
|
|
||||||
CudaStorageSlice::F32(data)
|
|
||||||
}
|
|
||||||
CpuStorage::F64(storage) => {
|
|
||||||
let data = self.memcpy_stod(storage)?;
|
|
||||||
CudaStorageSlice::F64(data)
|
|
||||||
}
|
|
||||||
};
|
|
||||||
Ok(CudaStorage {
|
|
||||||
slice,
|
|
||||||
device: self.clone(),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
fn storage_from_cpu_storage_owned(&self, storage: CpuStorage) -> Result<CudaStorage> {
|
|
||||||
let slice = match storage {
|
|
||||||
CpuStorage::U8(storage) => {
|
|
||||||
let data = self.memcpy_stod(&storage)?;
|
|
||||||
CudaStorageSlice::U8(data)
|
|
||||||
}
|
|
||||||
CpuStorage::U32(storage) => {
|
|
||||||
let data = self.memcpy_stod(&storage)?;
|
|
||||||
CudaStorageSlice::U32(data)
|
|
||||||
}
|
|
||||||
CpuStorage::I64(storage) => {
|
|
||||||
let data = self.memcpy_stod(&storage)?;
|
|
||||||
CudaStorageSlice::I64(data)
|
|
||||||
}
|
|
||||||
CpuStorage::BF16(storage) => {
|
|
||||||
let data = self.memcpy_stod(&storage)?;
|
|
||||||
CudaStorageSlice::BF16(data)
|
|
||||||
}
|
|
||||||
CpuStorage::F16(storage) => {
|
|
||||||
let data = self.memcpy_stod(&storage)?;
|
|
||||||
CudaStorageSlice::F16(data)
|
|
||||||
}
|
|
||||||
CpuStorage::F32(storage) => {
|
|
||||||
let data = self.memcpy_stod(&storage)?;
|
|
||||||
CudaStorageSlice::F32(data)
|
|
||||||
}
|
|
||||||
CpuStorage::F64(storage) => {
|
|
||||||
let data = self.memcpy_stod(&storage)?;
|
|
||||||
CudaStorageSlice::F64(data)
|
|
||||||
}
|
|
||||||
};
|
|
||||||
Ok(CudaStorage {
|
|
||||||
slice,
|
|
||||||
device: self.clone(),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
fn synchronize(&self) -> Result<()> {
|
|
||||||
self.stream.synchronize().map_err(crate::Error::wrap)?;
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,62 +0,0 @@
|
|||||||
use crate::{DType, Layout};
|
|
||||||
|
|
||||||
/// cudarc related errors
|
|
||||||
#[derive(thiserror::Error, Debug)]
|
|
||||||
pub enum CudaError {
|
|
||||||
#[error(transparent)]
|
|
||||||
Cuda(#[from] cudarc::driver::DriverError),
|
|
||||||
|
|
||||||
#[error(transparent)]
|
|
||||||
Compiler(#[from] cudarc::nvrtc::CompileError),
|
|
||||||
|
|
||||||
#[error(transparent)]
|
|
||||||
Cublas(#[from] cudarc::cublas::result::CublasError),
|
|
||||||
|
|
||||||
#[error(transparent)]
|
|
||||||
Curand(#[from] cudarc::curand::result::CurandError),
|
|
||||||
|
|
||||||
#[error("missing kernel '{module_name}'")]
|
|
||||||
MissingKernel { module_name: String },
|
|
||||||
|
|
||||||
#[error("unsupported dtype {dtype:?} for {op}")]
|
|
||||||
UnsupportedDtype { dtype: DType, op: &'static str },
|
|
||||||
|
|
||||||
#[error("internal error '{0}'")]
|
|
||||||
InternalError(&'static str),
|
|
||||||
|
|
||||||
#[error("matmul is only supported for contiguous tensors lstride: {lhs_stride:?} rstride: {rhs_stride:?} mnk: {mnk:?}")]
|
|
||||||
MatMulNonContiguous {
|
|
||||||
lhs_stride: Layout,
|
|
||||||
rhs_stride: Layout,
|
|
||||||
mnk: (usize, usize, usize),
|
|
||||||
},
|
|
||||||
|
|
||||||
#[error("{msg}, expected: {expected:?}, got: {got:?}")]
|
|
||||||
UnexpectedDType {
|
|
||||||
msg: &'static str,
|
|
||||||
expected: DType,
|
|
||||||
got: DType,
|
|
||||||
},
|
|
||||||
|
|
||||||
#[error("{cuda} when loading {module_name}")]
|
|
||||||
Load {
|
|
||||||
cuda: cudarc::driver::DriverError,
|
|
||||||
module_name: String,
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
impl From<CudaError> for crate::Error {
|
|
||||||
fn from(val: CudaError) -> Self {
|
|
||||||
crate::Error::Cuda(Box::new(val)).bt()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub trait WrapErr<O> {
|
|
||||||
fn w(self) -> std::result::Result<O, crate::Error>;
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<O, E: Into<CudaError>> WrapErr<O> for std::result::Result<O, E> {
|
|
||||||
fn w(self) -> std::result::Result<O, crate::Error> {
|
|
||||||
self.map_err(|e| crate::Error::Cuda(Box::new(e.into())).bt())
|
|
||||||
}
|
|
||||||
}
|
|
File diff suppressed because it is too large
Load Diff
@ -1,172 +0,0 @@
|
|||||||
/// Helper functions to plug cuda kernels in candle.
|
|
||||||
use crate::{Layout, Result, Shape, WithDType};
|
|
||||||
pub use cudarc;
|
|
||||||
use cudarc::driver::{CudaSlice, DeviceRepr, ValidAsZeroBits};
|
|
||||||
|
|
||||||
use super::{CudaDevice, CudaError, WrapErr};
|
|
||||||
|
|
||||||
pub type S = super::CudaStorageSlice;
|
|
||||||
|
|
||||||
pub trait Map1 {
|
|
||||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
|
||||||
&self,
|
|
||||||
src: &CudaSlice<T>,
|
|
||||||
dev: &CudaDevice,
|
|
||||||
layout: &Layout,
|
|
||||||
) -> Result<CudaSlice<T>>;
|
|
||||||
|
|
||||||
fn map(&self, s: &S, d: &CudaDevice, l: &Layout) -> Result<S> {
|
|
||||||
let out = match s {
|
|
||||||
S::U8(s) => S::U8(self.f(s, d, l)?),
|
|
||||||
S::U32(s) => S::U32(self.f(s, d, l)?),
|
|
||||||
S::I64(s) => S::I64(self.f(s, d, l)?),
|
|
||||||
S::BF16(s) => S::BF16(self.f(s, d, l)?),
|
|
||||||
S::F16(s) => S::F16(self.f(s, d, l)?),
|
|
||||||
S::F32(s) => S::F32(self.f(s, d, l)?),
|
|
||||||
S::F64(s) => S::F64(self.f(s, d, l)?),
|
|
||||||
};
|
|
||||||
Ok(out)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub trait Map2 {
|
|
||||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
|
||||||
&self,
|
|
||||||
src1: &CudaSlice<T>,
|
|
||||||
layout1: &Layout,
|
|
||||||
src2: &CudaSlice<T>,
|
|
||||||
layout2: &Layout,
|
|
||||||
dev: &CudaDevice,
|
|
||||||
) -> Result<CudaSlice<T>>;
|
|
||||||
|
|
||||||
fn map(&self, s1: &S, l1: &Layout, s2: &S, l2: &Layout, d: &CudaDevice) -> Result<S> {
|
|
||||||
let out = match (s1, s2) {
|
|
||||||
(S::U8(s1), S::U8(s2)) => S::U8(self.f(s1, l1, s2, l2, d)?),
|
|
||||||
(S::U32(s1), S::U32(s2)) => S::U32(self.f(s1, l1, s2, l2, d)?),
|
|
||||||
(S::I64(s1), S::I64(s2)) => S::I64(self.f(s1, l1, s2, l2, d)?),
|
|
||||||
(S::BF16(s1), S::BF16(s2)) => S::BF16(self.f(s1, l1, s2, l2, d)?),
|
|
||||||
(S::F16(s1), S::F16(s2)) => S::F16(self.f(s1, l1, s2, l2, d)?),
|
|
||||||
(S::F32(s1), S::F32(s2)) => S::F32(self.f(s1, l1, s2, l2, d)?),
|
|
||||||
(S::F64(s1), S::F64(s2)) => S::F64(self.f(s1, l1, s2, l2, d)?),
|
|
||||||
_ => Err(CudaError::InternalError("dtype mismatch in binary op"))?,
|
|
||||||
};
|
|
||||||
Ok(out)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub trait Map3 {
|
|
||||||
#[allow(clippy::too_many_arguments)]
|
|
||||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
|
||||||
&self,
|
|
||||||
src1: &CudaSlice<T>,
|
|
||||||
layout1: &Layout,
|
|
||||||
src2: &CudaSlice<T>,
|
|
||||||
layout2: &Layout,
|
|
||||||
src3: &CudaSlice<T>,
|
|
||||||
layout3: &Layout,
|
|
||||||
dev: &CudaDevice,
|
|
||||||
) -> Result<CudaSlice<T>>;
|
|
||||||
|
|
||||||
#[allow(clippy::too_many_arguments)]
|
|
||||||
fn map(
|
|
||||||
&self,
|
|
||||||
s1: &S,
|
|
||||||
l1: &Layout,
|
|
||||||
s2: &S,
|
|
||||||
l2: &Layout,
|
|
||||||
s3: &S,
|
|
||||||
l3: &Layout,
|
|
||||||
d: &CudaDevice,
|
|
||||||
) -> Result<S> {
|
|
||||||
let out = match (s1, s2, s3) {
|
|
||||||
(S::U8(s1), S::U8(s2), S::U8(s3)) => S::U8(self.f(s1, l1, s2, l2, s3, l3, d)?),
|
|
||||||
(S::U32(s1), S::U32(s2), S::U32(s3)) => S::U32(self.f(s1, l1, s2, l2, s3, l3, d)?),
|
|
||||||
(S::I64(s1), S::I64(s2), S::I64(s3)) => S::I64(self.f(s1, l1, s2, l2, s3, l3, d)?),
|
|
||||||
(S::BF16(s1), S::BF16(s2), S::BF16(s3)) => S::BF16(self.f(s1, l1, s2, l2, s3, l3, d)?),
|
|
||||||
(S::F16(s1), S::F16(s2), S::F16(s3)) => S::F16(self.f(s1, l1, s2, l2, s3, l3, d)?),
|
|
||||||
(S::F32(s1), S::F32(s2), S::F32(s3)) => S::F32(self.f(s1, l1, s2, l2, s3, l3, d)?),
|
|
||||||
(S::F64(s1), S::F64(s2), S::F64(s3)) => S::F64(self.f(s1, l1, s2, l2, s3, l3, d)?),
|
|
||||||
_ => Err(CudaError::InternalError("dtype mismatch in ternary op"))?,
|
|
||||||
};
|
|
||||||
Ok(out)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub trait Map2InPlace {
|
|
||||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
|
||||||
&self,
|
|
||||||
dst: &mut CudaSlice<T>,
|
|
||||||
dst_shape: &Shape,
|
|
||||||
src: &CudaSlice<T>,
|
|
||||||
src_l: &Layout,
|
|
||||||
dev: &CudaDevice,
|
|
||||||
) -> Result<()>;
|
|
||||||
|
|
||||||
fn map(
|
|
||||||
&self,
|
|
||||||
dst: &mut S,
|
|
||||||
dst_s: &Shape,
|
|
||||||
src: &S,
|
|
||||||
src_l: &Layout,
|
|
||||||
d: &CudaDevice,
|
|
||||||
) -> Result<()> {
|
|
||||||
match (dst, src) {
|
|
||||||
(S::U8(dst), S::U8(src)) => self.f(dst, dst_s, src, src_l, d),
|
|
||||||
(S::U32(dst), S::U32(src)) => self.f(dst, dst_s, src, src_l, d),
|
|
||||||
(S::I64(dst), S::I64(src)) => self.f(dst, dst_s, src, src_l, d),
|
|
||||||
(S::BF16(dst), S::BF16(src)) => self.f(dst, dst_s, src, src_l, d),
|
|
||||||
(S::F16(dst), S::F16(src)) => self.f(dst, dst_s, src, src_l, d),
|
|
||||||
(S::F32(dst), S::F32(src)) => self.f(dst, dst_s, src, src_l, d),
|
|
||||||
(S::F64(dst), S::F64(src)) => self.f(dst, dst_s, src, src_l, d),
|
|
||||||
_ => Err(CudaError::InternalError("dtype mismatch in binary op"))?,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub trait Map1Any {
|
|
||||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
|
|
||||||
&self,
|
|
||||||
src: &CudaSlice<T>,
|
|
||||||
dev: &CudaDevice,
|
|
||||||
layout: &Layout,
|
|
||||||
wrap: W,
|
|
||||||
) -> Result<S>;
|
|
||||||
|
|
||||||
fn map(&self, s: &S, d: &CudaDevice, l: &Layout) -> Result<S> {
|
|
||||||
let out = match s {
|
|
||||||
S::U8(s) => self.f(s, d, l, S::U8)?,
|
|
||||||
S::U32(s) => self.f(s, d, l, S::U32)?,
|
|
||||||
S::I64(s) => self.f(s, d, l, S::I64)?,
|
|
||||||
S::BF16(s) => self.f(s, d, l, S::BF16)?,
|
|
||||||
S::F16(s) => self.f(s, d, l, S::F16)?,
|
|
||||||
S::F32(s) => self.f(s, d, l, S::F32)?,
|
|
||||||
S::F64(s) => self.f(s, d, l, S::F64)?,
|
|
||||||
};
|
|
||||||
Ok(out)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub trait Map2Any {
|
|
||||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
|
||||||
&self,
|
|
||||||
src1: &CudaSlice<T>,
|
|
||||||
layout1: &Layout,
|
|
||||||
src2: &CudaSlice<T>,
|
|
||||||
layout2: &Layout,
|
|
||||||
dev: &CudaDevice,
|
|
||||||
) -> Result<S>;
|
|
||||||
|
|
||||||
fn map(&self, s1: &S, l1: &Layout, s2: &S, l2: &Layout, d: &CudaDevice) -> Result<S> {
|
|
||||||
let out = match (s1, s2) {
|
|
||||||
(S::U8(s1), S::U8(s2)) => self.f(s1, l1, s2, l2, d)?,
|
|
||||||
(S::U32(s1), S::U32(s2)) => self.f(s1, l1, s2, l2, d)?,
|
|
||||||
(S::I64(s1), S::I64(s2)) => self.f(s1, l1, s2, l2, d)?,
|
|
||||||
(S::BF16(s1), S::BF16(s2)) => self.f(s1, l1, s2, l2, d)?,
|
|
||||||
(S::F16(s1), S::F16(s2)) => self.f(s1, l1, s2, l2, d)?,
|
|
||||||
(S::F32(s1), S::F32(s2)) => self.f(s1, l1, s2, l2, d)?,
|
|
||||||
(S::F64(s1), S::F64(s2)) => self.f(s1, l1, s2, l2, d)?,
|
|
||||||
_ => Err(CudaError::InternalError("dtype mismatch in binary op")).w()?,
|
|
||||||
};
|
|
||||||
Ok(out)
|
|
||||||
}
|
|
||||||
}
|
|
107
candle-core/src/cudnn.rs
Normal file
107
candle-core/src/cudnn.rs
Normal file
@ -0,0 +1,107 @@
|
|||||||
|
use crate::WithDType;
|
||||||
|
use cudarc;
|
||||||
|
use cudarc::cudnn::safe::{Conv2dForward, Cudnn};
|
||||||
|
use cudarc::driver::{CudaSlice, CudaView, DeviceRepr, ValidAsZeroBits};
|
||||||
|
use std::cell::RefCell;
|
||||||
|
use std::collections::HashMap;
|
||||||
|
use std::sync::Arc;
|
||||||
|
|
||||||
|
// The cudnn handles are stored per thread here rather than on the CudaDevice as they are neither
|
||||||
|
// send nor sync.
|
||||||
|
thread_local! {
|
||||||
|
static CUDNN: RefCell<HashMap<crate::cuda_backend::DeviceId, Arc<Cudnn>>> = HashMap::new().into();
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<cudarc::cudnn::CudnnError> for crate::Error {
|
||||||
|
fn from(err: cudarc::cudnn::CudnnError) -> Self {
|
||||||
|
crate::Error::wrap(err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<cudarc::driver::DriverError> for crate::Error {
|
||||||
|
fn from(err: cudarc::driver::DriverError) -> Self {
|
||||||
|
crate::Error::wrap(err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub(crate) fn launch_conv2d<
|
||||||
|
T: DeviceRepr + WithDType + ValidAsZeroBits + cudarc::cudnn::CudnnDataType,
|
||||||
|
>(
|
||||||
|
src: &CudaView<T>,
|
||||||
|
src_l: &crate::Layout,
|
||||||
|
filter: &CudaView<T>,
|
||||||
|
dst: &mut CudaSlice<T>,
|
||||||
|
params: &crate::conv::ParamsConv2D,
|
||||||
|
dev: &crate::cuda_backend::CudaDevice,
|
||||||
|
) -> crate::Result<()> {
|
||||||
|
let device_id = dev.id();
|
||||||
|
let cudnn = CUDNN.with(|cudnn| {
|
||||||
|
if let Some(cudnn) = cudnn.borrow().get(&device_id) {
|
||||||
|
return Ok(cudnn.clone());
|
||||||
|
}
|
||||||
|
let c = Cudnn::new(dev.cuda_device());
|
||||||
|
if let Ok(c) = &c {
|
||||||
|
cudnn.borrow_mut().insert(device_id, c.clone());
|
||||||
|
}
|
||||||
|
c
|
||||||
|
})?;
|
||||||
|
let conv = cudnn.create_conv2d::<T>(
|
||||||
|
/* pad */ [params.padding as i32, params.padding as i32],
|
||||||
|
/* stride */ [params.stride as i32, params.stride as i32],
|
||||||
|
/* dilation */ [params.dilation as i32, params.dilation as i32],
|
||||||
|
cudarc::cudnn::sys::cudnnConvolutionMode_t::CUDNN_CROSS_CORRELATION,
|
||||||
|
)?;
|
||||||
|
let x_shape = [
|
||||||
|
params.b_size as i32,
|
||||||
|
params.c_in as i32,
|
||||||
|
params.i_h as i32,
|
||||||
|
params.i_w as i32,
|
||||||
|
];
|
||||||
|
// Note that `src` already starts at the proper offset.
|
||||||
|
let x = if src_l.is_contiguous() {
|
||||||
|
cudnn.create_4d_tensor(
|
||||||
|
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
||||||
|
x_shape,
|
||||||
|
)?
|
||||||
|
} else {
|
||||||
|
let s = src_l.stride();
|
||||||
|
cudnn.create_4d_tensor_ex(
|
||||||
|
x_shape,
|
||||||
|
[s[0] as i32, s[1] as i32, s[2] as i32, s[3] as i32],
|
||||||
|
)?
|
||||||
|
};
|
||||||
|
let w = cudnn.create_4d_filter(
|
||||||
|
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
||||||
|
[
|
||||||
|
params.c_out as i32,
|
||||||
|
params.c_in as i32,
|
||||||
|
params.k_h as i32,
|
||||||
|
params.k_w as i32,
|
||||||
|
],
|
||||||
|
)?;
|
||||||
|
let (w_out, h_out) = (params.out_w() as i32, params.out_h() as i32);
|
||||||
|
let y = cudnn.create_4d_tensor(
|
||||||
|
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
||||||
|
[params.b_size as i32, params.c_out as i32, h_out, w_out],
|
||||||
|
)?;
|
||||||
|
let conv2d = Conv2dForward {
|
||||||
|
conv: &conv,
|
||||||
|
x: &x,
|
||||||
|
w: &w,
|
||||||
|
y: &y,
|
||||||
|
};
|
||||||
|
let alg = conv2d.pick_algorithm()?;
|
||||||
|
let workspace_size = conv2d.get_workspace_size(alg)?;
|
||||||
|
let mut workspace = dev.cuda_device().alloc_zeros::<u8>(workspace_size)?;
|
||||||
|
unsafe {
|
||||||
|
conv2d.launch::<CudaSlice<u8>, _, _, _>(
|
||||||
|
alg,
|
||||||
|
Some(&mut workspace),
|
||||||
|
(T::one(), T::zero()),
|
||||||
|
src,
|
||||||
|
filter,
|
||||||
|
dst,
|
||||||
|
)?;
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
@ -1,490 +0,0 @@
|
|||||||
use crate::op::{BackpropOp, Op};
|
|
||||||
use crate::tensor::from_storage;
|
|
||||||
use crate::{CpuStorage, CudaStorage, Layout, MetalStorage, Result, Shape, Tensor};
|
|
||||||
use std::sync::Arc;
|
|
||||||
|
|
||||||
/// Unary ops that can be defined in user-land.
|
|
||||||
pub trait CustomOp1 {
|
|
||||||
// Box<dyn> does not support const yet, so use a function to get the name.
|
|
||||||
fn name(&self) -> &'static str;
|
|
||||||
|
|
||||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)>;
|
|
||||||
|
|
||||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn cuda_fwd(&self, _storage: &CudaStorage, _layout: &Layout) -> Result<(CudaStorage, Shape)> {
|
|
||||||
Err(crate::Error::Cuda(
|
|
||||||
format!("no cuda implementation for {}", self.name()).into(),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn metal_fwd(
|
|
||||||
&self,
|
|
||||||
_storage: &MetalStorage,
|
|
||||||
_layout: &Layout,
|
|
||||||
) -> Result<(MetalStorage, Shape)> {
|
|
||||||
Err(crate::Error::Metal(
|
|
||||||
format!("no metal implementation for {}", self.name()).into(),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// This function takes as argument the argument `arg` used in the forward pass, the result
|
|
||||||
/// produced by the forward operation `res` and the gradient of the result `grad_res`.
|
|
||||||
/// The function should return the gradient of the argument.
|
|
||||||
fn bwd(&self, _arg: &Tensor, _res: &Tensor, _grad_res: &Tensor) -> Result<Option<Tensor>> {
|
|
||||||
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub trait CustomOp2 {
|
|
||||||
fn name(&self) -> &'static str;
|
|
||||||
|
|
||||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn cpu_fwd(
|
|
||||||
&self,
|
|
||||||
s1: &CpuStorage,
|
|
||||||
l1: &Layout,
|
|
||||||
s2: &CpuStorage,
|
|
||||||
l2: &Layout,
|
|
||||||
) -> Result<(CpuStorage, Shape)>;
|
|
||||||
|
|
||||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn cuda_fwd(
|
|
||||||
&self,
|
|
||||||
_: &CudaStorage,
|
|
||||||
_: &Layout,
|
|
||||||
_: &CudaStorage,
|
|
||||||
_: &Layout,
|
|
||||||
) -> Result<(CudaStorage, Shape)> {
|
|
||||||
Err(crate::Error::Cuda(
|
|
||||||
format!("no cuda implementation for {}", self.name()).into(),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn metal_fwd(
|
|
||||||
&self,
|
|
||||||
_: &MetalStorage,
|
|
||||||
_: &Layout,
|
|
||||||
_: &MetalStorage,
|
|
||||||
_: &Layout,
|
|
||||||
) -> Result<(MetalStorage, Shape)> {
|
|
||||||
Err(crate::Error::Metal(
|
|
||||||
format!("no metal implementation for {}", self.name()).into(),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
|
|
||||||
fn bwd(
|
|
||||||
&self,
|
|
||||||
_arg1: &Tensor,
|
|
||||||
_arg2: &Tensor,
|
|
||||||
_res: &Tensor,
|
|
||||||
_grad_res: &Tensor,
|
|
||||||
) -> Result<(Option<Tensor>, Option<Tensor>)> {
|
|
||||||
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub trait CustomOp3 {
|
|
||||||
fn name(&self) -> &'static str;
|
|
||||||
|
|
||||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn cpu_fwd(
|
|
||||||
&self,
|
|
||||||
s1: &CpuStorage,
|
|
||||||
l1: &Layout,
|
|
||||||
s2: &CpuStorage,
|
|
||||||
l2: &Layout,
|
|
||||||
s3: &CpuStorage,
|
|
||||||
l3: &Layout,
|
|
||||||
) -> Result<(CpuStorage, Shape)>;
|
|
||||||
|
|
||||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn cuda_fwd(
|
|
||||||
&self,
|
|
||||||
_: &CudaStorage,
|
|
||||||
_: &Layout,
|
|
||||||
_: &CudaStorage,
|
|
||||||
_: &Layout,
|
|
||||||
_: &CudaStorage,
|
|
||||||
_: &Layout,
|
|
||||||
) -> Result<(CudaStorage, Shape)> {
|
|
||||||
Err(crate::Error::Cuda(
|
|
||||||
format!("no cuda implementation for {}", self.name()).into(),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn metal_fwd(
|
|
||||||
&self,
|
|
||||||
_: &MetalStorage,
|
|
||||||
_: &Layout,
|
|
||||||
_: &MetalStorage,
|
|
||||||
_: &Layout,
|
|
||||||
_: &MetalStorage,
|
|
||||||
_: &Layout,
|
|
||||||
) -> Result<(MetalStorage, Shape)> {
|
|
||||||
Err(crate::Error::Metal(
|
|
||||||
format!("no metal implementation for {}", self.name()).into(),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
|
|
||||||
fn bwd(
|
|
||||||
&self,
|
|
||||||
_arg1: &Tensor,
|
|
||||||
_arg2: &Tensor,
|
|
||||||
_arg3: &Tensor,
|
|
||||||
_res: &Tensor,
|
|
||||||
_grad_res: &Tensor,
|
|
||||||
) -> Result<(Option<Tensor>, Option<Tensor>, Option<Tensor>)> {
|
|
||||||
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Tensor {
|
|
||||||
/// Applies a unary custom op without backward support
|
|
||||||
pub fn apply_op1_no_bwd<C: CustomOp1>(&self, c: &C) -> Result<Self> {
|
|
||||||
let (storage, shape) = self.storage().apply_op1(self.layout(), c)?;
|
|
||||||
Ok(from_storage(storage, shape, BackpropOp::none(), false))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Applies a binary custom op without backward support
|
|
||||||
pub fn apply_op2_no_bwd<C: CustomOp2>(&self, rhs: &Self, c: &C) -> Result<Self> {
|
|
||||||
let (storage, shape) =
|
|
||||||
self.storage()
|
|
||||||
.apply_op2(self.layout(), &rhs.storage(), rhs.layout(), c)?;
|
|
||||||
Ok(from_storage(storage, shape, BackpropOp::none(), false))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Applies a ternary custom op without backward support
|
|
||||||
pub fn apply_op3_no_bwd<C: CustomOp3>(&self, t2: &Self, t3: &Self, c: &C) -> Result<Self> {
|
|
||||||
let (storage, shape) = self.storage().apply_op3(
|
|
||||||
self.layout(),
|
|
||||||
&t2.storage(),
|
|
||||||
t2.layout(),
|
|
||||||
&t3.storage(),
|
|
||||||
t3.layout(),
|
|
||||||
c,
|
|
||||||
)?;
|
|
||||||
Ok(from_storage(storage, shape, BackpropOp::none(), false))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Applies a unary custom op.
|
|
||||||
pub fn apply_op1_arc(&self, c: Arc<Box<dyn CustomOp1 + Send + Sync>>) -> Result<Self> {
|
|
||||||
let (storage, shape) = self
|
|
||||||
.storage()
|
|
||||||
.apply_op1(self.layout(), c.as_ref().as_ref())?;
|
|
||||||
let op = BackpropOp::new1(self, |s| Op::CustomOp1(s, c.clone()));
|
|
||||||
Ok(from_storage(storage, shape, op, false))
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn apply_op1<C: 'static + CustomOp1 + Send + Sync>(&self, c: C) -> Result<Self> {
|
|
||||||
self.apply_op1_arc(Arc::new(Box::new(c)))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Applies a binary custom op.
|
|
||||||
pub fn apply_op2_arc(
|
|
||||||
&self,
|
|
||||||
rhs: &Self,
|
|
||||||
c: Arc<Box<dyn CustomOp2 + Send + Sync>>,
|
|
||||||
) -> Result<Self> {
|
|
||||||
let (storage, shape) = self.storage().apply_op2(
|
|
||||||
self.layout(),
|
|
||||||
&rhs.storage(),
|
|
||||||
rhs.layout(),
|
|
||||||
c.as_ref().as_ref(),
|
|
||||||
)?;
|
|
||||||
let op = BackpropOp::new2(self, rhs, |t1, t2| Op::CustomOp2(t1, t2, c.clone()));
|
|
||||||
Ok(from_storage(storage, shape, op, false))
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn apply_op2<C: 'static + CustomOp2 + Send + Sync>(&self, r: &Self, c: C) -> Result<Self> {
|
|
||||||
self.apply_op2_arc(r, Arc::new(Box::new(c)))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Applies a ternary custom op.
|
|
||||||
pub fn apply_op3_arc(
|
|
||||||
&self,
|
|
||||||
t2: &Self,
|
|
||||||
t3: &Self,
|
|
||||||
c: Arc<Box<dyn CustomOp3 + Send + Sync>>,
|
|
||||||
) -> Result<Self> {
|
|
||||||
let (storage, shape) = self.storage().apply_op3(
|
|
||||||
self.layout(),
|
|
||||||
&t2.storage(),
|
|
||||||
t2.layout(),
|
|
||||||
&t3.storage(),
|
|
||||||
t3.layout(),
|
|
||||||
c.as_ref().as_ref(),
|
|
||||||
)?;
|
|
||||||
let op = BackpropOp::new3(self, t2, t3, |t1, t2, t3| {
|
|
||||||
Op::CustomOp3(t1, t2, t3, c.clone())
|
|
||||||
});
|
|
||||||
Ok(from_storage(storage, shape, op, false))
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn apply_op3<C: 'static + CustomOp3 + Send + Sync>(
|
|
||||||
&self,
|
|
||||||
t2: &Self,
|
|
||||||
t3: &Self,
|
|
||||||
c: C,
|
|
||||||
) -> Result<Self> {
|
|
||||||
self.apply_op3_arc(t2, t3, Arc::new(Box::new(c)))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// In place ops.
|
|
||||||
|
|
||||||
/// Unary ops that can be defined in user-land.
|
|
||||||
/// These ops work in place and as such back-prop is unsupported.
|
|
||||||
pub trait InplaceOp1 {
|
|
||||||
// Box<dyn> does not support const yet, so use a function to get the name.
|
|
||||||
fn name(&self) -> &'static str;
|
|
||||||
|
|
||||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn cpu_fwd(&self, storage: &mut CpuStorage, layout: &Layout) -> Result<()>;
|
|
||||||
|
|
||||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn cuda_fwd(&self, _storage: &mut CudaStorage, _layout: &Layout) -> Result<()> {
|
|
||||||
Err(crate::Error::Cuda(
|
|
||||||
format!("no cuda implementation for {}", self.name()).into(),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn metal_fwd(&self, _storage: &mut MetalStorage, _layout: &Layout) -> Result<()> {
|
|
||||||
Err(crate::Error::Metal(
|
|
||||||
format!("no metal implementation for {}", self.name()).into(),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub trait InplaceOp2 {
|
|
||||||
fn name(&self) -> &'static str;
|
|
||||||
|
|
||||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn cpu_fwd(&self, s1: &mut CpuStorage, l1: &Layout, s2: &CpuStorage, l2: &Layout)
|
|
||||||
-> Result<()>;
|
|
||||||
|
|
||||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn cuda_fwd(&self, _: &mut CudaStorage, _: &Layout, _: &CudaStorage, _: &Layout) -> Result<()> {
|
|
||||||
Err(crate::Error::Cuda(
|
|
||||||
format!("no cuda implementation for {}", self.name()).into(),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn metal_fwd(
|
|
||||||
&self,
|
|
||||||
_: &mut MetalStorage,
|
|
||||||
_: &Layout,
|
|
||||||
_: &MetalStorage,
|
|
||||||
_: &Layout,
|
|
||||||
) -> Result<()> {
|
|
||||||
Err(crate::Error::Metal(
|
|
||||||
format!("no metal implementation for {}", self.name()).into(),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub trait InplaceOp3 {
|
|
||||||
fn name(&self) -> &'static str;
|
|
||||||
|
|
||||||
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn cpu_fwd(
|
|
||||||
&self,
|
|
||||||
s1: &mut CpuStorage,
|
|
||||||
l1: &Layout,
|
|
||||||
s2: &CpuStorage,
|
|
||||||
l2: &Layout,
|
|
||||||
s3: &CpuStorage,
|
|
||||||
l3: &Layout,
|
|
||||||
) -> Result<()>;
|
|
||||||
|
|
||||||
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn cuda_fwd(
|
|
||||||
&self,
|
|
||||||
_: &mut CudaStorage,
|
|
||||||
_: &Layout,
|
|
||||||
_: &CudaStorage,
|
|
||||||
_: &Layout,
|
|
||||||
_: &CudaStorage,
|
|
||||||
_: &Layout,
|
|
||||||
) -> Result<()> {
|
|
||||||
Err(crate::Error::Cuda(
|
|
||||||
format!("no cuda implementation for {}", self.name()).into(),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
|
|
||||||
/// offsets etc so the associated layout should be used to access it.
|
|
||||||
fn metal_fwd(
|
|
||||||
&self,
|
|
||||||
_: &mut MetalStorage,
|
|
||||||
_: &Layout,
|
|
||||||
_: &MetalStorage,
|
|
||||||
_: &Layout,
|
|
||||||
_: &MetalStorage,
|
|
||||||
_: &Layout,
|
|
||||||
) -> Result<()> {
|
|
||||||
Err(crate::Error::Metal(
|
|
||||||
format!("no metal implementation for {}", self.name()).into(),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Tensor {
|
|
||||||
/// Applies a unary custom op in place.
|
|
||||||
pub fn inplace_op1<C: InplaceOp1>(&self, c: &C) -> Result<()> {
|
|
||||||
self.storage_mut().inplace_op1(self.layout(), c)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Applies a unary custom op in place (for the first tensor).
|
|
||||||
pub fn inplace_op2<C: InplaceOp2>(&self, rhs: &Self, c: &C) -> Result<()> {
|
|
||||||
self.storage_mut()
|
|
||||||
.inplace_op2(self.layout(), &rhs.storage(), rhs.layout(), c)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Applies a ternary custom op in place (for the first tensor).
|
|
||||||
pub fn inplace_op3<C: InplaceOp3>(&self, t2: &Self, t3: &Self, c: &C) -> Result<()> {
|
|
||||||
self.storage_mut().inplace_op3(
|
|
||||||
self.layout(),
|
|
||||||
&t2.storage(),
|
|
||||||
t2.layout(),
|
|
||||||
&t3.storage(),
|
|
||||||
t3.layout(),
|
|
||||||
c,
|
|
||||||
)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub struct UgIOp1 {
|
|
||||||
name: &'static str,
|
|
||||||
#[cfg(feature = "cuda")]
|
|
||||||
func: cudarc::driver::CudaFunction,
|
|
||||||
#[cfg(feature = "metal")]
|
|
||||||
func: metal::ComputePipelineState,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl UgIOp1 {
|
|
||||||
#[allow(unused)]
|
|
||||||
#[cfg(not(target_arch = "wasm32"))]
|
|
||||||
pub fn new(
|
|
||||||
name: &'static str,
|
|
||||||
kernel: ug::lang::ssa::Kernel,
|
|
||||||
device: &crate::Device,
|
|
||||||
) -> Result<Self> {
|
|
||||||
#[cfg(feature = "cuda")]
|
|
||||||
{
|
|
||||||
let device = device.as_cuda_device()?;
|
|
||||||
let func = device.compile(name, kernel)?;
|
|
||||||
Ok(Self {
|
|
||||||
name,
|
|
||||||
func: func.into_cuda_function(),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
#[cfg(feature = "metal")]
|
|
||||||
{
|
|
||||||
let device = device.as_metal_device()?;
|
|
||||||
let func = device.compile(name, kernel)?;
|
|
||||||
Ok(Self { name, func })
|
|
||||||
}
|
|
||||||
#[cfg(not(any(feature = "cuda", feature = "metal")))]
|
|
||||||
{
|
|
||||||
Ok(Self { name })
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl InplaceOp1 for UgIOp1 {
|
|
||||||
fn name(&self) -> &'static str {
|
|
||||||
self.name
|
|
||||||
}
|
|
||||||
|
|
||||||
fn cpu_fwd(&self, _: &mut CpuStorage, _: &Layout) -> Result<()> {
|
|
||||||
crate::bail!("ug ops are only supported on metal/cuda at the moment")
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(feature = "metal")]
|
|
||||||
fn metal_fwd(&self, sto: &mut MetalStorage, layout: &Layout) -> Result<()> {
|
|
||||||
use crate::backend::BackendStorage;
|
|
||||||
use candle_metal_kernels::utils::EncoderProvider;
|
|
||||||
|
|
||||||
let elem_count = layout.shape().elem_count();
|
|
||||||
if sto.dtype() != crate::DType::F32 {
|
|
||||||
// TODO: support more dtypes.
|
|
||||||
crate::bail!("input is not a f32 tensor")
|
|
||||||
}
|
|
||||||
let device = sto.device();
|
|
||||||
println!("here");
|
|
||||||
let command_buffer = device.command_buffer()?;
|
|
||||||
let command_buffer = &command_buffer;
|
|
||||||
let encoder = command_buffer.encoder();
|
|
||||||
let encoder = encoder.as_ref();
|
|
||||||
encoder.set_compute_pipeline_state(&self.func);
|
|
||||||
let (g, b) = if elem_count % 32 == 0 {
|
|
||||||
(elem_count / 32, 32)
|
|
||||||
} else {
|
|
||||||
(elem_count, 1)
|
|
||||||
};
|
|
||||||
let grid_dims = metal::MTLSize {
|
|
||||||
width: g as u64,
|
|
||||||
height: 1,
|
|
||||||
depth: 1,
|
|
||||||
};
|
|
||||||
let group_dims = candle_metal_kernels::utils::get_block_dims(b as u64, 1, 1);
|
|
||||||
candle_metal_kernels::utils::set_param(encoder, 0, (sto.buffer(), 0usize));
|
|
||||||
|
|
||||||
encoder.use_resource(sto.buffer(), metal::MTLResourceUsage::Write);
|
|
||||||
encoder.dispatch_threads(grid_dims, group_dims);
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(feature = "cuda")]
|
|
||||||
fn cuda_fwd(&self, sto: &mut CudaStorage, layout: &Layout) -> Result<()> {
|
|
||||||
use crate::cuda_backend::WrapErr;
|
|
||||||
use cudarc::driver::PushKernelArg;
|
|
||||||
|
|
||||||
let elem_count = layout.shape().elem_count();
|
|
||||||
let stream = sto.device.cuda_stream();
|
|
||||||
// TODO: support more dtypes.
|
|
||||||
let sto = sto.as_cuda_slice::<f32>()?;
|
|
||||||
let sto = match layout.contiguous_offsets() {
|
|
||||||
None => crate::bail!("input has to be contiguous"),
|
|
||||||
Some((o1, o2)) => sto.slice(o1..o2),
|
|
||||||
};
|
|
||||||
let (g, b) = if elem_count % 32 == 0 {
|
|
||||||
(elem_count / 32, 32)
|
|
||||||
} else {
|
|
||||||
(elem_count, 1)
|
|
||||||
};
|
|
||||||
let cfg = cudarc::driver::LaunchConfig {
|
|
||||||
grid_dim: (g as u32, 1, 1),
|
|
||||||
block_dim: (b as u32, 1, 1),
|
|
||||||
shared_mem_bytes: 0,
|
|
||||||
};
|
|
||||||
let mut builder = stream.launch_builder(&self.func);
|
|
||||||
builder.arg(&sto);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
|
@ -8,15 +8,12 @@ use crate::{CpuStorage, DType, Result, Shape, Storage, WithDType};
|
|||||||
pub enum DeviceLocation {
|
pub enum DeviceLocation {
|
||||||
Cpu,
|
Cpu,
|
||||||
Cuda { gpu_id: usize },
|
Cuda { gpu_id: usize },
|
||||||
Metal { gpu_id: usize },
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Cpu, Cuda, or Metal
|
|
||||||
#[derive(Debug, Clone)]
|
#[derive(Debug, Clone)]
|
||||||
pub enum Device {
|
pub enum Device {
|
||||||
Cpu,
|
Cpu,
|
||||||
Cuda(crate::CudaDevice),
|
Cuda(crate::CudaDevice),
|
||||||
Metal(crate::MetalDevice),
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub trait NdArray {
|
pub trait NdArray {
|
||||||
@ -131,43 +128,10 @@ impl Device {
|
|||||||
Ok(Self::Cuda(crate::CudaDevice::new(ordinal)?))
|
Ok(Self::Cuda(crate::CudaDevice::new(ordinal)?))
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn as_cuda_device(&self) -> Result<&crate::CudaDevice> {
|
|
||||||
match self {
|
|
||||||
Self::Cuda(d) => Ok(d),
|
|
||||||
Self::Cpu => crate::bail!("expected a cuda device, got cpu"),
|
|
||||||
Self::Metal(_) => crate::bail!("expected a cuda device, got Metal"),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn as_metal_device(&self) -> Result<&crate::MetalDevice> {
|
|
||||||
match self {
|
|
||||||
Self::Cuda(_) => crate::bail!("expected a metal device, got cuda"),
|
|
||||||
Self::Cpu => crate::bail!("expected a metal device, got cpu"),
|
|
||||||
Self::Metal(d) => Ok(d),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn new_cuda_with_stream(ordinal: usize) -> Result<Self> {
|
|
||||||
Ok(Self::Cuda(crate::CudaDevice::new_with_stream(ordinal)?))
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn new_metal(ordinal: usize) -> Result<Self> {
|
|
||||||
Ok(Self::Metal(crate::MetalDevice::new(ordinal)?))
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn set_seed(&self, seed: u64) -> Result<()> {
|
|
||||||
match self {
|
|
||||||
Self::Cpu => CpuDevice.set_seed(seed),
|
|
||||||
Self::Cuda(c) => c.set_seed(seed),
|
|
||||||
Self::Metal(m) => m.set_seed(seed),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn same_device(&self, rhs: &Self) -> bool {
|
pub fn same_device(&self, rhs: &Self) -> bool {
|
||||||
match (self, rhs) {
|
match (self, rhs) {
|
||||||
(Self::Cpu, Self::Cpu) => true,
|
(Self::Cpu, Self::Cpu) => true,
|
||||||
(Self::Cuda(lhs), Self::Cuda(rhs)) => lhs.same_device(rhs),
|
(Self::Cuda(lhs), Self::Cuda(rhs)) => lhs.same_device(rhs),
|
||||||
(Self::Metal(lhs), Self::Metal(rhs)) => lhs.same_device(rhs),
|
|
||||||
_ => false,
|
_ => false,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -176,35 +140,20 @@ impl Device {
|
|||||||
match self {
|
match self {
|
||||||
Self::Cpu => DeviceLocation::Cpu,
|
Self::Cpu => DeviceLocation::Cpu,
|
||||||
Self::Cuda(device) => device.location(),
|
Self::Cuda(device) => device.location(),
|
||||||
Device::Metal(device) => device.location(),
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn is_cpu(&self) -> bool {
|
pub fn is_cpu(&self) -> bool {
|
||||||
matches!(self, Self::Cpu)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn is_cuda(&self) -> bool {
|
|
||||||
matches!(self, Self::Cuda(_))
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn is_metal(&self) -> bool {
|
|
||||||
matches!(self, Self::Metal(_))
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn supports_bf16(&self) -> bool {
|
|
||||||
match self {
|
match self {
|
||||||
Self::Cuda(_) | Self::Metal(_) => true,
|
Self::Cpu => true,
|
||||||
Self::Cpu => false,
|
Self::Cuda(_) => false,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Return `BF16` for devices that support it, otherwise default to `F32`.
|
pub fn is_cuda(&self) -> bool {
|
||||||
pub fn bf16_default_to_f32(&self) -> DType {
|
match self {
|
||||||
if self.supports_bf16() {
|
Self::Cpu => false,
|
||||||
DType::BF16
|
Self::Cuda(_) => true,
|
||||||
} else {
|
|
||||||
DType::F32
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -229,18 +178,8 @@ impl Device {
|
|||||||
Ok(Storage::Cpu(storage))
|
Ok(Storage::Cpu(storage))
|
||||||
}
|
}
|
||||||
Device::Cuda(device) => {
|
Device::Cuda(device) => {
|
||||||
// TODO: Remove the special case if we start supporting generating f16/bf16 directly.
|
|
||||||
if dtype == DType::F16 || dtype == DType::BF16 {
|
|
||||||
let storage = device.rand_uniform(shape, DType::F32, lo, up)?;
|
|
||||||
Storage::Cuda(storage).to_dtype(&crate::Layout::contiguous(shape), dtype)
|
|
||||||
} else {
|
|
||||||
let storage = device.rand_uniform(shape, dtype, lo, up)?;
|
|
||||||
Ok(Storage::Cuda(storage))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Device::Metal(device) => {
|
|
||||||
let storage = device.rand_uniform(shape, dtype, lo, up)?;
|
let storage = device.rand_uniform(shape, dtype, lo, up)?;
|
||||||
Ok(Storage::Metal(storage))
|
Ok(Storage::Cuda(storage))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -267,18 +206,8 @@ impl Device {
|
|||||||
Ok(Storage::Cpu(storage))
|
Ok(Storage::Cpu(storage))
|
||||||
}
|
}
|
||||||
Device::Cuda(device) => {
|
Device::Cuda(device) => {
|
||||||
// TODO: Remove the special case if we start supporting generating f16/bf16 directly.
|
|
||||||
if dtype == DType::F16 || dtype == DType::BF16 {
|
|
||||||
let storage = device.rand_normal(shape, DType::F32, mean, std)?;
|
|
||||||
Storage::Cuda(storage).to_dtype(&crate::Layout::contiguous(shape), dtype)
|
|
||||||
} else {
|
|
||||||
let storage = device.rand_normal(shape, dtype, mean, std)?;
|
|
||||||
Ok(Storage::Cuda(storage))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Device::Metal(device) => {
|
|
||||||
let storage = device.rand_normal(shape, dtype, mean, std)?;
|
let storage = device.rand_normal(shape, dtype, mean, std)?;
|
||||||
Ok(Storage::Metal(storage))
|
Ok(Storage::Cuda(storage))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -302,10 +231,6 @@ impl Device {
|
|||||||
let storage = device.ones_impl(shape, dtype)?;
|
let storage = device.ones_impl(shape, dtype)?;
|
||||||
Ok(Storage::Cuda(storage))
|
Ok(Storage::Cuda(storage))
|
||||||
}
|
}
|
||||||
Device::Metal(device) => {
|
|
||||||
let storage = device.ones_impl(shape, dtype)?;
|
|
||||||
Ok(Storage::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -319,41 +244,6 @@ impl Device {
|
|||||||
let storage = device.zeros_impl(shape, dtype)?;
|
let storage = device.zeros_impl(shape, dtype)?;
|
||||||
Ok(Storage::Cuda(storage))
|
Ok(Storage::Cuda(storage))
|
||||||
}
|
}
|
||||||
Device::Metal(device) => {
|
|
||||||
let storage = device.zeros_impl(shape, dtype)?;
|
|
||||||
Ok(Storage::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub(crate) unsafe fn alloc_uninit(&self, shape: &Shape, dtype: DType) -> Result<Storage> {
|
|
||||||
match self {
|
|
||||||
Device::Cpu => {
|
|
||||||
let storage = CpuDevice.alloc_uninit(shape, dtype)?;
|
|
||||||
Ok(Storage::Cpu(storage))
|
|
||||||
}
|
|
||||||
Device::Cuda(device) => {
|
|
||||||
let storage = device.alloc_uninit(shape, dtype)?;
|
|
||||||
Ok(Storage::Cuda(storage))
|
|
||||||
}
|
|
||||||
Device::Metal(device) => {
|
|
||||||
let storage = device.alloc_uninit(shape, dtype)?;
|
|
||||||
Ok(Storage::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub(crate) fn storage_from_slice<D: WithDType>(&self, data: &[D]) -> Result<Storage> {
|
|
||||||
match self {
|
|
||||||
Device::Cpu => Ok(Storage::Cpu(data.to_cpu_storage())),
|
|
||||||
Device::Cuda(device) => {
|
|
||||||
let storage = device.storage_from_slice(data)?;
|
|
||||||
Ok(Storage::Cuda(storage))
|
|
||||||
}
|
|
||||||
Device::Metal(device) => {
|
|
||||||
let storage = device.storage_from_slice(data)?;
|
|
||||||
Ok(Storage::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -362,14 +252,9 @@ impl Device {
|
|||||||
Device::Cpu => Ok(Storage::Cpu(array.to_cpu_storage())),
|
Device::Cpu => Ok(Storage::Cpu(array.to_cpu_storage())),
|
||||||
Device::Cuda(device) => {
|
Device::Cuda(device) => {
|
||||||
let storage = array.to_cpu_storage();
|
let storage = array.to_cpu_storage();
|
||||||
let storage = device.storage_from_cpu_storage_owned(storage)?;
|
let storage = device.storage_from_cpu_storage(&storage)?;
|
||||||
Ok(Storage::Cuda(storage))
|
Ok(Storage::Cuda(storage))
|
||||||
}
|
}
|
||||||
Device::Metal(device) => {
|
|
||||||
let storage = array.to_cpu_storage();
|
|
||||||
let storage = device.storage_from_cpu_storage_owned(storage)?;
|
|
||||||
Ok(Storage::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -378,22 +263,9 @@ impl Device {
|
|||||||
Device::Cpu => Ok(Storage::Cpu(S::to_cpu_storage_owned(data))),
|
Device::Cpu => Ok(Storage::Cpu(S::to_cpu_storage_owned(data))),
|
||||||
Device::Cuda(device) => {
|
Device::Cuda(device) => {
|
||||||
let storage = S::to_cpu_storage_owned(data);
|
let storage = S::to_cpu_storage_owned(data);
|
||||||
let storage = device.storage_from_cpu_storage_owned(storage)?;
|
let storage = device.storage_from_cpu_storage(&storage)?;
|
||||||
Ok(Storage::Cuda(storage))
|
Ok(Storage::Cuda(storage))
|
||||||
}
|
}
|
||||||
Device::Metal(device) => {
|
|
||||||
let storage = S::to_cpu_storage_owned(data);
|
|
||||||
let storage = device.storage_from_cpu_storage_owned(storage)?;
|
|
||||||
Ok(Storage::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn synchronize(&self) -> Result<()> {
|
|
||||||
match self {
|
|
||||||
Self::Cpu => Ok(()),
|
|
||||||
Self::Cuda(d) => d.synchronize(),
|
|
||||||
Self::Metal(d) => d.synchronize(),
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,7 +1,6 @@
|
|||||||
//! Pretty printing of tensors
|
/// Pretty printing of tensors
|
||||||
//!
|
/// This implementation should be in line with the PyTorch version.
|
||||||
//! This implementation should be in line with the [PyTorch version](https://github.com/pytorch/pytorch/blob/7b419e8513a024e172eae767e24ec1b849976b13/torch/_tensor_str.py).
|
/// https://github.com/pytorch/pytorch/blob/7b419e8513a024e172eae767e24ec1b849976b13/torch/_tensor_str.py
|
||||||
//!
|
|
||||||
use crate::{DType, Result, Tensor, WithDType};
|
use crate::{DType, Result, Tensor, WithDType};
|
||||||
use half::{bf16, f16};
|
use half::{bf16, f16};
|
||||||
|
|
||||||
@ -15,9 +14,6 @@ impl Tensor {
|
|||||||
crate::DeviceLocation::Cuda { gpu_id } => {
|
crate::DeviceLocation::Cuda { gpu_id } => {
|
||||||
format!(", cuda:{}", gpu_id)
|
format!(", cuda:{}", gpu_id)
|
||||||
}
|
}
|
||||||
crate::DeviceLocation::Metal { gpu_id } => {
|
|
||||||
format!(", metal:{}", gpu_id)
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
|
|
||||||
write!(f, "Tensor[")?;
|
write!(f, "Tensor[")?;
|
||||||
@ -66,13 +62,12 @@ impl std::fmt::Debug for Tensor {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/// Options for Tensor pretty printing
|
/// Options for Tensor pretty printing
|
||||||
#[derive(Debug, Clone)]
|
|
||||||
pub struct PrinterOptions {
|
pub struct PrinterOptions {
|
||||||
pub precision: usize,
|
precision: usize,
|
||||||
pub threshold: usize,
|
threshold: usize,
|
||||||
pub edge_items: usize,
|
edge_items: usize,
|
||||||
pub line_width: usize,
|
line_width: usize,
|
||||||
pub sci_mode: Option<bool>,
|
sci_mode: Option<bool>,
|
||||||
}
|
}
|
||||||
|
|
||||||
static PRINT_OPTS: std::sync::Mutex<PrinterOptions> =
|
static PRINT_OPTS: std::sync::Mutex<PrinterOptions> =
|
||||||
@ -91,10 +86,6 @@ impl PrinterOptions {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn print_options() -> &'static std::sync::Mutex<PrinterOptions> {
|
|
||||||
&PRINT_OPTS
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn set_print_options(options: PrinterOptions) {
|
pub fn set_print_options(options: PrinterOptions) {
|
||||||
*PRINT_OPTS.lock().unwrap() = options
|
*PRINT_OPTS.lock().unwrap() = options
|
||||||
}
|
}
|
||||||
@ -123,26 +114,6 @@ pub fn set_print_options_full() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn set_line_width(line_width: usize) {
|
|
||||||
PRINT_OPTS.lock().unwrap().line_width = line_width
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn set_precision(precision: usize) {
|
|
||||||
PRINT_OPTS.lock().unwrap().precision = precision
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn set_edge_items(edge_items: usize) {
|
|
||||||
PRINT_OPTS.lock().unwrap().edge_items = edge_items
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn set_threshold(threshold: usize) {
|
|
||||||
PRINT_OPTS.lock().unwrap().threshold = threshold
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn set_sci_mode(sci_mode: Option<bool>) {
|
|
||||||
PRINT_OPTS.lock().unwrap().sci_mode = sci_mode
|
|
||||||
}
|
|
||||||
|
|
||||||
struct FmtSize {
|
struct FmtSize {
|
||||||
current_size: usize,
|
current_size: usize,
|
||||||
}
|
}
|
||||||
@ -505,9 +476,6 @@ impl std::fmt::Display for Tensor {
|
|||||||
crate::DeviceLocation::Cuda { gpu_id } => {
|
crate::DeviceLocation::Cuda { gpu_id } => {
|
||||||
format!(", cuda:{}", gpu_id)
|
format!(", cuda:{}", gpu_id)
|
||||||
}
|
}
|
||||||
crate::DeviceLocation::Metal { gpu_id } => {
|
|
||||||
format!(", metal:{}", gpu_id)
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
|
|
||||||
write!(
|
write!(
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
//! Types for elements that can be stored and manipulated using tensors.
|
//! Types for elements that can be stored and manipulated using tensors.
|
||||||
#![allow(clippy::redundant_closure_call)]
|
#![allow(clippy::redundant_closure_call)]
|
||||||
use crate::backend::BackendStorage;
|
use crate::backend::BackendStorage;
|
||||||
use crate::{CpuStorage, CpuStorageRef, Error, Result};
|
use crate::{CpuStorage, Error, Result};
|
||||||
|
|
||||||
/// The different types of elements allowed in tensors.
|
/// The different types of elements allowed in tensors.
|
||||||
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
|
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
|
||||||
@ -23,15 +23,7 @@ pub enum DType {
|
|||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Debug, PartialEq, Eq)]
|
#[derive(Debug, PartialEq, Eq)]
|
||||||
pub struct DTypeParseError(String);
|
pub struct DTypeParseError;
|
||||||
|
|
||||||
impl std::fmt::Display for DTypeParseError {
|
|
||||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
||||||
write!(f, "cannot parse '{}' as a dtype", self.0)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl std::error::Error for DTypeParseError {}
|
|
||||||
|
|
||||||
impl std::str::FromStr for DType {
|
impl std::str::FromStr for DType {
|
||||||
type Err = DTypeParseError;
|
type Err = DTypeParseError;
|
||||||
@ -44,7 +36,7 @@ impl std::str::FromStr for DType {
|
|||||||
"f16" => Ok(Self::F16),
|
"f16" => Ok(Self::F16),
|
||||||
"f32" => Ok(Self::F32),
|
"f32" => Ok(Self::F32),
|
||||||
"f64" => Ok(Self::F64),
|
"f64" => Ok(Self::F64),
|
||||||
_ => Err(DTypeParseError(s.to_string())),
|
_ => Err(DTypeParseError),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -75,20 +67,6 @@ impl DType {
|
|||||||
Self::F64 => 8,
|
Self::F64 => 8,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn is_int(&self) -> bool {
|
|
||||||
match self {
|
|
||||||
Self::U8 | Self::U32 | Self::I64 => true,
|
|
||||||
Self::BF16 | Self::F16 | Self::F32 | Self::F64 => false,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn is_float(&self) -> bool {
|
|
||||||
match self {
|
|
||||||
Self::U8 | Self::U32 | Self::I64 => false,
|
|
||||||
Self::BF16 | Self::F16 | Self::F32 | Self::F64 => true,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub trait WithDType:
|
pub trait WithDType:
|
||||||
@ -100,14 +78,12 @@ pub trait WithDType:
|
|||||||
+ 'static
|
+ 'static
|
||||||
+ Send
|
+ Send
|
||||||
+ Sync
|
+ Sync
|
||||||
+ std::any::Any
|
|
||||||
+ crate::cpu::kernels::VecOps
|
+ crate::cpu::kernels::VecOps
|
||||||
{
|
{
|
||||||
const DTYPE: DType;
|
const DTYPE: DType;
|
||||||
|
|
||||||
fn from_f64(v: f64) -> Self;
|
fn from_f64(v: f64) -> Self;
|
||||||
fn to_f64(self) -> f64;
|
fn to_f64(self) -> f64;
|
||||||
fn cpu_storage_ref(data: &[Self]) -> CpuStorageRef<'_>;
|
|
||||||
fn to_cpu_storage_owned(data: Vec<Self>) -> CpuStorage;
|
fn to_cpu_storage_owned(data: Vec<Self>) -> CpuStorage;
|
||||||
|
|
||||||
fn to_cpu_storage(data: &[Self]) -> CpuStorage {
|
fn to_cpu_storage(data: &[Self]) -> CpuStorage {
|
||||||
@ -131,10 +107,6 @@ macro_rules! with_dtype {
|
|||||||
$to_f64(self)
|
$to_f64(self)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn cpu_storage_ref(data: &[Self]) -> CpuStorageRef<'_> {
|
|
||||||
CpuStorageRef::$dtype(data)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn to_cpu_storage_owned(data: Vec<Self>) -> CpuStorage {
|
fn to_cpu_storage_owned(data: Vec<Self>) -> CpuStorage {
|
||||||
CpuStorage::$dtype(data)
|
CpuStorage::$dtype(data)
|
||||||
}
|
}
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
//! Implementation of the Cuda backend when Cuda support has not been compiled in.
|
|
||||||
//!
|
|
||||||
#![allow(dead_code)]
|
#![allow(dead_code)]
|
||||||
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
|
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
|
||||||
use crate::{CpuStorage, DType, Error, Layout, Result, Shape};
|
use crate::{CpuStorage, DType, Error, Layout, Result, Shape};
|
||||||
@ -16,12 +14,6 @@ macro_rules! fail {
|
|||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
impl CudaDevice {
|
|
||||||
pub fn new_with_stream(_: usize) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl crate::backend::BackendStorage for CudaStorage {
|
impl crate::backend::BackendStorage for CudaStorage {
|
||||||
type Device = CudaDevice;
|
type Device = CudaDevice;
|
||||||
|
|
||||||
@ -87,16 +79,6 @@ impl crate::backend::BackendStorage for CudaStorage {
|
|||||||
Err(Error::NotCompiledWithCudaSupport)
|
Err(Error::NotCompiledWithCudaSupport)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn conv_transpose1d(
|
|
||||||
&self,
|
|
||||||
_: &Layout,
|
|
||||||
_: &Self,
|
|
||||||
_: &Layout,
|
|
||||||
_: &crate::conv::ParamsConvTranspose1D,
|
|
||||||
) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn conv2d(
|
fn conv2d(
|
||||||
&self,
|
&self,
|
||||||
_: &Layout,
|
_: &Layout,
|
||||||
@ -162,19 +144,6 @@ impl crate::backend::BackendStorage for CudaStorage {
|
|||||||
Err(Error::NotCompiledWithCudaSupport)
|
Err(Error::NotCompiledWithCudaSupport)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn copy2d(
|
|
||||||
&self,
|
|
||||||
_: &mut Self,
|
|
||||||
_: usize,
|
|
||||||
_: usize,
|
|
||||||
_: usize,
|
|
||||||
_: usize,
|
|
||||||
_: usize,
|
|
||||||
_: usize,
|
|
||||||
) -> Result<()> {
|
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
Err(Error::NotCompiledWithCudaSupport)
|
||||||
}
|
}
|
||||||
@ -183,10 +152,6 @@ impl crate::backend::BackendStorage for CudaStorage {
|
|||||||
Err(Error::NotCompiledWithCudaSupport)
|
Err(Error::NotCompiledWithCudaSupport)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn upsample_nearest1d(&self, _: &Layout, _: usize) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self> {
|
fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self> {
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
Err(Error::NotCompiledWithCudaSupport)
|
||||||
}
|
}
|
||||||
@ -198,10 +163,6 @@ impl crate::backend::BackendDevice for CudaDevice {
|
|||||||
Err(Error::NotCompiledWithCudaSupport)
|
Err(Error::NotCompiledWithCudaSupport)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn set_seed(&self, _: u64) -> Result<()> {
|
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn location(&self) -> crate::DeviceLocation {
|
fn location(&self) -> crate::DeviceLocation {
|
||||||
fail!()
|
fail!()
|
||||||
}
|
}
|
||||||
@ -218,22 +179,10 @@ impl crate::backend::BackendDevice for CudaDevice {
|
|||||||
Err(Error::NotCompiledWithCudaSupport)
|
Err(Error::NotCompiledWithCudaSupport)
|
||||||
}
|
}
|
||||||
|
|
||||||
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
|
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage> {
|
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
|
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
Err(Error::NotCompiledWithCudaSupport)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage> {
|
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
Err(Error::NotCompiledWithCudaSupport)
|
||||||
}
|
}
|
||||||
@ -241,38 +190,4 @@ impl crate::backend::BackendDevice for CudaDevice {
|
|||||||
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
Err(Error::NotCompiledWithCudaSupport)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn synchronize(&self) -> Result<()> {
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
|
||||||
/// allowed with f16 GEMMs.
|
|
||||||
pub fn gemm_reduced_precision_f16() -> bool {
|
|
||||||
true
|
|
||||||
}
|
|
||||||
|
|
||||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
|
||||||
/// allowed with f16 GEMMs.
|
|
||||||
pub fn set_gemm_reduced_precision_f16(_: bool) {}
|
|
||||||
|
|
||||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
|
||||||
/// allowed with bf16 GEMMs.
|
|
||||||
pub fn gemm_reduced_precision_bf16() -> bool {
|
|
||||||
true
|
|
||||||
}
|
|
||||||
|
|
||||||
/// This bool controls whether reduced precision reductions (e.g., with fp16 accumulation type) are
|
|
||||||
/// allowed with bf16 GEMMs.
|
|
||||||
pub fn set_gemm_reduced_precision_bf16(_: bool) {}
|
|
||||||
|
|
||||||
/// This bool controls whether reduced precision reductions (e.g., with tf32 accumulation type) are
|
|
||||||
/// allowed with f32 GEMMs.
|
|
||||||
pub fn gemm_reduced_precision_f32() -> bool {
|
|
||||||
true
|
|
||||||
}
|
|
||||||
|
|
||||||
/// This bool controls whether reduced precision reductions (e.g., with tf32 accumulation type) are
|
|
||||||
/// allowed with f32 GEMMs.
|
|
||||||
pub fn set_gemm_reduced_precision_f32(_b: bool) {}
|
|
||||||
|
@ -1,252 +0,0 @@
|
|||||||
#![allow(dead_code)]
|
|
||||||
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
|
|
||||||
use crate::{CpuStorage, DType, Error, Layout, Result, Shape};
|
|
||||||
|
|
||||||
#[derive(Debug, Clone)]
|
|
||||||
pub struct MetalDevice;
|
|
||||||
|
|
||||||
#[derive(Debug)]
|
|
||||||
pub struct MetalStorage;
|
|
||||||
|
|
||||||
#[derive(thiserror::Error, Debug)]
|
|
||||||
pub enum MetalError {
|
|
||||||
#[error("{0}")]
|
|
||||||
Message(String),
|
|
||||||
}
|
|
||||||
|
|
||||||
impl From<String> for MetalError {
|
|
||||||
fn from(e: String) -> Self {
|
|
||||||
MetalError::Message(e)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
macro_rules! fail {
|
|
||||||
() => {
|
|
||||||
unimplemented!("metal support has not been enabled, add `metal` feature to enable.")
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
impl crate::backend::BackendStorage for MetalStorage {
|
|
||||||
type Device = MetalDevice;
|
|
||||||
|
|
||||||
fn try_clone(&self, _: &Layout) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn dtype(&self) -> DType {
|
|
||||||
fail!()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn device(&self) -> &Self::Device {
|
|
||||||
fail!()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn to_cpu_storage(&self) -> Result<CpuStorage> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn affine(&self, _: &Layout, _: f64, _: f64) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn powf(&self, _: &Layout, _: f64) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn elu(&self, _: &Layout, _: f64) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn reduce_op(&self, _: ReduceOp, _: &Layout, _: &[usize]) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn cmp(&self, _: CmpOp, _: &Self, _: &Layout, _: &Layout) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn to_dtype(&self, _: &Layout, _: DType) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn unary_impl<B: UnaryOpT>(&self, _: &Layout) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn binary_impl<B: BinaryOpT>(&self, _: &Self, _: &Layout, _: &Layout) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn where_cond(&self, _: &Layout, _: &Self, _: &Layout, _: &Self, _: &Layout) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn conv1d(
|
|
||||||
&self,
|
|
||||||
_: &Layout,
|
|
||||||
_: &Self,
|
|
||||||
_: &Layout,
|
|
||||||
_: &crate::conv::ParamsConv1D,
|
|
||||||
) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn conv_transpose1d(
|
|
||||||
&self,
|
|
||||||
_l: &Layout,
|
|
||||||
_kernel: &Self,
|
|
||||||
_kernel_l: &Layout,
|
|
||||||
_params: &crate::conv::ParamsConvTranspose1D,
|
|
||||||
) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn conv2d(
|
|
||||||
&self,
|
|
||||||
_: &Layout,
|
|
||||||
_: &Self,
|
|
||||||
_: &Layout,
|
|
||||||
_: &crate::conv::ParamsConv2D,
|
|
||||||
) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn conv_transpose2d(
|
|
||||||
&self,
|
|
||||||
_l: &Layout,
|
|
||||||
_kernel: &Self,
|
|
||||||
_kernel_l: &Layout,
|
|
||||||
_params: &crate::conv::ParamsConvTranspose2D,
|
|
||||||
) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn index_select(&self, _: &Self, _: &Layout, _: &Layout, _: usize) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
fn gather(&self, _: &Layout, _: &Self, _: &Layout, _: usize) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn scatter_add(
|
|
||||||
&self,
|
|
||||||
_: &Layout,
|
|
||||||
_: &Self,
|
|
||||||
_: &Layout,
|
|
||||||
_: &Self,
|
|
||||||
_: &Layout,
|
|
||||||
_: usize,
|
|
||||||
) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn index_add(
|
|
||||||
&self,
|
|
||||||
_: &Layout,
|
|
||||||
_: &Self,
|
|
||||||
_: &Layout,
|
|
||||||
_: &Self,
|
|
||||||
_: &Layout,
|
|
||||||
_: usize,
|
|
||||||
) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn matmul(
|
|
||||||
&self,
|
|
||||||
_: &Self,
|
|
||||||
_: (usize, usize, usize, usize),
|
|
||||||
_: &Layout,
|
|
||||||
_: &Layout,
|
|
||||||
) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn copy_strided_src(&self, _: &mut Self, _: usize, _: &Layout) -> Result<()> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn copy2d(
|
|
||||||
&self,
|
|
||||||
_: &mut Self,
|
|
||||||
_: usize,
|
|
||||||
_: usize,
|
|
||||||
_: usize,
|
|
||||||
_: usize,
|
|
||||||
_: usize,
|
|
||||||
_: usize,
|
|
||||||
) -> Result<()> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn max_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn upsample_nearest1d(&self, _: &Layout, _: usize) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl crate::backend::BackendDevice for MetalDevice {
|
|
||||||
type Storage = MetalStorage;
|
|
||||||
fn new(_: usize) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn set_seed(&self, _: u64) -> Result<()> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn location(&self) -> crate::DeviceLocation {
|
|
||||||
fail!()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn same_device(&self, _: &Self) -> bool {
|
|
||||||
fail!()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn zeros_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn ones_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn synchronize(&self) -> Result<()> {
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,5 +1,4 @@
|
|||||||
//! Candle-specific Error and Result
|
use crate::{DType, DeviceLocation, Layout, Shape};
|
||||||
use crate::{DType, DeviceLocation, Layout, MetalError, Shape};
|
|
||||||
|
|
||||||
#[derive(Debug, Clone)]
|
#[derive(Debug, Clone)]
|
||||||
pub struct MatMulUnexpectedStriding {
|
pub struct MatMulUnexpectedStriding {
|
||||||
@ -9,14 +8,8 @@ pub struct MatMulUnexpectedStriding {
|
|||||||
pub msg: &'static str,
|
pub msg: &'static str,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl std::fmt::Debug for Error {
|
|
||||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
||||||
write!(f, "{self}")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Main library error type.
|
/// Main library error type.
|
||||||
#[derive(thiserror::Error)]
|
#[derive(thiserror::Error, Debug)]
|
||||||
pub enum Error {
|
pub enum Error {
|
||||||
// === DType Errors ===
|
// === DType Errors ===
|
||||||
#[error("{msg}, expected: {expected:?}, got: {got:?}")]
|
#[error("{msg}, expected: {expected:?}, got: {got:?}")]
|
||||||
@ -149,9 +142,6 @@ pub enum Error {
|
|||||||
#[error("{op} expects at least one tensor")]
|
#[error("{op} expects at least one tensor")]
|
||||||
OpRequiresAtLeastOneTensor { op: &'static str },
|
OpRequiresAtLeastOneTensor { op: &'static str },
|
||||||
|
|
||||||
#[error("{op} expects at least two tensors")]
|
|
||||||
OpRequiresAtLeastTwoTensors { op: &'static str },
|
|
||||||
|
|
||||||
#[error("backward is not supported for {op}")]
|
#[error("backward is not supported for {op}")]
|
||||||
BackwardNotSupported { op: &'static str },
|
BackwardNotSupported { op: &'static str },
|
||||||
|
|
||||||
@ -159,9 +149,6 @@ pub enum Error {
|
|||||||
#[error("the candle crate has not been built with cuda support")]
|
#[error("the candle crate has not been built with cuda support")]
|
||||||
NotCompiledWithCudaSupport,
|
NotCompiledWithCudaSupport,
|
||||||
|
|
||||||
#[error("the candle crate has not been built with metal support")]
|
|
||||||
NotCompiledWithMetalSupport,
|
|
||||||
|
|
||||||
#[error("cannot find tensor {path}")]
|
#[error("cannot find tensor {path}")]
|
||||||
CannotFindTensor { path: String },
|
CannotFindTensor { path: String },
|
||||||
|
|
||||||
@ -169,13 +156,6 @@ pub enum Error {
|
|||||||
#[error(transparent)]
|
#[error(transparent)]
|
||||||
Cuda(Box<dyn std::error::Error + Send + Sync>),
|
Cuda(Box<dyn std::error::Error + Send + Sync>),
|
||||||
|
|
||||||
#[error("Metal error {0}")]
|
|
||||||
Metal(#[from] MetalError),
|
|
||||||
|
|
||||||
#[cfg(not(target_arch = "wasm32"))]
|
|
||||||
#[error(transparent)]
|
|
||||||
Ug(#[from] ug::Error),
|
|
||||||
|
|
||||||
#[error(transparent)]
|
#[error(transparent)]
|
||||||
TryFromIntError(#[from] core::num::TryFromIntError),
|
TryFromIntError(#[from] core::num::TryFromIntError),
|
||||||
|
|
||||||
@ -190,10 +170,6 @@ pub enum Error {
|
|||||||
#[error(transparent)]
|
#[error(transparent)]
|
||||||
ParseInt(#[from] std::num::ParseIntError),
|
ParseInt(#[from] std::num::ParseIntError),
|
||||||
|
|
||||||
/// Utf8 parse error.
|
|
||||||
#[error(transparent)]
|
|
||||||
FromUtf8(#[from] std::string::FromUtf8Error),
|
|
||||||
|
|
||||||
/// I/O error.
|
/// I/O error.
|
||||||
#[error(transparent)]
|
#[error(transparent)]
|
||||||
Io(#[from] std::io::Error),
|
Io(#[from] std::io::Error),
|
||||||
@ -206,14 +182,8 @@ pub enum Error {
|
|||||||
UnsupportedSafeTensorDtype(safetensors::Dtype),
|
UnsupportedSafeTensorDtype(safetensors::Dtype),
|
||||||
|
|
||||||
/// Arbitrary errors wrapping.
|
/// Arbitrary errors wrapping.
|
||||||
#[error("{0}")]
|
#[error(transparent)]
|
||||||
Wrapped(Box<dyn std::fmt::Display + Send + Sync>),
|
Wrapped(Box<dyn std::error::Error + Send + Sync>),
|
||||||
|
|
||||||
#[error("{context}\n{inner}")]
|
|
||||||
Context {
|
|
||||||
inner: Box<Self>,
|
|
||||||
context: Box<dyn std::fmt::Display + Send + Sync>,
|
|
||||||
},
|
|
||||||
|
|
||||||
/// Adding path information to an error.
|
/// Adding path information to an error.
|
||||||
#[error("path: {path:?} {inner}")]
|
#[error("path: {path:?} {inner}")]
|
||||||
@ -231,26 +201,19 @@ pub enum Error {
|
|||||||
/// User generated error message, typically created via `bail!`.
|
/// User generated error message, typically created via `bail!`.
|
||||||
#[error("{0}")]
|
#[error("{0}")]
|
||||||
Msg(String),
|
Msg(String),
|
||||||
|
|
||||||
#[error("unwrap none")]
|
|
||||||
UnwrapNone,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub type Result<T> = std::result::Result<T, Error>;
|
pub type Result<T> = std::result::Result<T, Error>;
|
||||||
|
|
||||||
impl Error {
|
impl Error {
|
||||||
pub fn wrap(err: impl std::fmt::Display + Send + Sync + 'static) -> Self {
|
pub fn wrap(err: impl std::error::Error + Send + Sync + 'static) -> Self {
|
||||||
Self::Wrapped(Box::new(err)).bt()
|
Self::Wrapped(Box::new(err)).bt()
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn msg(err: impl std::fmt::Display) -> Self {
|
pub fn msg(err: impl std::error::Error + Send + Sync + 'static) -> Self {
|
||||||
Self::Msg(err.to_string()).bt()
|
Self::Msg(err.to_string()).bt()
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn debug(err: impl std::fmt::Debug) -> Self {
|
|
||||||
Self::Msg(format!("{err:?}")).bt()
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn bt(self) -> Self {
|
pub fn bt(self) -> Self {
|
||||||
let backtrace = std::backtrace::Backtrace::capture();
|
let backtrace = std::backtrace::Backtrace::capture();
|
||||||
match backtrace.status() {
|
match backtrace.status() {
|
||||||
@ -269,13 +232,6 @@ impl Error {
|
|||||||
path: p.as_ref().to_path_buf(),
|
path: p.as_ref().to_path_buf(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn context(self, c: impl std::fmt::Display + Send + Sync + 'static) -> Self {
|
|
||||||
Self::Context {
|
|
||||||
inner: Box::new(self),
|
|
||||||
context: Box::new(c),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#[macro_export]
|
#[macro_export]
|
||||||
@ -298,41 +254,3 @@ pub fn zip<T, U>(r1: Result<T>, r2: Result<U>) -> Result<(T, U)> {
|
|||||||
(_, Err(e)) => Err(e),
|
(_, Err(e)) => Err(e),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Taken from anyhow.
|
|
||||||
pub trait Context<T> {
|
|
||||||
/// Wrap the error value with additional context.
|
|
||||||
fn context<C>(self, context: C) -> Result<T>
|
|
||||||
where
|
|
||||||
C: std::fmt::Display + Send + Sync + 'static;
|
|
||||||
|
|
||||||
/// Wrap the error value with additional context that is evaluated lazily
|
|
||||||
/// only once an error does occur.
|
|
||||||
fn with_context<C, F>(self, f: F) -> Result<T>
|
|
||||||
where
|
|
||||||
C: std::fmt::Display + Send + Sync + 'static,
|
|
||||||
F: FnOnce() -> C;
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<T> Context<T> for Option<T> {
|
|
||||||
fn context<C>(self, context: C) -> Result<T>
|
|
||||||
where
|
|
||||||
C: std::fmt::Display + Send + Sync + 'static,
|
|
||||||
{
|
|
||||||
match self {
|
|
||||||
Some(v) => Ok(v),
|
|
||||||
None => Err(Error::UnwrapNone.context(context).bt()),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn with_context<C, F>(self, f: F) -> Result<T>
|
|
||||||
where
|
|
||||||
C: std::fmt::Display + Send + Sync + 'static,
|
|
||||||
F: FnOnce() -> C,
|
|
||||||
{
|
|
||||||
match self {
|
|
||||||
Some(v) => Ok(v),
|
|
||||||
None => Err(Error::UnwrapNone.context(f()).bt()),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
@ -46,31 +46,19 @@ impl Tensor {
|
|||||||
current_dim += 1;
|
current_dim += 1;
|
||||||
out
|
out
|
||||||
}
|
}
|
||||||
TensorIndexer::IndexSelect(indexes) => {
|
|
||||||
if indexes.rank() != 1 {
|
|
||||||
crate::bail!("multi-dimensional tensor indexing is not supported")
|
|
||||||
}
|
|
||||||
let out = x.index_select(&indexes.to_device(x.device())?, current_dim)?;
|
|
||||||
current_dim += 1;
|
|
||||||
out
|
|
||||||
}
|
|
||||||
TensorIndexer::Err(e) => crate::bail!("indexing error {e:?}"),
|
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
Ok(x)
|
Ok(x)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Debug)]
|
#[derive(Debug, Clone)]
|
||||||
/// Generic structure used to index a slice of the tensor
|
/// Generic structure used to index a slice of the tensor
|
||||||
pub enum TensorIndexer {
|
pub enum TensorIndexer {
|
||||||
/// This selects the elements for which an index has some specific value.
|
/// This selects the elemnts for which an index has some specific value.
|
||||||
Select(usize),
|
Select(usize),
|
||||||
/// This is a regular slice, purely indexing a chunk of the tensor
|
/// This is a regular slice, purely indexing a chunk of the tensor
|
||||||
Narrow(Bound<usize>, Bound<usize>),
|
Narrow(Bound<usize>, Bound<usize>),
|
||||||
/// Indexing via a 1d tensor
|
|
||||||
IndexSelect(Tensor),
|
|
||||||
Err(Error),
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl From<usize> for TensorIndexer {
|
impl From<usize> for TensorIndexer {
|
||||||
@ -79,55 +67,36 @@ impl From<usize> for TensorIndexer {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl From<&[u32]> for TensorIndexer {
|
macro_rules! impl_from_range {
|
||||||
fn from(index: &[u32]) -> Self {
|
($range_type:ty) => {
|
||||||
match Tensor::new(index, &crate::Device::Cpu) {
|
impl From<$range_type> for TensorIndexer {
|
||||||
Ok(tensor) => TensorIndexer::IndexSelect(tensor),
|
fn from(range: $range_type) -> Self {
|
||||||
Err(e) => TensorIndexer::Err(e),
|
use std::ops::Bound::*;
|
||||||
|
|
||||||
|
let start = match range.start_bound() {
|
||||||
|
Included(idx) => Included(*idx),
|
||||||
|
Excluded(idx) => Excluded(*idx),
|
||||||
|
Unbounded => Unbounded,
|
||||||
|
};
|
||||||
|
|
||||||
|
let end = match range.end_bound() {
|
||||||
|
Included(idx) => Included(*idx),
|
||||||
|
Excluded(idx) => Excluded(*idx),
|
||||||
|
Unbounded => Unbounded,
|
||||||
|
};
|
||||||
|
|
||||||
|
TensorIndexer::Narrow(start, end)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
impl From<Vec<u32>> for TensorIndexer {
|
impl_from_range!(Range<usize>);
|
||||||
fn from(index: Vec<u32>) -> Self {
|
impl_from_range!(RangeFrom<usize>);
|
||||||
let len = index.len();
|
impl_from_range!(RangeFull);
|
||||||
match Tensor::from_vec(index, len, &crate::Device::Cpu) {
|
impl_from_range!(RangeInclusive<usize>);
|
||||||
Ok(tensor) => TensorIndexer::IndexSelect(tensor),
|
impl_from_range!(RangeTo<usize>);
|
||||||
Err(e) => TensorIndexer::Err(e),
|
impl_from_range!(RangeToInclusive<usize>);
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl From<&Tensor> for TensorIndexer {
|
|
||||||
fn from(tensor: &Tensor) -> Self {
|
|
||||||
TensorIndexer::IndexSelect(tensor.clone())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
trait RB: RangeBounds<usize> {}
|
|
||||||
impl RB for Range<usize> {}
|
|
||||||
impl RB for RangeFrom<usize> {}
|
|
||||||
impl RB for RangeFull {}
|
|
||||||
impl RB for RangeInclusive<usize> {}
|
|
||||||
impl RB for RangeTo<usize> {}
|
|
||||||
impl RB for RangeToInclusive<usize> {}
|
|
||||||
|
|
||||||
impl<T: RB> From<T> for TensorIndexer {
|
|
||||||
fn from(range: T) -> Self {
|
|
||||||
use std::ops::Bound::*;
|
|
||||||
let start = match range.start_bound() {
|
|
||||||
Included(idx) => Included(*idx),
|
|
||||||
Excluded(idx) => Excluded(*idx),
|
|
||||||
Unbounded => Unbounded,
|
|
||||||
};
|
|
||||||
let end = match range.end_bound() {
|
|
||||||
Included(idx) => Included(*idx),
|
|
||||||
Excluded(idx) => Excluded(*idx),
|
|
||||||
Unbounded => Unbounded,
|
|
||||||
};
|
|
||||||
TensorIndexer::Narrow(start, end)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Trait used to implement multiple signatures for ease of use of the slicing
|
/// Trait used to implement multiple signatures for ease of use of the slicing
|
||||||
/// of a tensor
|
/// of a tensor
|
||||||
@ -141,117 +110,28 @@ impl<T> IndexOp<T> for Tensor
|
|||||||
where
|
where
|
||||||
T: Into<TensorIndexer>,
|
T: Into<TensorIndexer>,
|
||||||
{
|
{
|
||||||
///```rust
|
|
||||||
/// use candle_core::{Tensor, DType, Device, IndexOp};
|
|
||||||
/// let a = Tensor::new(&[
|
|
||||||
/// [0., 1.],
|
|
||||||
/// [2., 3.],
|
|
||||||
/// [4., 5.]
|
|
||||||
/// ], &Device::Cpu)?;
|
|
||||||
///
|
|
||||||
/// let b = a.i(0)?;
|
|
||||||
/// assert_eq!(b.shape().dims(), &[2]);
|
|
||||||
/// assert_eq!(b.to_vec1::<f64>()?, &[0., 1.]);
|
|
||||||
///
|
|
||||||
/// let c = a.i(..2)?;
|
|
||||||
/// assert_eq!(c.shape().dims(), &[2, 2]);
|
|
||||||
/// assert_eq!(c.to_vec2::<f64>()?, &[
|
|
||||||
/// [0., 1.],
|
|
||||||
/// [2., 3.]
|
|
||||||
/// ]);
|
|
||||||
///
|
|
||||||
/// let d = a.i(1..)?;
|
|
||||||
/// assert_eq!(d.shape().dims(), &[2, 2]);
|
|
||||||
/// assert_eq!(d.to_vec2::<f64>()?, &[
|
|
||||||
/// [2., 3.],
|
|
||||||
/// [4., 5.]
|
|
||||||
/// ]);
|
|
||||||
/// # Ok::<(), candle_core::Error>(())
|
|
||||||
/// ```
|
|
||||||
fn i(&self, index: T) -> Result<Tensor, Error> {
|
fn i(&self, index: T) -> Result<Tensor, Error> {
|
||||||
self.index(&[index.into()])
|
self.index(&[index.into()])
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<A> IndexOp<(A,)> for Tensor
|
|
||||||
where
|
|
||||||
A: Into<TensorIndexer>,
|
|
||||||
{
|
|
||||||
///```rust
|
|
||||||
/// use candle_core::{Tensor, DType, Device, IndexOp};
|
|
||||||
/// let a = Tensor::new(&[
|
|
||||||
/// [0f32, 1.],
|
|
||||||
/// [2. , 3.],
|
|
||||||
/// [4. , 5.]
|
|
||||||
/// ], &Device::Cpu)?;
|
|
||||||
///
|
|
||||||
/// let b = a.i((0,))?;
|
|
||||||
/// assert_eq!(b.shape().dims(), &[2]);
|
|
||||||
/// assert_eq!(b.to_vec1::<f32>()?, &[0., 1.]);
|
|
||||||
///
|
|
||||||
/// let c = a.i((..2,))?;
|
|
||||||
/// assert_eq!(c.shape().dims(), &[2, 2]);
|
|
||||||
/// assert_eq!(c.to_vec2::<f32>()?, &[
|
|
||||||
/// [0., 1.],
|
|
||||||
/// [2., 3.]
|
|
||||||
/// ]);
|
|
||||||
///
|
|
||||||
/// let d = a.i((1..,))?;
|
|
||||||
/// assert_eq!(d.shape().dims(), &[2, 2]);
|
|
||||||
/// assert_eq!(d.to_vec2::<f32>()?, &[
|
|
||||||
/// [2., 3.],
|
|
||||||
/// [4., 5.]
|
|
||||||
/// ]);
|
|
||||||
/// # Ok::<(), candle_core::Error>(())
|
|
||||||
/// ```
|
|
||||||
fn i(&self, (a,): (A,)) -> Result<Tensor, Error> {
|
|
||||||
self.index(&[a.into()])
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#[allow(non_snake_case)]
|
|
||||||
impl<A, B> IndexOp<(A, B)> for Tensor
|
|
||||||
where
|
|
||||||
A: Into<TensorIndexer>,
|
|
||||||
B: Into<TensorIndexer>,
|
|
||||||
{
|
|
||||||
///```rust
|
|
||||||
/// use candle_core::{Tensor, DType, Device, IndexOp};
|
|
||||||
/// let a = Tensor::new(&[[0f32, 1., 2.], [3., 4., 5.], [6., 7., 8.]], &Device::Cpu)?;
|
|
||||||
///
|
|
||||||
/// let b = a.i((1, 0))?;
|
|
||||||
/// assert_eq!(b.to_vec0::<f32>()?, 3.);
|
|
||||||
///
|
|
||||||
/// let c = a.i((..2, 1))?;
|
|
||||||
/// assert_eq!(c.shape().dims(), &[2]);
|
|
||||||
/// assert_eq!(c.to_vec1::<f32>()?, &[1., 4.]);
|
|
||||||
///
|
|
||||||
/// let d = a.i((2.., ..))?;
|
|
||||||
/// assert_eq!(c.shape().dims(), &[2]);
|
|
||||||
/// assert_eq!(c.to_vec1::<f32>()?, &[1., 4.]);
|
|
||||||
/// # Ok::<(), candle_core::Error>(())
|
|
||||||
/// ```
|
|
||||||
fn i(&self, (a, b): (A, B)) -> Result<Tensor, Error> {
|
|
||||||
self.index(&[a.into(), b.into()])
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
macro_rules! index_op_tuple {
|
macro_rules! index_op_tuple {
|
||||||
($doc:tt, $($t:ident),+) => {
|
($($t:ident),+) => {
|
||||||
#[allow(non_snake_case)]
|
#[allow(non_snake_case)]
|
||||||
impl<$($t),*> IndexOp<($($t,)*)> for Tensor
|
impl<$($t),*> IndexOp<($($t,)*)> for Tensor
|
||||||
where
|
where
|
||||||
$($t: Into<TensorIndexer>,)*
|
$($t: Into<TensorIndexer>,)*
|
||||||
{
|
{
|
||||||
#[doc=$doc]
|
|
||||||
fn i(&self, ($($t,)*): ($($t,)*)) -> Result<Tensor, Error> {
|
fn i(&self, ($($t,)*): ($($t,)*)) -> Result<Tensor, Error> {
|
||||||
self.index(&[$($t.into(),)*])
|
self.index(&[$($t.into(),)*])
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
index_op_tuple!(A);
|
||||||
index_op_tuple!("see [TensorIndex#method.i]", A, B, C);
|
index_op_tuple!(A, B);
|
||||||
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D);
|
index_op_tuple!(A, B, C);
|
||||||
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D, E);
|
index_op_tuple!(A, B, C, D);
|
||||||
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D, E, F);
|
index_op_tuple!(A, B, C, D, E);
|
||||||
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D, E, F, G);
|
index_op_tuple!(A, B, C, D, E, F);
|
||||||
|
index_op_tuple!(A, B, C, D, E, F, G);
|
||||||
|
@ -1,4 +1,3 @@
|
|||||||
//! Tensor Layouts including contiguous or sparse strides
|
|
||||||
use crate::{Error, Result, Shape};
|
use crate::{Error, Result, Shape};
|
||||||
|
|
||||||
#[derive(Debug, PartialEq, Eq, Clone)]
|
#[derive(Debug, PartialEq, Eq, Clone)]
|
||||||
@ -36,12 +35,6 @@ impl Layout {
|
|||||||
self.shape.dims()
|
self.shape.dims()
|
||||||
}
|
}
|
||||||
|
|
||||||
/// The dimension size for a specified dimension index.
|
|
||||||
pub fn dim<D: crate::shape::Dim>(&self, dim: D) -> Result<usize> {
|
|
||||||
let dim = dim.to_index(&self.shape, "dim")?;
|
|
||||||
Ok(self.dims()[dim])
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn shape(&self) -> &Shape {
|
pub fn shape(&self) -> &Shape {
|
||||||
&self.shape
|
&self.shape
|
||||||
}
|
}
|
||||||
@ -77,7 +70,7 @@ impl Layout {
|
|||||||
self.shape.is_fortran_contiguous(&self.stride)
|
self.shape.is_fortran_contiguous(&self.stride)
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn narrow(&self, dim: usize, start: usize, len: usize) -> Result<Self> {
|
pub(crate) fn narrow(&self, dim: usize, start: usize, len: usize) -> Result<Self> {
|
||||||
let dims = self.shape().dims();
|
let dims = self.shape().dims();
|
||||||
if dim >= dims.len() {
|
if dim >= dims.len() {
|
||||||
Err(Error::DimOutOfRange {
|
Err(Error::DimOutOfRange {
|
||||||
@ -106,7 +99,7 @@ impl Layout {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn transpose(&self, dim1: usize, dim2: usize) -> Result<Self> {
|
pub(crate) fn transpose(&self, dim1: usize, dim2: usize) -> Result<Self> {
|
||||||
let rank = self.shape.rank();
|
let rank = self.shape.rank();
|
||||||
if rank <= dim1 || rank <= dim2 {
|
if rank <= dim1 || rank <= dim2 {
|
||||||
Err(Error::UnexpectedNumberOfDims {
|
Err(Error::UnexpectedNumberOfDims {
|
||||||
@ -127,7 +120,7 @@ impl Layout {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn permute(&self, idxs: &[usize]) -> Result<Self> {
|
pub(crate) fn permute(&self, idxs: &[usize]) -> Result<Self> {
|
||||||
let is_permutation =
|
let is_permutation =
|
||||||
idxs.len() == self.shape.rank() && (0..idxs.len()).all(|i| idxs.contains(&i));
|
idxs.len() == self.shape.rank() && (0..idxs.len()).all(|i| idxs.contains(&i));
|
||||||
if !is_permutation {
|
if !is_permutation {
|
||||||
|
@ -7,14 +7,14 @@
|
|||||||
//!
|
//!
|
||||||
//! let a = Tensor::arange(0f32, 6f32, &Device::Cpu)?.reshape((2, 3))?;
|
//! let a = Tensor::arange(0f32, 6f32, &Device::Cpu)?.reshape((2, 3))?;
|
||||||
//! let b = Tensor::arange(0f32, 12f32, &Device::Cpu)?.reshape((3, 4))?;
|
//! let b = Tensor::arange(0f32, 12f32, &Device::Cpu)?.reshape((3, 4))?;
|
||||||
//! let c = a.matmul(&b)?;
|
|
||||||
//!
|
//!
|
||||||
|
//! let c = a.matmul(&b)?;
|
||||||
//! # Ok(())}
|
//! # Ok(())}
|
||||||
//! ```
|
//! ```
|
||||||
//!
|
//!
|
||||||
//! ## Features
|
//! ## Features
|
||||||
//!
|
//!
|
||||||
//! - Simple syntax (looks and feels like PyTorch)
|
//! - Simple syntax (looks and like PyTorch)
|
||||||
//! - CPU and Cuda backends (and M1 support)
|
//! - CPU and Cuda backends (and M1 support)
|
||||||
//! - Enable serverless (CPU) small and fast deployments
|
//! - Enable serverless (CPU) small and fast deployments
|
||||||
//! - Model training
|
//! - Model training
|
||||||
@ -32,91 +32,60 @@
|
|||||||
//! Python can really add overhead in more complex workflows and the [GIL](https://www.backblaze.com/blog/the-python-gil-past-present-and-future/) is a notorious source of headaches.
|
//! Python can really add overhead in more complex workflows and the [GIL](https://www.backblaze.com/blog/the-python-gil-past-present-and-future/) is a notorious source of headaches.
|
||||||
//!
|
//!
|
||||||
//! Rust is cool, and a lot of the HF ecosystem already has Rust crates [safetensors](https://github.com/huggingface/safetensors) and [tokenizers](https://github.com/huggingface/tokenizers)
|
//! Rust is cool, and a lot of the HF ecosystem already has Rust crates [safetensors](https://github.com/huggingface/safetensors) and [tokenizers](https://github.com/huggingface/tokenizers)
|
||||||
//!
|
|
||||||
//! ## Other Crates
|
|
||||||
//!
|
|
||||||
//! Candle consists of a number of crates. This crate holds core the common data structures but you may wish
|
|
||||||
//! to look at the docs for the other crates which can be found here:
|
|
||||||
//!
|
|
||||||
//! - [candle-core](https://docs.rs/candle-core/). Core Datastructures and DataTypes.
|
|
||||||
//! - [candle-nn](https://docs.rs/candle-nn/). Building blocks for Neural Nets.
|
|
||||||
//! - [candle-datasets](https://docs.rs/candle-datasets/). Rust access to commonly used Datasets like MNIST.
|
|
||||||
//! - [candle-examples](https://docs.rs/candle-examples/). Examples of Candle in Use.
|
|
||||||
//! - [candle-onnx](https://docs.rs/candle-onnx/). Loading and using ONNX models.
|
|
||||||
//! - [candle-pyo3](https://docs.rs/candle-pyo3/). Access to Candle from Python.
|
|
||||||
//! - [candle-transformers](https://docs.rs/candle-transformers/). Candle implemntation of many published transformer models.
|
|
||||||
//!
|
|
||||||
|
|
||||||
#[cfg(feature = "accelerate")]
|
#[cfg(feature = "accelerate")]
|
||||||
mod accelerate;
|
mod accelerate;
|
||||||
pub mod backend;
|
pub mod backend;
|
||||||
pub mod backprop;
|
pub mod backprop;
|
||||||
pub mod conv;
|
mod conv;
|
||||||
mod convert;
|
mod convert;
|
||||||
pub mod cpu;
|
pub mod cpu;
|
||||||
pub mod cpu_backend;
|
pub mod cpu_backend;
|
||||||
#[cfg(feature = "cuda")]
|
#[cfg(feature = "cuda")]
|
||||||
pub mod cuda_backend;
|
pub mod cuda_backend;
|
||||||
mod custom_op;
|
#[cfg(feature = "cudnn")]
|
||||||
|
pub mod cudnn;
|
||||||
mod device;
|
mod device;
|
||||||
pub mod display;
|
pub mod display;
|
||||||
mod dtype;
|
mod dtype;
|
||||||
pub mod dummy_cuda_backend;
|
mod dummy_cuda_backend;
|
||||||
mod dummy_metal_backend;
|
|
||||||
pub mod error;
|
pub mod error;
|
||||||
mod indexer;
|
mod indexer;
|
||||||
pub mod layout;
|
pub mod layout;
|
||||||
#[cfg(feature = "metal")]
|
|
||||||
pub mod metal_backend;
|
|
||||||
#[cfg(feature = "mkl")]
|
#[cfg(feature = "mkl")]
|
||||||
mod mkl;
|
mod mkl;
|
||||||
pub mod npy;
|
pub mod npy;
|
||||||
pub mod op;
|
mod op;
|
||||||
pub mod pickle;
|
pub mod pickle;
|
||||||
pub mod quantized;
|
pub mod quantized;
|
||||||
pub mod safetensors;
|
pub mod safetensors;
|
||||||
pub mod scalar;
|
pub mod scalar;
|
||||||
pub mod shape;
|
pub mod shape;
|
||||||
mod sort;
|
|
||||||
mod storage;
|
mod storage;
|
||||||
pub mod streaming;
|
|
||||||
mod strided_index;
|
mod strided_index;
|
||||||
mod tensor;
|
mod tensor;
|
||||||
mod tensor_cat;
|
|
||||||
pub mod test_utils;
|
pub mod test_utils;
|
||||||
pub mod utils;
|
pub mod utils;
|
||||||
mod variable;
|
mod variable;
|
||||||
|
|
||||||
#[cfg(feature = "cudnn")]
|
pub use cpu_backend::CpuStorage;
|
||||||
pub use cuda_backend::cudnn;
|
pub use device::{Device, DeviceLocation};
|
||||||
|
pub use dtype::{DType, FloatDType, IntDType, WithDType};
|
||||||
pub use cpu_backend::{CpuStorage, CpuStorageRef};
|
pub use error::{Error, Result};
|
||||||
pub use custom_op::{CustomOp1, CustomOp2, CustomOp3, InplaceOp1, InplaceOp2, InplaceOp3, UgIOp1};
|
pub use indexer::IndexOp;
|
||||||
pub use device::{Device, DeviceLocation, NdArray};
|
|
||||||
pub use dtype::{DType, DTypeParseError, FloatDType, IntDType, WithDType};
|
|
||||||
pub use error::{Context, Error, Result};
|
|
||||||
pub use indexer::{IndexOp, TensorIndexer};
|
|
||||||
pub use layout::Layout;
|
pub use layout::Layout;
|
||||||
|
pub use op::{CustomOp1, CustomOp2, CustomOp3};
|
||||||
pub use shape::{Shape, D};
|
pub use shape::{Shape, D};
|
||||||
pub use storage::Storage;
|
pub use storage::Storage;
|
||||||
pub use streaming::{StreamTensor, StreamingBinOp, StreamingModule};
|
|
||||||
pub use strided_index::{StridedBlocks, StridedIndex};
|
pub use strided_index::{StridedBlocks, StridedIndex};
|
||||||
pub use tensor::{Tensor, TensorId};
|
pub use tensor::{Tensor, TensorId};
|
||||||
pub use variable::Var;
|
pub use variable::Var;
|
||||||
|
|
||||||
#[cfg(feature = "cuda")]
|
#[cfg(feature = "cuda")]
|
||||||
pub use cuda_backend as cuda;
|
pub use cuda_backend::{CudaDevice, CudaStorage};
|
||||||
|
|
||||||
#[cfg(not(feature = "cuda"))]
|
#[cfg(not(feature = "cuda"))]
|
||||||
pub use dummy_cuda_backend as cuda;
|
pub use dummy_cuda_backend::{CudaDevice, CudaStorage};
|
||||||
|
|
||||||
pub use cuda::{CudaDevice, CudaStorage};
|
|
||||||
|
|
||||||
#[cfg(feature = "metal")]
|
|
||||||
pub use metal_backend::{MetalDevice, MetalError, MetalStorage};
|
|
||||||
|
|
||||||
#[cfg(not(feature = "metal"))]
|
|
||||||
pub use dummy_metal_backend::{MetalDevice, MetalError, MetalStorage};
|
|
||||||
|
|
||||||
#[cfg(feature = "mkl")]
|
#[cfg(feature = "mkl")]
|
||||||
extern crate intel_mkl_src;
|
extern crate intel_mkl_src;
|
||||||
@ -140,34 +109,19 @@ impl ToUsize2 for (usize, usize) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Defining a module with forward method using a single argument.
|
// A simple trait defining a module with forward method using a single argument.
|
||||||
pub trait Module {
|
pub trait Module: std::fmt::Debug {
|
||||||
fn forward(&self, xs: &Tensor) -> Result<Tensor>;
|
fn forward(&self, xs: &Tensor) -> Result<Tensor>;
|
||||||
|
|
||||||
|
/// Change the module to use training mode vs eval mode.
|
||||||
|
///
|
||||||
|
/// The default implementation does nothing as this is only used for a couple modules such as
|
||||||
|
/// dropout or batch-normalization.
|
||||||
|
fn set_training(&mut self, _training: bool) {}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T: Fn(&Tensor) -> Result<Tensor>> Module for T {
|
impl Module for quantized::QMatMul {
|
||||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||||
self(xs)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<M: Module> Module for Option<&M> {
|
|
||||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
||||||
match self {
|
|
||||||
None => Ok(xs.clone()),
|
|
||||||
Some(m) => m.forward(xs),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A single forward method using a single single tensor argument and a flag to
|
|
||||||
/// separate the training and evaluation behaviors.
|
|
||||||
pub trait ModuleT {
|
|
||||||
fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor>;
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<M: Module> ModuleT for M {
|
|
||||||
fn forward_t(&self, xs: &Tensor, _train: bool) -> Result<Tensor> {
|
|
||||||
self.forward(xs)
|
self.forward(xs)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,340 +0,0 @@
|
|||||||
use crate::{DType, Result};
|
|
||||||
use candle_metal_kernels::Kernels;
|
|
||||||
use metal::{Buffer, CommandBuffer, CommandQueue, MTLResourceOptions, NSUInteger};
|
|
||||||
use std::collections::HashMap;
|
|
||||||
use std::path::Path;
|
|
||||||
use std::sync::{Arc, Mutex, RwLock};
|
|
||||||
|
|
||||||
use super::MetalError;
|
|
||||||
|
|
||||||
/// Unique identifier for cuda devices.
|
|
||||||
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
|
||||||
pub struct DeviceId(usize);
|
|
||||||
|
|
||||||
impl DeviceId {
|
|
||||||
pub(crate) fn new() -> Self {
|
|
||||||
// https://users.rust-lang.org/t/idiomatic-rust-way-to-generate-unique-id/33805
|
|
||||||
use std::sync::atomic;
|
|
||||||
static COUNTER: atomic::AtomicUsize = atomic::AtomicUsize::new(1);
|
|
||||||
Self(COUNTER.fetch_add(1, atomic::Ordering::Relaxed))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
type BufferMap = HashMap<(NSUInteger, MTLResourceOptions), Vec<Arc<Buffer>>>;
|
|
||||||
pub(crate) struct Commands {
|
|
||||||
/// Single command queue for the entire device.
|
|
||||||
command_queue: CommandQueue,
|
|
||||||
/// One command buffer at a time.
|
|
||||||
/// The scheduler works by allowing multiple
|
|
||||||
/// [ComputeCommandEncoder](https://developer.apple.com/documentation/metal/mtlcomputecommandencoder?language=objc)
|
|
||||||
/// on a single command buffer. Using a single command buffer would be fastest on the GPU but
|
|
||||||
/// prevents overlapping of CPU and GPU commands (because command buffer needs to be committed
|
|
||||||
/// to start to work).
|
|
||||||
/// Despite what the documentation says, command buffers are NOT ordered. They are ordered
|
|
||||||
/// for their START time, but there's no guarantee that command buffer1 will finish before
|
|
||||||
/// command buffer2 starts (or there are metal bugs there)
|
|
||||||
command_buffer: CommandBuffer,
|
|
||||||
/// Keeps track of the current amount of compute command encoders on the current
|
|
||||||
/// command buffer
|
|
||||||
/// Arc, RwLock because of the interior mutability.
|
|
||||||
command_buffer_index: usize,
|
|
||||||
/// The maximum amount of [compute command encoder](https://developer.apple.com/documentation/metal/mtlcomputecommandencoder?language=objc) per [command buffer](https://developer.apple.com/documentation/metal/mtlcommandbuffer?language=objc)
|
|
||||||
compute_per_buffer: usize,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Commands {
|
|
||||||
pub(crate) fn new(command_queue: CommandQueue) -> Result<Self> {
|
|
||||||
let command_buffer = command_queue.new_command_buffer().to_owned();
|
|
||||||
command_buffer.enqueue();
|
|
||||||
let compute_per_buffer = match std::env::var("CANDLE_METAL_COMPUTE_PER_BUFFER") {
|
|
||||||
Ok(val) => val.parse()?,
|
|
||||||
_ => 50,
|
|
||||||
};
|
|
||||||
Ok(Self {
|
|
||||||
command_queue,
|
|
||||||
command_buffer,
|
|
||||||
command_buffer_index: 0,
|
|
||||||
compute_per_buffer,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn command_buffer(&mut self) -> Result<(bool, CommandBuffer)> {
|
|
||||||
let mut command_buffer = self.command_buffer.to_owned();
|
|
||||||
let mut flushed = false;
|
|
||||||
if self.command_buffer_index > self.compute_per_buffer {
|
|
||||||
self.command_buffer.commit();
|
|
||||||
command_buffer = self.command_queue.new_command_buffer().to_owned();
|
|
||||||
self.command_buffer = command_buffer.clone();
|
|
||||||
self.command_buffer_index = 0;
|
|
||||||
flushed = true;
|
|
||||||
}
|
|
||||||
self.command_buffer_index += 1;
|
|
||||||
Ok((flushed, command_buffer))
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn wait_until_completed(&mut self) -> Result<()> {
|
|
||||||
match self.command_buffer.status() {
|
|
||||||
metal::MTLCommandBufferStatus::Committed
|
|
||||||
| metal::MTLCommandBufferStatus::Scheduled
|
|
||||||
| metal::MTLCommandBufferStatus::Completed => {
|
|
||||||
panic!("Already committed");
|
|
||||||
}
|
|
||||||
_ => {}
|
|
||||||
}
|
|
||||||
self.command_buffer.commit();
|
|
||||||
self.command_buffer.wait_until_completed();
|
|
||||||
self.command_buffer = self.command_queue.new_command_buffer().to_owned();
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Clone)]
|
|
||||||
pub struct MetalDevice {
|
|
||||||
/// Unique identifier, the registryID is not sufficient as it identifies the GPU rather than
|
|
||||||
/// the device itself.
|
|
||||||
pub(crate) id: DeviceId,
|
|
||||||
|
|
||||||
/// Raw metal device: <https://developer.apple.com/documentation/metal/mtldevice?language=objc>
|
|
||||||
pub(crate) device: metal::Device,
|
|
||||||
|
|
||||||
pub(crate) commands: Arc<RwLock<Commands>>,
|
|
||||||
|
|
||||||
/// Simple allocator struct.
|
|
||||||
/// The buffers are stored in size buckets since ML tends to use similar shapes over and over.
|
|
||||||
/// We store the buffers in [`Arc`] because it's much faster than Obj-c internal ref counting
|
|
||||||
/// (could be linked to FFI communication overhead).
|
|
||||||
///
|
|
||||||
/// Whenever a buffer has a strong_count==1, we can reuse it, it means it was dropped in the
|
|
||||||
/// graph calculation, and only we the allocator kept a reference to it, therefore it's free
|
|
||||||
/// to be reused. However, in order for this to work, we need to guarantee the order of
|
|
||||||
/// operation, so that this buffer is not being used by another kernel at the same time.
|
|
||||||
/// Arc is the CPU reference count, it doesn't mean anything on the GPU side of things.
|
|
||||||
///
|
|
||||||
/// Whenever we actually allocate a new buffer, we make a full sweep to clean up unused buffers
|
|
||||||
/// (strong_count = 1).
|
|
||||||
pub(crate) buffers: Arc<RwLock<BufferMap>>,
|
|
||||||
|
|
||||||
/// Simple keeper struct to keep track of the already compiled kernels so we can reuse them.
|
|
||||||
/// Heavily used by [`candle_metal_kernels`]
|
|
||||||
pub(crate) kernels: Arc<Kernels>,
|
|
||||||
/// Seed for random number generation.
|
|
||||||
pub(crate) seed: Arc<Mutex<Buffer>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl std::fmt::Debug for MetalDevice {
|
|
||||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
||||||
write!(f, "MetalDevice({:?})", self.id)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl std::ops::Deref for MetalDevice {
|
|
||||||
type Target = metal::DeviceRef;
|
|
||||||
|
|
||||||
fn deref(&self) -> &Self::Target {
|
|
||||||
&self.device
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl MetalDevice {
|
|
||||||
#[cfg(not(target_arch = "wasm32"))]
|
|
||||||
pub fn compile(
|
|
||||||
&self,
|
|
||||||
func_name: &'static str,
|
|
||||||
kernel: ug::lang::ssa::Kernel,
|
|
||||||
) -> Result<metal::ComputePipelineState> {
|
|
||||||
let mut buf = vec![];
|
|
||||||
ug_metal::code_gen::gen(&mut buf, func_name, &kernel)?;
|
|
||||||
let metal_code = String::from_utf8(buf)?;
|
|
||||||
let lib = self
|
|
||||||
.device
|
|
||||||
.new_library_with_source(&metal_code, &metal::CompileOptions::new())
|
|
||||||
.map_err(MetalError::from)?;
|
|
||||||
let func = lib
|
|
||||||
.get_function(func_name, None)
|
|
||||||
.map_err(MetalError::from)?;
|
|
||||||
let pl = self
|
|
||||||
.device
|
|
||||||
.new_compute_pipeline_state_with_function(&func)
|
|
||||||
.map_err(MetalError::from)?;
|
|
||||||
Ok(pl)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn id(&self) -> DeviceId {
|
|
||||||
self.id
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn metal_device(&self) -> &metal::Device {
|
|
||||||
&self.device
|
|
||||||
}
|
|
||||||
|
|
||||||
fn drop_unused_buffers(&self) -> Result<()> {
|
|
||||||
let mut buffers = self.buffers.write().map_err(MetalError::from)?;
|
|
||||||
for subbuffers in buffers.values_mut() {
|
|
||||||
let newbuffers = subbuffers
|
|
||||||
.iter()
|
|
||||||
.filter(|s| Arc::strong_count(*s) > 1)
|
|
||||||
.map(Arc::clone)
|
|
||||||
.collect();
|
|
||||||
*subbuffers = newbuffers;
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn command_buffer(&self) -> Result<CommandBuffer> {
|
|
||||||
let mut commands = self.commands.write().map_err(MetalError::from)?;
|
|
||||||
let (flushed, command_buffer) = commands.command_buffer()?;
|
|
||||||
if flushed {
|
|
||||||
self.drop_unused_buffers()?
|
|
||||||
}
|
|
||||||
Ok(command_buffer)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn wait_until_completed(&self) -> Result<()> {
|
|
||||||
let mut commands = self.commands.write().map_err(MetalError::from)?;
|
|
||||||
commands.wait_until_completed()
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn kernels(&self) -> &Kernels {
|
|
||||||
&self.kernels
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn device(&self) -> &metal::Device {
|
|
||||||
&self.device
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Creates a new buffer (not necessarily zeroed).
|
|
||||||
/// The buffer is [MTLPrivate](https://developer.apple.com/documentation/metal/mtlstoragemode)
|
|
||||||
/// This means the buffer data cannot be read on the CPU directly.
|
|
||||||
///
|
|
||||||
/// [`name`] is only used to keep track of the resource origin in case of bugs
|
|
||||||
pub fn new_buffer(
|
|
||||||
&self,
|
|
||||||
element_count: usize,
|
|
||||||
dtype: DType,
|
|
||||||
name: &str,
|
|
||||||
) -> Result<Arc<Buffer>> {
|
|
||||||
let size = (element_count * dtype.size_in_bytes()) as NSUInteger;
|
|
||||||
self.allocate_buffer(size, MTLResourceOptions::StorageModePrivate, name)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Creates a new buffer (not necessarily zeroed).
|
|
||||||
/// The buffer is [MTLManaged](https://developer.apple.com/documentation/metal/mtlstoragemode)
|
|
||||||
/// This means the buffer can be read on the CPU but will require manual
|
|
||||||
/// synchronization when the CPU memory is modified
|
|
||||||
/// Used as a bridge to gather data back from the GPU
|
|
||||||
pub fn new_buffer_managed(&self, size: NSUInteger) -> Result<Arc<Buffer>> {
|
|
||||||
self.allocate_buffer(size, MTLResourceOptions::StorageModeManaged, "managed")
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Creates a new buffer from data.
|
|
||||||
/// The buffer is [MTLManaged](https://developer.apple.com/documentation/metal/mtlstoragemode)
|
|
||||||
///
|
|
||||||
/// Does not require synchronization, as [newBufferWithBytes](https://developer.apple.com/documentation/metal/mtldevice/1433429-newbufferwithbytes)
|
|
||||||
/// allocates the buffer and copies over the existing data before returning the MTLBuffer.
|
|
||||||
pub fn new_buffer_with_data<T>(&self, data: &[T]) -> Result<Arc<Buffer>> {
|
|
||||||
let size = core::mem::size_of_val(data) as NSUInteger;
|
|
||||||
let new_buffer = self.device.new_buffer_with_data(
|
|
||||||
data.as_ptr().cast(),
|
|
||||||
size,
|
|
||||||
MTLResourceOptions::StorageModeManaged,
|
|
||||||
);
|
|
||||||
let mut buffers = self.buffers.write().map_err(MetalError::from)?;
|
|
||||||
|
|
||||||
let subbuffers = buffers
|
|
||||||
.entry((size, MTLResourceOptions::StorageModeManaged))
|
|
||||||
.or_insert(vec![]);
|
|
||||||
|
|
||||||
let new_buffer = Arc::new(new_buffer);
|
|
||||||
subbuffers.push(new_buffer.clone());
|
|
||||||
Ok(new_buffer)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn allocate_zeros(&self, size_in_bytes: usize) -> Result<Arc<Buffer>> {
|
|
||||||
let buffer = self.allocate_buffer(
|
|
||||||
size_in_bytes as NSUInteger,
|
|
||||||
MTLResourceOptions::StorageModePrivate,
|
|
||||||
"allocate_zeros",
|
|
||||||
)?;
|
|
||||||
let command_buffer = self.command_buffer()?;
|
|
||||||
command_buffer.set_label("zeros");
|
|
||||||
let blit = command_buffer.new_blit_command_encoder();
|
|
||||||
blit.fill_buffer(
|
|
||||||
&buffer,
|
|
||||||
metal::NSRange {
|
|
||||||
location: 0,
|
|
||||||
length: buffer.length(),
|
|
||||||
},
|
|
||||||
0,
|
|
||||||
);
|
|
||||||
blit.end_encoding();
|
|
||||||
Ok(buffer)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// The critical allocator algorithm
|
|
||||||
fn allocate_buffer(
|
|
||||||
&self,
|
|
||||||
size: NSUInteger,
|
|
||||||
option: MTLResourceOptions,
|
|
||||||
_name: &str,
|
|
||||||
) -> Result<Arc<Buffer>> {
|
|
||||||
let mut buffers = self.buffers.write().map_err(MetalError::from)?;
|
|
||||||
if let Some(b) = find_available_buffer(size, option, &buffers) {
|
|
||||||
// Cloning also ensures we increment the strong count
|
|
||||||
return Ok(b.clone());
|
|
||||||
}
|
|
||||||
|
|
||||||
let size = buf_size(size);
|
|
||||||
let subbuffers = buffers.entry((size, option)).or_insert(vec![]);
|
|
||||||
|
|
||||||
let new_buffer = self.device.new_buffer(size as NSUInteger, option);
|
|
||||||
let new_buffer = Arc::new(new_buffer);
|
|
||||||
subbuffers.push(new_buffer.clone());
|
|
||||||
|
|
||||||
Ok(new_buffer)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create a metal GPU capture trace on [`path`].
|
|
||||||
pub fn capture<P: AsRef<Path>>(&self, path: P) -> Result<()> {
|
|
||||||
let capture = metal::CaptureManager::shared();
|
|
||||||
let descriptor = metal::CaptureDescriptor::new();
|
|
||||||
descriptor.set_destination(metal::MTLCaptureDestination::GpuTraceDocument);
|
|
||||||
descriptor.set_capture_device(self);
|
|
||||||
// The [set_output_url] call requires an absolute path so we convert it if needed.
|
|
||||||
if path.as_ref().is_absolute() {
|
|
||||||
descriptor.set_output_url(path);
|
|
||||||
} else {
|
|
||||||
let path = std::env::current_dir()?.join(path);
|
|
||||||
descriptor.set_output_url(path);
|
|
||||||
}
|
|
||||||
|
|
||||||
capture
|
|
||||||
.start_capture(&descriptor)
|
|
||||||
.map_err(MetalError::from)?;
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn buf_size(size: NSUInteger) -> NSUInteger {
|
|
||||||
size.saturating_sub(1).next_power_of_two() as NSUInteger
|
|
||||||
}
|
|
||||||
|
|
||||||
fn find_available_buffer(
|
|
||||||
size: NSUInteger,
|
|
||||||
option: MTLResourceOptions,
|
|
||||||
buffers: &BufferMap,
|
|
||||||
) -> Option<Arc<Buffer>> {
|
|
||||||
let mut best_buffer: Option<&Arc<Buffer>> = None;
|
|
||||||
let mut best_buffer_size: NSUInteger = NSUInteger::MAX;
|
|
||||||
for ((buffer_size, buffer_option), subbuffers) in buffers.iter() {
|
|
||||||
if buffer_size >= &size && buffer_size < &best_buffer_size && buffer_option == &option {
|
|
||||||
for sub in subbuffers {
|
|
||||||
if Arc::strong_count(sub) == 1 {
|
|
||||||
best_buffer = Some(sub);
|
|
||||||
best_buffer_size = *buffer_size;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
best_buffer.cloned()
|
|
||||||
}
|
|
File diff suppressed because it is too large
Load Diff
@ -333,16 +333,6 @@ pub fn vd_tanh_inplace(y: &mut [f64]) {
|
|||||||
unsafe { ffi::vdTanh(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
|
unsafe { ffi::vdTanh(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
|
||||||
}
|
}
|
||||||
|
|
||||||
#[inline]
|
|
||||||
pub fn vs_exp_inplace(y: &mut [f32]) {
|
|
||||||
unsafe { ffi::vsExp(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
pub fn vd_exp_inplace(y: &mut [f64]) {
|
|
||||||
unsafe { ffi::vdExp(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) }
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn vs_gelu(vs: &[f32], ys: &mut [f32]) {
|
pub fn vs_gelu(vs: &[f32], ys: &mut [f32]) {
|
||||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
||||||
@ -365,28 +355,6 @@ pub fn vd_gelu(vs: &[f64], ys: &mut [f64]) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[inline]
|
|
||||||
pub fn vs_silu(vs: &[f32], ys: &mut [f32]) {
|
|
||||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
|
||||||
*y = -v
|
|
||||||
}
|
|
||||||
vs_exp_inplace(ys);
|
|
||||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
|
||||||
*y = v / (1.0 + *y)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
pub fn vd_silu(vs: &[f64], ys: &mut [f64]) {
|
|
||||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
|
||||||
*y = -v
|
|
||||||
}
|
|
||||||
vd_exp_inplace(ys);
|
|
||||||
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
|
|
||||||
*y = v / (1.0 + *y)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
macro_rules! binary_op {
|
macro_rules! binary_op {
|
||||||
($fn_name:ident, $ty:ty, $mkl_name:ident) => {
|
($fn_name:ident, $ty:ty, $mkl_name:ident) => {
|
||||||
#[inline]
|
#[inline]
|
||||||
|
@ -250,6 +250,8 @@ impl Tensor {
|
|||||||
if header.fortran_order {
|
if header.fortran_order {
|
||||||
return Err(Error::Npy("fortran order not supported".to_string()));
|
return Err(Error::Npy("fortran order not supported".to_string()));
|
||||||
}
|
}
|
||||||
|
let mut data: Vec<u8> = vec![];
|
||||||
|
reader.read_to_end(&mut data)?;
|
||||||
Self::from_reader(header.shape(), header.descr, &mut reader)
|
Self::from_reader(header.shape(), header.descr, &mut reader)
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -330,7 +332,7 @@ impl Tensor {
|
|||||||
path: P,
|
path: P,
|
||||||
) -> Result<()> {
|
) -> Result<()> {
|
||||||
let mut zip = zip::ZipWriter::new(File::create(path.as_ref())?);
|
let mut zip = zip::ZipWriter::new(File::create(path.as_ref())?);
|
||||||
let options: zip::write::FileOptions<()> =
|
let options =
|
||||||
zip::write::FileOptions::default().compression_method(zip::CompressionMethod::Stored);
|
zip::write::FileOptions::default().compression_method(zip::CompressionMethod::Stored);
|
||||||
|
|
||||||
for (name, tensor) in ts.iter() {
|
for (name, tensor) in ts.iter() {
|
||||||
|
@ -1,7 +1,5 @@
|
|||||||
//! Tensor Opertion Enums and Traits
|
|
||||||
//!
|
|
||||||
#![allow(clippy::redundant_closure_call)]
|
#![allow(clippy::redundant_closure_call)]
|
||||||
use crate::Tensor;
|
use crate::{CpuStorage, CudaStorage, Layout, Result, Shape, Tensor};
|
||||||
use half::{bf16, f16};
|
use half::{bf16, f16};
|
||||||
use num_traits::float::Float;
|
use num_traits::float::Float;
|
||||||
|
|
||||||
@ -60,15 +58,8 @@ pub enum UnaryOp {
|
|||||||
Sqr,
|
Sqr,
|
||||||
Sqrt,
|
Sqrt,
|
||||||
Gelu,
|
Gelu,
|
||||||
GeluErf,
|
|
||||||
Erf,
|
|
||||||
Relu,
|
Relu,
|
||||||
Silu,
|
|
||||||
Tanh,
|
Tanh,
|
||||||
Floor,
|
|
||||||
Ceil,
|
|
||||||
Round,
|
|
||||||
Sign,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Clone)]
|
#[derive(Clone)]
|
||||||
@ -94,16 +85,6 @@ pub enum Op {
|
|||||||
dilation: usize,
|
dilation: usize,
|
||||||
},
|
},
|
||||||
|
|
||||||
#[allow(dead_code)]
|
|
||||||
ConvTranspose1D {
|
|
||||||
arg: Tensor,
|
|
||||||
kernel: Tensor,
|
|
||||||
padding: usize,
|
|
||||||
output_padding: usize,
|
|
||||||
stride: usize,
|
|
||||||
dilation: usize,
|
|
||||||
},
|
|
||||||
|
|
||||||
#[allow(dead_code)]
|
#[allow(dead_code)]
|
||||||
Conv2D {
|
Conv2D {
|
||||||
arg: Tensor,
|
arg: Tensor,
|
||||||
@ -135,15 +116,7 @@ pub enum Op {
|
|||||||
stride: (usize, usize),
|
stride: (usize, usize),
|
||||||
},
|
},
|
||||||
|
|
||||||
UpsampleNearest1D {
|
UpsampleNearest2D(Tensor),
|
||||||
arg: Tensor,
|
|
||||||
target_size: usize,
|
|
||||||
},
|
|
||||||
UpsampleNearest2D {
|
|
||||||
arg: Tensor,
|
|
||||||
target_h: usize,
|
|
||||||
target_w: usize,
|
|
||||||
},
|
|
||||||
|
|
||||||
Cat(Vec<Tensor>, usize),
|
Cat(Vec<Tensor>, usize),
|
||||||
|
|
||||||
@ -157,30 +130,132 @@ pub enum Op {
|
|||||||
Copy(Tensor),
|
Copy(Tensor),
|
||||||
Broadcast(Tensor),
|
Broadcast(Tensor),
|
||||||
Narrow(Tensor, usize, usize, usize),
|
Narrow(Tensor, usize, usize, usize),
|
||||||
SliceScatter0(Tensor, Tensor, usize),
|
|
||||||
Reshape(Tensor),
|
Reshape(Tensor),
|
||||||
ToDevice(Tensor),
|
ToDevice(Tensor),
|
||||||
Transpose(Tensor, usize, usize),
|
Transpose(Tensor, usize, usize),
|
||||||
Permute(Tensor, Vec<usize>),
|
Permute(Tensor, Vec<usize>),
|
||||||
Elu(Tensor, f64),
|
Elu(Tensor, f64),
|
||||||
Powf(Tensor, f64),
|
Powf(Tensor, f64),
|
||||||
CustomOp1(
|
CustomOp1(Tensor, std::sync::Arc<Box<dyn CustomOp1 + Send + Sync>>),
|
||||||
Tensor,
|
|
||||||
std::sync::Arc<Box<dyn crate::CustomOp1 + Send + Sync>>,
|
|
||||||
),
|
|
||||||
CustomOp2(
|
CustomOp2(
|
||||||
Tensor,
|
Tensor,
|
||||||
Tensor,
|
Tensor,
|
||||||
std::sync::Arc<Box<dyn crate::CustomOp2 + Send + Sync>>,
|
std::sync::Arc<Box<dyn CustomOp2 + Send + Sync>>,
|
||||||
),
|
),
|
||||||
CustomOp3(
|
CustomOp3(
|
||||||
Tensor,
|
Tensor,
|
||||||
Tensor,
|
Tensor,
|
||||||
Tensor,
|
Tensor,
|
||||||
std::sync::Arc<Box<dyn crate::CustomOp3 + Send + Sync>>,
|
std::sync::Arc<Box<dyn CustomOp3 + Send + Sync>>,
|
||||||
),
|
),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Unary ops that can be defined in user-land.
|
||||||
|
pub trait CustomOp1 {
|
||||||
|
// Box<dyn> does not support const yet, so use a function to get the name.
|
||||||
|
fn name(&self) -> &'static str;
|
||||||
|
|
||||||
|
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||||
|
/// offsets etc so the associated layout should be used to access it.
|
||||||
|
fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)>;
|
||||||
|
|
||||||
|
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||||
|
/// offsets etc so the associated layout should be used to access it.
|
||||||
|
fn cuda_fwd(&self, _storage: &CudaStorage, _layout: &Layout) -> Result<(CudaStorage, Shape)> {
|
||||||
|
Err(crate::Error::Cuda(
|
||||||
|
format!("no cuda implementation for {}", self.name()).into(),
|
||||||
|
))
|
||||||
|
}
|
||||||
|
|
||||||
|
/// This function takes as argument the argument `arg` used in the forward pass, the result
|
||||||
|
/// produced by the forward operation `res` and the gradient of the result `grad_res`.
|
||||||
|
/// The function should return the gradient of the argument.
|
||||||
|
fn bwd(&self, _arg: &Tensor, _res: &Tensor, _grad_res: &Tensor) -> Result<Option<Tensor>> {
|
||||||
|
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait CustomOp2 {
|
||||||
|
fn name(&self) -> &'static str;
|
||||||
|
|
||||||
|
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||||
|
/// offsets etc so the associated layout should be used to access it.
|
||||||
|
fn cpu_fwd(
|
||||||
|
&self,
|
||||||
|
s1: &CpuStorage,
|
||||||
|
l1: &Layout,
|
||||||
|
s2: &CpuStorage,
|
||||||
|
l2: &Layout,
|
||||||
|
) -> Result<(CpuStorage, Shape)>;
|
||||||
|
|
||||||
|
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||||
|
/// offsets etc so the associated layout should be used to access it.
|
||||||
|
fn cuda_fwd(
|
||||||
|
&self,
|
||||||
|
_: &CudaStorage,
|
||||||
|
_: &Layout,
|
||||||
|
_: &CudaStorage,
|
||||||
|
_: &Layout,
|
||||||
|
) -> Result<(CudaStorage, Shape)> {
|
||||||
|
Err(crate::Error::Cuda(
|
||||||
|
format!("no cuda implementation for {}", self.name()).into(),
|
||||||
|
))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn bwd(
|
||||||
|
&self,
|
||||||
|
_arg1: &Tensor,
|
||||||
|
_arg2: &Tensor,
|
||||||
|
_res: &Tensor,
|
||||||
|
_grad_res: &Tensor,
|
||||||
|
) -> Result<(Option<Tensor>, Option<Tensor>)> {
|
||||||
|
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait CustomOp3 {
|
||||||
|
fn name(&self) -> &'static str;
|
||||||
|
|
||||||
|
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
|
||||||
|
/// offsets etc so the associated layout should be used to access it.
|
||||||
|
fn cpu_fwd(
|
||||||
|
&self,
|
||||||
|
s1: &CpuStorage,
|
||||||
|
l1: &Layout,
|
||||||
|
s2: &CpuStorage,
|
||||||
|
l2: &Layout,
|
||||||
|
s3: &CpuStorage,
|
||||||
|
l3: &Layout,
|
||||||
|
) -> Result<(CpuStorage, Shape)>;
|
||||||
|
|
||||||
|
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
|
||||||
|
/// offsets etc so the associated layout should be used to access it.
|
||||||
|
fn cuda_fwd(
|
||||||
|
&self,
|
||||||
|
_: &CudaStorage,
|
||||||
|
_: &Layout,
|
||||||
|
_: &CudaStorage,
|
||||||
|
_: &Layout,
|
||||||
|
_: &CudaStorage,
|
||||||
|
_: &Layout,
|
||||||
|
) -> Result<(CudaStorage, Shape)> {
|
||||||
|
Err(crate::Error::Cuda(
|
||||||
|
format!("no cuda implementation for {}", self.name()).into(),
|
||||||
|
))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn bwd(
|
||||||
|
&self,
|
||||||
|
_arg1: &Tensor,
|
||||||
|
_arg2: &Tensor,
|
||||||
|
_arg3: &Tensor,
|
||||||
|
_res: &Tensor,
|
||||||
|
_grad_res: &Tensor,
|
||||||
|
) -> Result<(Option<Tensor>, Option<Tensor>, Option<Tensor>)> {
|
||||||
|
Err(crate::Error::BackwardNotSupported { op: self.name() })
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
pub trait UnaryOpT {
|
pub trait UnaryOpT {
|
||||||
const NAME: &'static str;
|
const NAME: &'static str;
|
||||||
const KERNEL: &'static str;
|
const KERNEL: &'static str;
|
||||||
@ -249,15 +324,8 @@ pub(crate) struct Recip;
|
|||||||
pub(crate) struct Sqr;
|
pub(crate) struct Sqr;
|
||||||
pub(crate) struct Sqrt;
|
pub(crate) struct Sqrt;
|
||||||
pub(crate) struct Gelu;
|
pub(crate) struct Gelu;
|
||||||
pub(crate) struct GeluErf;
|
|
||||||
pub(crate) struct Erf;
|
|
||||||
pub(crate) struct Relu;
|
pub(crate) struct Relu;
|
||||||
pub(crate) struct Silu;
|
|
||||||
pub(crate) struct Tanh;
|
pub(crate) struct Tanh;
|
||||||
pub(crate) struct Floor;
|
|
||||||
pub(crate) struct Ceil;
|
|
||||||
pub(crate) struct Round;
|
|
||||||
pub(crate) struct Sign;
|
|
||||||
|
|
||||||
macro_rules! bin_op {
|
macro_rules! bin_op {
|
||||||
($op:ident, $name: literal, $e: expr, $f32_vec: ident, $f64_vec: ident) => {
|
($op:ident, $name: literal, $e: expr, $f32_vec: ident, $f64_vec: ident) => {
|
||||||
@ -456,20 +524,13 @@ unary_op!(Log, "log", v, v.ln(), vs_ln, vd_ln);
|
|||||||
unary_op!(Sin, "sin", v, v.sin(), vs_sin, vd_sin);
|
unary_op!(Sin, "sin", v, v.sin(), vs_sin, vd_sin);
|
||||||
unary_op!(Cos, "cos", v, v.cos(), vs_cos, vd_cos);
|
unary_op!(Cos, "cos", v, v.cos(), vs_cos, vd_cos);
|
||||||
unary_op!(Tanh, "tanh", v, v.tanh(), vs_tanh, vd_tanh);
|
unary_op!(Tanh, "tanh", v, v.tanh(), vs_tanh, vd_tanh);
|
||||||
|
unary_op!(Abs, "abs", v, v.abs());
|
||||||
unary_op!(Neg, "neg", v, -v);
|
unary_op!(Neg, "neg", v, -v);
|
||||||
unary_op!(Recip, "recip", v, v.recip());
|
unary_op!(Recip, "recip", v, v.recip());
|
||||||
unary_op!(Sqr, "sqr", v, v * v, vs_sqr, vd_sqr);
|
unary_op!(Sqr, "sqr", v, v * v, vs_sqr, vd_sqr);
|
||||||
unary_op!(Sqrt, "sqrt", v, v.sqrt(), vs_sqrt, vd_sqrt);
|
unary_op!(Sqrt, "sqrt", v, v.sqrt(), vs_sqrt, vd_sqrt);
|
||||||
|
|
||||||
// Hardcode the value for sqrt(2/pi)
|
/// `gelu` operation
|
||||||
// https://github.com/huggingface/candle/issues/1982
|
|
||||||
#[allow(clippy::excessive_precision)]
|
|
||||||
const SQRT_TWO_OVER_PI_F32: f32 = 0.79788456080286535587989211986876373;
|
|
||||||
#[allow(clippy::excessive_precision)]
|
|
||||||
const SQRT_TWO_OVER_PI_F64: f64 = 0.79788456080286535587989211986876373;
|
|
||||||
|
|
||||||
/// Tanh based approximation of the `gelu` operation
|
|
||||||
/// GeluErf is the more precise one.
|
|
||||||
/// <https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions>
|
/// <https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions>
|
||||||
impl UnaryOpT for Gelu {
|
impl UnaryOpT for Gelu {
|
||||||
const NAME: &'static str = "gelu";
|
const NAME: &'static str = "gelu";
|
||||||
@ -480,7 +541,7 @@ impl UnaryOpT for Gelu {
|
|||||||
* v
|
* v
|
||||||
* (bf16::ONE
|
* (bf16::ONE
|
||||||
+ bf16::tanh(
|
+ bf16::tanh(
|
||||||
bf16::from_f32_const(SQRT_TWO_OVER_PI_F32)
|
(bf16::from_f32_const(2.0) / bf16::PI).sqrt()
|
||||||
* v
|
* v
|
||||||
* (bf16::ONE + bf16::from_f32_const(0.044715) * v * v),
|
* (bf16::ONE + bf16::from_f32_const(0.044715) * v * v),
|
||||||
))
|
))
|
||||||
@ -491,18 +552,22 @@ impl UnaryOpT for Gelu {
|
|||||||
* v
|
* v
|
||||||
* (f16::ONE
|
* (f16::ONE
|
||||||
+ f16::tanh(
|
+ f16::tanh(
|
||||||
f16::from_f32_const(SQRT_TWO_OVER_PI_F32)
|
(f16::from_f32_const(2.0) / f16::PI).sqrt()
|
||||||
* v
|
* v
|
||||||
* (f16::ONE + f16::from_f32_const(0.044715) * v * v),
|
* (f16::ONE + f16::from_f32_const(0.044715) * v * v),
|
||||||
))
|
))
|
||||||
}
|
}
|
||||||
#[inline(always)]
|
#[inline(always)]
|
||||||
fn f32(v: f32) -> f32 {
|
fn f32(v: f32) -> f32 {
|
||||||
0.5 * v * (1.0 + f32::tanh(SQRT_TWO_OVER_PI_F32 * v * (1.0 + 0.044715 * v * v)))
|
0.5 * v
|
||||||
|
* (1.0
|
||||||
|
+ f32::tanh((2.0f32 / std::f32::consts::PI).sqrt() * v * (1.0 + 0.044715 * v * v)))
|
||||||
}
|
}
|
||||||
#[inline(always)]
|
#[inline(always)]
|
||||||
fn f64(v: f64) -> f64 {
|
fn f64(v: f64) -> f64 {
|
||||||
0.5 * v * (1.0 + f64::tanh(SQRT_TWO_OVER_PI_F64 * v * (1.0 + 0.044715 * v * v)))
|
0.5 * v
|
||||||
|
* (1.0
|
||||||
|
+ f64::tanh((2.0f64 / std::f64::consts::PI).sqrt() * v * (1.0 + 0.044715 * v * v)))
|
||||||
}
|
}
|
||||||
#[inline(always)]
|
#[inline(always)]
|
||||||
fn u8(_: u8) -> u8 {
|
fn u8(_: u8) -> u8 {
|
||||||
@ -535,301 +600,6 @@ impl UnaryOpT for Gelu {
|
|||||||
fn f64_vec(xs: &[f64], ys: &mut [f64]) {
|
fn f64_vec(xs: &[f64], ys: &mut [f64]) {
|
||||||
crate::mkl::vd_gelu(xs, ys)
|
crate::mkl::vd_gelu(xs, ys)
|
||||||
}
|
}
|
||||||
|
|
||||||
#[cfg(feature = "accelerate")]
|
|
||||||
const F32_VEC: bool = true;
|
|
||||||
|
|
||||||
#[cfg(feature = "accelerate")]
|
|
||||||
#[inline(always)]
|
|
||||||
fn f32_vec(xs: &[f32], ys: &mut [f32]) {
|
|
||||||
crate::accelerate::vs_gelu(xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(feature = "accelerate")]
|
|
||||||
const F64_VEC: bool = true;
|
|
||||||
|
|
||||||
#[cfg(feature = "accelerate")]
|
|
||||||
#[inline(always)]
|
|
||||||
fn f64_vec(xs: &[f64], ys: &mut [f64]) {
|
|
||||||
crate::accelerate::vd_gelu(xs, ys)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// `erf` operation
|
|
||||||
/// <https://en.wikipedia.org/wiki/Error_function>
|
|
||||||
impl UnaryOpT for Erf {
|
|
||||||
const NAME: &'static str = "erf";
|
|
||||||
const KERNEL: &'static str = "uerf";
|
|
||||||
const V: Self = Erf;
|
|
||||||
#[inline(always)]
|
|
||||||
fn bf16(v: bf16) -> bf16 {
|
|
||||||
bf16::from_f64(Self::f64(v.to_f64()))
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f16(v: f16) -> f16 {
|
|
||||||
f16::from_f64(Self::f64(v.to_f64()))
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f32(v: f32) -> f32 {
|
|
||||||
Self::f64(v as f64) as f32
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f64(v: f64) -> f64 {
|
|
||||||
crate::cpu::erf::erf(v)
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u8(_: u8) -> u8 {
|
|
||||||
0
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u32(_: u32) -> u32 {
|
|
||||||
0
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn i64(_: i64) -> i64 {
|
|
||||||
0
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Silu operation
|
|
||||||
impl UnaryOpT for Silu {
|
|
||||||
const NAME: &'static str = "silu";
|
|
||||||
const V: Self = Silu;
|
|
||||||
#[inline(always)]
|
|
||||||
fn bf16(v: bf16) -> bf16 {
|
|
||||||
v / (bf16::ONE + (-v).exp())
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f16(v: f16) -> f16 {
|
|
||||||
v / (f16::ONE + (-v).exp())
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f32(v: f32) -> f32 {
|
|
||||||
v / (1.0 + (-v).exp())
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f64(v: f64) -> f64 {
|
|
||||||
v / (1.0 + (-v).exp())
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u8(_: u8) -> u8 {
|
|
||||||
0
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u32(_: u32) -> u32 {
|
|
||||||
0
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn i64(_: i64) -> i64 {
|
|
||||||
0
|
|
||||||
}
|
|
||||||
const KERNEL: &'static str = "usilu";
|
|
||||||
|
|
||||||
#[cfg(feature = "mkl")]
|
|
||||||
const F32_VEC: bool = true;
|
|
||||||
|
|
||||||
#[cfg(feature = "mkl")]
|
|
||||||
#[inline(always)]
|
|
||||||
fn f32_vec(xs: &[f32], ys: &mut [f32]) {
|
|
||||||
crate::mkl::vs_silu(xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(feature = "mkl")]
|
|
||||||
const F64_VEC: bool = true;
|
|
||||||
|
|
||||||
#[cfg(feature = "mkl")]
|
|
||||||
#[inline(always)]
|
|
||||||
fn f64_vec(xs: &[f64], ys: &mut [f64]) {
|
|
||||||
crate::mkl::vd_silu(xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(feature = "accelerate")]
|
|
||||||
const F32_VEC: bool = true;
|
|
||||||
|
|
||||||
#[cfg(feature = "accelerate")]
|
|
||||||
#[inline(always)]
|
|
||||||
fn f32_vec(xs: &[f32], ys: &mut [f32]) {
|
|
||||||
crate::accelerate::vs_silu(xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(feature = "accelerate")]
|
|
||||||
const F64_VEC: bool = true;
|
|
||||||
|
|
||||||
#[cfg(feature = "accelerate")]
|
|
||||||
#[inline(always)]
|
|
||||||
fn f64_vec(xs: &[f64], ys: &mut [f64]) {
|
|
||||||
crate::accelerate::vd_silu(xs, ys)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl UnaryOpT for Abs {
|
|
||||||
const NAME: &'static str = "abs";
|
|
||||||
const KERNEL: &'static str = "uabs";
|
|
||||||
const V: Self = Abs;
|
|
||||||
#[inline(always)]
|
|
||||||
fn bf16(v: bf16) -> bf16 {
|
|
||||||
v.abs()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f16(v: f16) -> f16 {
|
|
||||||
v.abs()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f32(v: f32) -> f32 {
|
|
||||||
v.abs()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f64(v: f64) -> f64 {
|
|
||||||
v.abs()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u8(v: u8) -> u8 {
|
|
||||||
v
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u32(v: u32) -> u32 {
|
|
||||||
v
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn i64(v: i64) -> i64 {
|
|
||||||
v.abs()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl UnaryOpT for Ceil {
|
|
||||||
const NAME: &'static str = "ceil";
|
|
||||||
const KERNEL: &'static str = "uceil";
|
|
||||||
const V: Self = Ceil;
|
|
||||||
#[inline(always)]
|
|
||||||
fn bf16(v: bf16) -> bf16 {
|
|
||||||
v.ceil()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f16(v: f16) -> f16 {
|
|
||||||
v.ceil()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f32(v: f32) -> f32 {
|
|
||||||
v.ceil()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f64(v: f64) -> f64 {
|
|
||||||
v.ceil()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u8(v: u8) -> u8 {
|
|
||||||
v
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u32(v: u32) -> u32 {
|
|
||||||
v
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn i64(v: i64) -> i64 {
|
|
||||||
v
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl UnaryOpT for Floor {
|
|
||||||
const NAME: &'static str = "floor";
|
|
||||||
const KERNEL: &'static str = "ufloor";
|
|
||||||
const V: Self = Floor;
|
|
||||||
#[inline(always)]
|
|
||||||
fn bf16(v: bf16) -> bf16 {
|
|
||||||
v.floor()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f16(v: f16) -> f16 {
|
|
||||||
v.floor()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f32(v: f32) -> f32 {
|
|
||||||
v.floor()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f64(v: f64) -> f64 {
|
|
||||||
v.floor()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u8(v: u8) -> u8 {
|
|
||||||
v
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u32(v: u32) -> u32 {
|
|
||||||
v
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn i64(v: i64) -> i64 {
|
|
||||||
v
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl UnaryOpT for Round {
|
|
||||||
const NAME: &'static str = "round";
|
|
||||||
const KERNEL: &'static str = "uround";
|
|
||||||
const V: Self = Round;
|
|
||||||
#[inline(always)]
|
|
||||||
fn bf16(v: bf16) -> bf16 {
|
|
||||||
v.round()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f16(v: f16) -> f16 {
|
|
||||||
v.round()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f32(v: f32) -> f32 {
|
|
||||||
v.round()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f64(v: f64) -> f64 {
|
|
||||||
v.round()
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u8(v: u8) -> u8 {
|
|
||||||
v
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u32(v: u32) -> u32 {
|
|
||||||
v
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn i64(v: i64) -> i64 {
|
|
||||||
v
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl UnaryOpT for GeluErf {
|
|
||||||
const NAME: &'static str = "gelu_erf";
|
|
||||||
const KERNEL: &'static str = "ugelu_erf";
|
|
||||||
const V: Self = GeluErf;
|
|
||||||
#[inline(always)]
|
|
||||||
fn bf16(v: bf16) -> bf16 {
|
|
||||||
bf16::from_f64(Self::f64(v.to_f64()))
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f16(v: f16) -> f16 {
|
|
||||||
f16::from_f64(Self::f64(v.to_f64()))
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f32(v: f32) -> f32 {
|
|
||||||
Self::f64(v as f64) as f32
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f64(v: f64) -> f64 {
|
|
||||||
(crate::cpu::erf::erf(v / 2f64.sqrt()) + 1.) * 0.5 * v
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u8(_: u8) -> u8 {
|
|
||||||
0
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u32(_: u32) -> u32 {
|
|
||||||
0
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn i64(_: i64) -> i64 {
|
|
||||||
0
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl UnaryOpT for Relu {
|
impl UnaryOpT for Relu {
|
||||||
@ -917,10 +687,6 @@ impl BackpropOp {
|
|||||||
};
|
};
|
||||||
Self(op)
|
Self(op)
|
||||||
}
|
}
|
||||||
|
|
||||||
pub(crate) fn is_none(&self) -> bool {
|
|
||||||
self.0.is_none()
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl std::ops::Deref for BackpropOp {
|
impl std::ops::Deref for BackpropOp {
|
||||||
@ -929,37 +695,3 @@ impl std::ops::Deref for BackpropOp {
|
|||||||
&self.0
|
&self.0
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl UnaryOpT for Sign {
|
|
||||||
const NAME: &'static str = "sign";
|
|
||||||
const KERNEL: &'static str = "usign";
|
|
||||||
const V: Self = Sign;
|
|
||||||
#[inline(always)]
|
|
||||||
fn bf16(v: bf16) -> bf16 {
|
|
||||||
bf16::from((v > bf16::ZERO) as i8) - bf16::from((v < bf16::ZERO) as i8)
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f16(v: f16) -> f16 {
|
|
||||||
f16::from((v > f16::ZERO) as i8) - f16::from((v < f16::ZERO) as i8)
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f32(v: f32) -> f32 {
|
|
||||||
f32::from(v > 0.) - f32::from(v < 0.)
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn f64(v: f64) -> f64 {
|
|
||||||
f64::from(v > 0.) - f64::from(v < 0.)
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u8(v: u8) -> u8 {
|
|
||||||
u8::min(1, v)
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn u32(v: u32) -> u32 {
|
|
||||||
u32::min(1, v)
|
|
||||||
}
|
|
||||||
#[inline(always)]
|
|
||||||
fn i64(v: i64) -> i64 {
|
|
||||||
(v > 0) as i64 - (v < 0) as i64
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
//! Just enough pickle support to be able to read PyTorch checkpoints.
|
// Just enough pickle support to be able to read PyTorch checkpoints.
|
||||||
// This hardcodes objects that are required for tensor reading, we may want to make this a bit more
|
// This hardcodes objects that are required for tensor reading, we may want to make this a bit more
|
||||||
// composable/tensor agnostic at some point.
|
// composable/tensor agnostic at some point.
|
||||||
use crate::{Context, DType, Error as E, Layout, Result, Tensor};
|
use crate::{DType, Error as E, Layout, Result, Tensor};
|
||||||
use byteorder::{LittleEndian, ReadBytesExt};
|
use byteorder::{LittleEndian, ReadBytesExt};
|
||||||
use std::collections::HashMap;
|
use std::collections::HashMap;
|
||||||
use std::io::BufRead;
|
use std::io::BufRead;
|
||||||
@ -42,10 +42,9 @@ pub enum OpCode {
|
|||||||
Stop = b'.',
|
Stop = b'.',
|
||||||
NewObj = 0x81,
|
NewObj = 0x81,
|
||||||
EmptyList = b']',
|
EmptyList = b']',
|
||||||
BinFloat = b'G',
|
BinFloat = b'g',
|
||||||
Append = b'a',
|
Append = b'a',
|
||||||
Appends = b'e',
|
Appends = b'e',
|
||||||
Long1 = 0x8a,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Avoid using FromPrimitive so as not to drag another dependency.
|
// Avoid using FromPrimitive so as not to drag another dependency.
|
||||||
@ -85,7 +84,6 @@ impl TryFrom<u8> for OpCode {
|
|||||||
b'G' => Ok(Self::BinFloat),
|
b'G' => Ok(Self::BinFloat),
|
||||||
b'a' => Ok(Self::Append),
|
b'a' => Ok(Self::Append),
|
||||||
b'e' => Ok(Self::Appends),
|
b'e' => Ok(Self::Appends),
|
||||||
0x8a => Ok(Self::Long1),
|
|
||||||
value => Err(value),
|
value => Err(value),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -108,7 +106,6 @@ pub enum Object {
|
|||||||
class_name: String,
|
class_name: String,
|
||||||
},
|
},
|
||||||
Int(i32),
|
Int(i32),
|
||||||
Long(i64),
|
|
||||||
Float(f64),
|
Float(f64),
|
||||||
Unicode(String),
|
Unicode(String),
|
||||||
Bool(bool),
|
Bool(bool),
|
||||||
@ -173,14 +170,6 @@ impl Object {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn int_or_long(self) -> OResult<i64> {
|
|
||||||
match self {
|
|
||||||
Self::Int(t) => Ok(t as i64),
|
|
||||||
Self::Long(t) => Ok(t),
|
|
||||||
_ => Err(self),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn tuple(self) -> OResult<Vec<Self>> {
|
pub fn tuple(self) -> OResult<Vec<Self>> {
|
||||||
match self {
|
match self {
|
||||||
Self::Tuple(t) => Ok(t),
|
Self::Tuple(t) => Ok(t),
|
||||||
@ -204,55 +193,6 @@ impl Object {
|
|||||||
_ => Err(self),
|
_ => Err(self),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn into_tensor_info(
|
|
||||||
self,
|
|
||||||
name: Self,
|
|
||||||
dir_name: &std::path::Path,
|
|
||||||
) -> Result<Option<TensorInfo>> {
|
|
||||||
let name = match name.unicode() {
|
|
||||||
Ok(name) => name,
|
|
||||||
Err(_) => return Ok(None),
|
|
||||||
};
|
|
||||||
let (callable, args) = match self.reduce() {
|
|
||||||
Ok(callable_args) => callable_args,
|
|
||||||
_ => return Ok(None),
|
|
||||||
};
|
|
||||||
let (callable, args) = match callable {
|
|
||||||
Object::Class {
|
|
||||||
module_name,
|
|
||||||
class_name,
|
|
||||||
} if module_name == "torch._tensor" && class_name == "_rebuild_from_type_v2" => {
|
|
||||||
let mut args = args.tuple()?;
|
|
||||||
let callable = args.remove(0);
|
|
||||||
let args = args.remove(1);
|
|
||||||
(callable, args)
|
|
||||||
}
|
|
||||||
Object::Class {
|
|
||||||
module_name,
|
|
||||||
class_name,
|
|
||||||
} if module_name == "torch._utils" && class_name == "_rebuild_parameter" => {
|
|
||||||
let mut args = args.tuple()?;
|
|
||||||
args.remove(0).reduce()?
|
|
||||||
}
|
|
||||||
_ => (callable, args),
|
|
||||||
};
|
|
||||||
match callable {
|
|
||||||
Object::Class {
|
|
||||||
module_name,
|
|
||||||
class_name,
|
|
||||||
} if module_name == "torch._utils" && class_name == "_rebuild_tensor_v2" => {}
|
|
||||||
_ => return Ok(None),
|
|
||||||
};
|
|
||||||
let (layout, dtype, file_path, storage_size) = rebuild_args(args)?;
|
|
||||||
Ok(Some(TensorInfo {
|
|
||||||
name,
|
|
||||||
dtype,
|
|
||||||
layout,
|
|
||||||
path: format!("{}/{}", dir_name.to_string_lossy(), file_path),
|
|
||||||
storage_size,
|
|
||||||
}))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl TryFrom<Object> for String {
|
impl TryFrom<Object> for String {
|
||||||
@ -361,10 +301,8 @@ impl Stack {
|
|||||||
module_name,
|
module_name,
|
||||||
class_name,
|
class_name,
|
||||||
} => {
|
} => {
|
||||||
if module_name == "collections"
|
if module_name == "collections" && class_name == "OrderedDict" {
|
||||||
&& (class_name == "OrderedDict" || class_name == "defaultdict")
|
// TODO: have a separate ordered dict.
|
||||||
{
|
|
||||||
// TODO: have a separate ordered dict and a separate default dict.
|
|
||||||
Some(Object::Dict(vec![]))
|
Some(Object::Dict(vec![]))
|
||||||
} else {
|
} else {
|
||||||
None
|
None
|
||||||
@ -473,10 +411,7 @@ impl Stack {
|
|||||||
self.push(Object::Int(arg))
|
self.push(Object::Int(arg))
|
||||||
}
|
}
|
||||||
OpCode::BinFloat => {
|
OpCode::BinFloat => {
|
||||||
// Somehow floats are encoded using BigEndian whereas int types use LittleEndian.
|
let arg = r.read_f64::<LittleEndian>()?;
|
||||||
// https://github.com/python/cpython/blob/0c80da4c14d904a367968955544dd6ae58c8101c/Lib/pickletools.py#L855
|
|
||||||
// https://github.com/pytorch/pytorch/blob/372d078f361e726bb4ac0884ac334b04c58179ef/torch/_weights_only_unpickler.py#L243
|
|
||||||
let arg = r.read_f64::<byteorder::BigEndian>()?;
|
|
||||||
self.push(Object::Float(arg))
|
self.push(Object::Float(arg))
|
||||||
}
|
}
|
||||||
OpCode::BinUnicode => {
|
OpCode::BinUnicode => {
|
||||||
@ -548,7 +483,7 @@ impl Stack {
|
|||||||
crate::bail!("setitems: not an even number of objects")
|
crate::bail!("setitems: not an even number of objects")
|
||||||
}
|
}
|
||||||
while let Some(value) = objs.pop() {
|
while let Some(value) = objs.pop() {
|
||||||
let key = objs.pop().context("empty objs")?;
|
let key = objs.pop().unwrap();
|
||||||
d.push((key, value))
|
d.push((key, value))
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
@ -568,7 +503,7 @@ impl Stack {
|
|||||||
crate::bail!("setitems: not an even number of objects")
|
crate::bail!("setitems: not an even number of objects")
|
||||||
}
|
}
|
||||||
while let Some(value) = objs.pop() {
|
while let Some(value) = objs.pop() {
|
||||||
let key = objs.pop().context("empty objs")?;
|
let key = objs.pop().unwrap();
|
||||||
pydict.push((key, value))
|
pydict.push((key, value))
|
||||||
}
|
}
|
||||||
self.push(Object::Dict(pydict))
|
self.push(Object::Dict(pydict))
|
||||||
@ -601,15 +536,6 @@ impl Stack {
|
|||||||
let obj = self.new_obj(class, args)?;
|
let obj = self.new_obj(class, args)?;
|
||||||
self.push(obj)
|
self.push(obj)
|
||||||
}
|
}
|
||||||
OpCode::Long1 => {
|
|
||||||
let n_bytes = r.read_u8()?;
|
|
||||||
let mut v = 0;
|
|
||||||
// Decode the next n bytes in little endian
|
|
||||||
for i in 0..n_bytes {
|
|
||||||
v |= (r.read_u8()? as i64) << (i * 8);
|
|
||||||
}
|
|
||||||
self.push(Object::Long(v))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
Ok(false)
|
Ok(false)
|
||||||
}
|
}
|
||||||
@ -627,10 +553,10 @@ fn rebuild_args(args: Object) -> Result<(Layout, DType, String, usize)> {
|
|||||||
let mut args = args.tuple()?;
|
let mut args = args.tuple()?;
|
||||||
let stride = Vec::<usize>::try_from(args.remove(3))?;
|
let stride = Vec::<usize>::try_from(args.remove(3))?;
|
||||||
let size = Vec::<usize>::try_from(args.remove(2))?;
|
let size = Vec::<usize>::try_from(args.remove(2))?;
|
||||||
let offset = args.remove(1).int_or_long()? as usize;
|
let offset = args.remove(1).int()? as usize;
|
||||||
let storage = args.remove(0).persistent_load()?;
|
let storage = args.remove(0).persistent_load()?;
|
||||||
let mut storage = storage.tuple()?;
|
let mut storage = storage.tuple()?;
|
||||||
let storage_size = storage.remove(4).int_or_long()? as usize;
|
let storage_size = storage.remove(4).int()? as usize;
|
||||||
let path = storage.remove(2).unicode()?;
|
let path = storage.remove(2).unicode()?;
|
||||||
let (_module_name, class_name) = storage.remove(1).class()?;
|
let (_module_name, class_name) = storage.remove(1).class()?;
|
||||||
let dtype = match class_name.as_str() {
|
let dtype = match class_name.as_str() {
|
||||||
@ -639,16 +565,11 @@ fn rebuild_args(args: Object) -> Result<(Layout, DType, String, usize)> {
|
|||||||
"HalfStorage" => DType::F16,
|
"HalfStorage" => DType::F16,
|
||||||
"BFloat16Storage" => DType::BF16,
|
"BFloat16Storage" => DType::BF16,
|
||||||
"ByteStorage" => DType::U8,
|
"ByteStorage" => DType::U8,
|
||||||
"LongStorage" => DType::I64,
|
|
||||||
other => {
|
other => {
|
||||||
crate::bail!("unsupported storage type {other}")
|
crate::bail!("unsupported storage type {other}")
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
let layout = Layout::new(
|
let layout = Layout::new(crate::Shape::from(size), stride, offset);
|
||||||
crate::Shape::from(size),
|
|
||||||
stride,
|
|
||||||
offset * dtype.size_in_bytes(),
|
|
||||||
);
|
|
||||||
Ok((layout, dtype, path, storage_size))
|
Ok((layout, dtype, path, storage_size))
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -661,16 +582,9 @@ pub struct TensorInfo {
|
|||||||
pub storage_size: usize,
|
pub storage_size: usize,
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Read the tensor info from a .pth file.
|
|
||||||
///
|
|
||||||
/// # Arguments
|
|
||||||
/// * `file` - The path to the .pth file.
|
|
||||||
/// * `verbose` - Whether to print debug information.
|
|
||||||
/// * `key` - Optional key to retrieve `state_dict` from the pth file.
|
|
||||||
pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
|
pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
|
||||||
file: P,
|
file: P,
|
||||||
verbose: bool,
|
verbose: bool,
|
||||||
key: Option<&str>,
|
|
||||||
) -> Result<Vec<TensorInfo>> {
|
) -> Result<Vec<TensorInfo>> {
|
||||||
let file = std::fs::File::open(file)?;
|
let file = std::fs::File::open(file)?;
|
||||||
let zip_reader = std::io::BufReader::new(file);
|
let zip_reader = std::io::BufReader::new(file);
|
||||||
@ -685,16 +599,15 @@ pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
|
|||||||
if !file_name.ends_with("data.pkl") {
|
if !file_name.ends_with("data.pkl") {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
let dir_name = std::path::PathBuf::from(file_name.strip_suffix(".pkl").context("no .pkl")?);
|
let dir_name = std::path::PathBuf::from(file_name.strip_suffix(".pkl").unwrap());
|
||||||
let reader = zip.by_name(file_name)?;
|
let reader = zip.by_name(file_name)?;
|
||||||
let mut reader = std::io::BufReader::new(reader);
|
let mut reader = std::io::BufReader::new(reader);
|
||||||
let mut stack = Stack::empty();
|
let mut stack = Stack::empty();
|
||||||
stack.read_loop(&mut reader)?;
|
stack.read_loop(&mut reader)?;
|
||||||
let obj = stack.finalize()?;
|
let obj = stack.finalize()?;
|
||||||
if VERBOSE || verbose {
|
if VERBOSE || verbose {
|
||||||
println!("{obj:#?}");
|
println!("{obj:?}");
|
||||||
}
|
}
|
||||||
|
|
||||||
let obj = match obj {
|
let obj = match obj {
|
||||||
Object::Build { callable, args } => match *callable {
|
Object::Build { callable, args } => match *callable {
|
||||||
Object::Reduce { callable, args: _ } => match *callable {
|
Object::Reduce { callable, args: _ } => match *callable {
|
||||||
@ -708,30 +621,52 @@ pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
|
|||||||
},
|
},
|
||||||
obj => obj,
|
obj => obj,
|
||||||
};
|
};
|
||||||
|
|
||||||
// If key is provided, then we need to extract the state_dict from the object.
|
|
||||||
let obj = if let Some(key) = key {
|
|
||||||
if let Object::Dict(key_values) = obj {
|
|
||||||
key_values
|
|
||||||
.into_iter()
|
|
||||||
.find(|(k, _)| *k == Object::Unicode(key.to_owned()))
|
|
||||||
.map(|(_, v)| v)
|
|
||||||
.ok_or_else(|| E::Msg(format!("key {key} not found")))?
|
|
||||||
} else {
|
|
||||||
obj
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
obj
|
|
||||||
};
|
|
||||||
|
|
||||||
// If the object is a dict, then we can extract the tensor info from it.
|
|
||||||
// NOTE: We are assuming that the `obj` is state_dict by this stage.
|
|
||||||
if let Object::Dict(key_values) = obj {
|
if let Object::Dict(key_values) = obj {
|
||||||
for (name, value) in key_values.into_iter() {
|
for (name, value) in key_values.into_iter() {
|
||||||
match value.into_tensor_info(name, &dir_name) {
|
let name = match name.unicode() {
|
||||||
Ok(Some(tensor_info)) => tensor_infos.push(tensor_info),
|
Ok(name) => name,
|
||||||
Ok(None) => {}
|
Err(_) => continue,
|
||||||
Err(err) => eprintln!("skipping: {err:?}"),
|
};
|
||||||
|
let (callable, args) = match value.reduce() {
|
||||||
|
Ok(callable_args) => callable_args,
|
||||||
|
_ => continue,
|
||||||
|
};
|
||||||
|
let (callable, args) = match callable {
|
||||||
|
Object::Class {
|
||||||
|
module_name,
|
||||||
|
class_name,
|
||||||
|
} if module_name == "torch._tensor"
|
||||||
|
&& class_name == "_rebuild_from_type_v2" =>
|
||||||
|
{
|
||||||
|
let mut args = args.tuple()?;
|
||||||
|
let callable = args.remove(0);
|
||||||
|
let args = args.remove(1);
|
||||||
|
(callable, args)
|
||||||
|
}
|
||||||
|
_ => (callable, args),
|
||||||
|
};
|
||||||
|
match callable {
|
||||||
|
Object::Class {
|
||||||
|
module_name,
|
||||||
|
class_name,
|
||||||
|
} if module_name == "torch._utils" && class_name == "_rebuild_tensor_v2" => {}
|
||||||
|
_ => continue,
|
||||||
|
};
|
||||||
|
match rebuild_args(args) {
|
||||||
|
Ok((layout, dtype, file_path, storage_size)) => {
|
||||||
|
let mut path = dir_name.clone();
|
||||||
|
path.push(file_path);
|
||||||
|
tensor_infos.push(TensorInfo {
|
||||||
|
name,
|
||||||
|
dtype,
|
||||||
|
layout,
|
||||||
|
path: path.to_string_lossy().into_owned(),
|
||||||
|
storage_size,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
Err(err) => {
|
||||||
|
eprintln!("skipping {name}: {err:?}")
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -748,8 +683,8 @@ pub struct PthTensors {
|
|||||||
}
|
}
|
||||||
|
|
||||||
impl PthTensors {
|
impl PthTensors {
|
||||||
pub fn new<P: AsRef<std::path::Path>>(path: P, key: Option<&str>) -> Result<Self> {
|
pub fn new<P: AsRef<std::path::Path>>(path: P) -> Result<Self> {
|
||||||
let tensor_infos = read_pth_tensor_info(path.as_ref(), false, key)?;
|
let tensor_infos = read_pth_tensor_info(path.as_ref(), false)?;
|
||||||
let tensor_infos = tensor_infos
|
let tensor_infos = tensor_infos
|
||||||
.into_iter()
|
.into_iter()
|
||||||
.map(|ti| (ti.name.to_string(), ti))
|
.map(|ti| (ti.name.to_string(), ti))
|
||||||
@ -763,7 +698,6 @@ impl PthTensors {
|
|||||||
}
|
}
|
||||||
|
|
||||||
pub fn get(&self, name: &str) -> Result<Option<Tensor>> {
|
pub fn get(&self, name: &str) -> Result<Option<Tensor>> {
|
||||||
use std::io::Read;
|
|
||||||
let tensor_info = match self.tensor_infos.get(name) {
|
let tensor_info = match self.tensor_infos.get(name) {
|
||||||
None => return Ok(None),
|
None => return Ok(None),
|
||||||
Some(tensor_info) => tensor_info,
|
Some(tensor_info) => tensor_info,
|
||||||
@ -772,70 +706,20 @@ impl PthTensors {
|
|||||||
let zip_reader = std::io::BufReader::new(std::fs::File::open(&self.path)?);
|
let zip_reader = std::io::BufReader::new(std::fs::File::open(&self.path)?);
|
||||||
let mut zip = zip::ZipArchive::new(zip_reader)?;
|
let mut zip = zip::ZipArchive::new(zip_reader)?;
|
||||||
let mut reader = zip.by_name(&tensor_info.path)?;
|
let mut reader = zip.by_name(&tensor_info.path)?;
|
||||||
let is_fortran_contiguous = tensor_info.layout.is_fortran_contiguous();
|
|
||||||
let rank = tensor_info.layout.shape().rank();
|
|
||||||
|
|
||||||
// Reading the data is a bit tricky as it can be strided, for now only support the basic
|
// Reading the data is a bit tricky as it can be strided, use an offset, etc.
|
||||||
// case and when the tensor is fortran contiguous.
|
// For now only support the basic case.
|
||||||
if !tensor_info.layout.is_contiguous() && !is_fortran_contiguous {
|
if tensor_info.layout.start_offset() != 0 || !tensor_info.layout.is_contiguous() {
|
||||||
crate::bail!(
|
crate::bail!(
|
||||||
"cannot retrieve non-contiguous tensors {:?}",
|
"cannot retrieve non-contiguous tensors {:?}",
|
||||||
tensor_info.layout
|
tensor_info.layout
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
let start_offset = tensor_info.layout.start_offset();
|
|
||||||
if start_offset > 0 {
|
|
||||||
std::io::copy(
|
|
||||||
&mut reader.by_ref().take(start_offset as u64),
|
|
||||||
&mut std::io::sink(),
|
|
||||||
)?;
|
|
||||||
}
|
|
||||||
let tensor = Tensor::from_reader(
|
let tensor = Tensor::from_reader(
|
||||||
tensor_info.layout.shape().clone(),
|
tensor_info.layout.shape().clone(),
|
||||||
tensor_info.dtype,
|
tensor_info.dtype,
|
||||||
&mut reader,
|
&mut reader,
|
||||||
)?;
|
)?;
|
||||||
|
Ok(Some(tensor))
|
||||||
if rank > 1 && is_fortran_contiguous {
|
|
||||||
// Reverse the shape, e.g. Shape(2, 3, 4) -> Shape(4, 3, 2)
|
|
||||||
let shape_reversed: Vec<_> = tensor_info.layout.dims().iter().rev().cloned().collect();
|
|
||||||
let tensor = tensor.reshape(shape_reversed)?;
|
|
||||||
|
|
||||||
// Permute (transpose) the dimensions, e.g. Shape(4, 3, 2) -> Shape(2, 3, 4)
|
|
||||||
let dim_indeces_reversed: Vec<_> = (0..rank).rev().collect();
|
|
||||||
let tensor = tensor.permute(dim_indeces_reversed)?;
|
|
||||||
Ok(Some(tensor))
|
|
||||||
} else {
|
|
||||||
Ok(Some(tensor))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Read all the tensors from a PyTorch pth file with a given key.
|
|
||||||
///
|
|
||||||
/// # Arguments
|
|
||||||
/// * `path` - Path to the pth file.
|
|
||||||
/// * `key` - Optional key to retrieve `state_dict` from the pth file. Sometimes the pth file
|
|
||||||
/// contains multiple objects and the state_dict is the one we are interested in.
|
|
||||||
pub fn read_all_with_key<P: AsRef<std::path::Path>>(
|
|
||||||
path: P,
|
|
||||||
key: Option<&str>,
|
|
||||||
) -> Result<Vec<(String, Tensor)>> {
|
|
||||||
let pth = PthTensors::new(path, key)?;
|
|
||||||
let tensor_names = pth.tensor_infos.keys();
|
|
||||||
let mut tensors = Vec::with_capacity(tensor_names.len());
|
|
||||||
for name in tensor_names {
|
|
||||||
if let Some(tensor) = pth.get(name)? {
|
|
||||||
tensors.push((name.to_string(), tensor))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Ok(tensors)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Read all the tensors from a PyTorch pth file.
|
|
||||||
///
|
|
||||||
/// # Arguments
|
|
||||||
/// * `path` - Path to the pth file.
|
|
||||||
pub fn read_all<P: AsRef<std::path::Path>>(path: P) -> Result<Vec<(String, Tensor)>> {
|
|
||||||
read_all_with_key(path, None)
|
|
||||||
}
|
|
||||||
|
@ -50,9 +50,14 @@ pub(crate) unsafe fn mul_sum_i8_pairs_float(x: __m256i, y: __m256i) -> __m256 {
|
|||||||
#[inline(always)]
|
#[inline(always)]
|
||||||
pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) -> Result<f32> {
|
pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) -> Result<f32> {
|
||||||
let qk = QK8_0;
|
let qk = QK8_0;
|
||||||
|
let nb = n / qk;
|
||||||
if n % QK8_0 != 0 {
|
if n % QK8_0 != 0 {
|
||||||
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
|
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
|
||||||
}
|
}
|
||||||
|
if nb % 2 != 0 {
|
||||||
|
crate::bail!("vec_dot_q4_0_q8_0: {nb} is not even")
|
||||||
|
}
|
||||||
|
|
||||||
unsafe {
|
unsafe {
|
||||||
let mut acc = _mm256_setzero_ps();
|
let mut acc = _mm256_setzero_ps();
|
||||||
for (x, y) in xs.iter().zip(ys.iter()) {
|
for (x, y) in xs.iter().zip(ys.iter()) {
|
||||||
@ -353,7 +358,7 @@ pub(crate) fn vec_dot_q3k_q8k(n: usize, xs: &[BlockQ3K], ys: &[BlockQ8K]) -> Res
|
|||||||
q3 = q3.add(32);
|
q3 = q3.add(32);
|
||||||
|
|
||||||
// Prepare low and high bits
|
// Prepare low and high bits
|
||||||
// We hardcode the shifts here to avoid loading them into a separate register
|
// We hardcode the shifts here to avoid loading them into a seperate register
|
||||||
let q3l_0 = _mm256_and_si256(q3bits, m3);
|
let q3l_0 = _mm256_and_si256(q3bits, m3);
|
||||||
let q3h_0 = if j == 0 {
|
let q3h_0 = if j == 0 {
|
||||||
_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 0)), 0)
|
_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 0)), 0)
|
||||||
@ -586,7 +591,7 @@ pub(crate) fn vec_dot_q5k_q8k(n: usize, xs: &[BlockQ5K], ys: &[BlockQ8K]) -> Res
|
|||||||
let q5bits = _mm256_loadu_si256(q5 as *const __m256i);
|
let q5bits = _mm256_loadu_si256(q5 as *const __m256i);
|
||||||
q5 = q5.add(32);
|
q5 = q5.add(32);
|
||||||
|
|
||||||
//Similar to q3k we hardcode the shifts here to avoid loading them into a separate register
|
//Similar to q3k we hardcode the shifts here to avoid loading them into a seperate register
|
||||||
let q5l_0 = _mm256_and_si256(q5bits, m4);
|
let q5l_0 = _mm256_and_si256(q5bits, m4);
|
||||||
let q5l_0_shift_input = _mm256_and_si256(hbits, hmask);
|
let q5l_0_shift_input = _mm256_and_si256(hbits, hmask);
|
||||||
let q5l_0_right_shift = match j {
|
let q5l_0_right_shift = match j {
|
||||||
@ -633,35 +638,3 @@ pub(crate) fn vec_dot_q5k_q8k(n: usize, xs: &[BlockQ5K], ys: &[BlockQ8K]) -> Res
|
|||||||
Ok(hsum_float_8(acc) + summs)
|
Ok(hsum_float_8(acc) + summs)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
pub(crate) fn vec_dot_q8k_q8k(n: usize, xs: &[BlockQ8K], ys: &[BlockQ8K]) -> Result<f32> {
|
|
||||||
let qk = QK_K;
|
|
||||||
if n % qk != 0 {
|
|
||||||
crate::bail!("vec_dot_q8k_8k: {n} is not divisible by {qk}")
|
|
||||||
}
|
|
||||||
|
|
||||||
unsafe {
|
|
||||||
let mut acc = _mm256_setzero_ps();
|
|
||||||
for (xs, ys) in xs.iter().zip(ys.iter()) {
|
|
||||||
let mut sumi = _mm256_setzero_si256();
|
|
||||||
let x_qs = xs.qs.as_ptr();
|
|
||||||
let y_qs = ys.qs.as_ptr();
|
|
||||||
for j in (0..QK_K).step_by(32) {
|
|
||||||
let xs = _mm256_loadu_si256(x_qs.add(j) as *const __m256i);
|
|
||||||
let ys = _mm256_loadu_si256(y_qs.add(j) as *const __m256i);
|
|
||||||
|
|
||||||
let xs0 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(xs, 0));
|
|
||||||
let ys0 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(ys, 0));
|
|
||||||
sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(xs0, ys0));
|
|
||||||
|
|
||||||
let xs1 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(xs, 1));
|
|
||||||
let ys1 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(ys, 1));
|
|
||||||
sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(xs1, ys1));
|
|
||||||
}
|
|
||||||
let d = _mm256_set1_ps(xs.d * ys.d);
|
|
||||||
acc = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi), acc);
|
|
||||||
}
|
|
||||||
Ok(hsum_float_8(acc))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
@ -1,737 +0,0 @@
|
|||||||
use super::{GgmlDType, QStorage};
|
|
||||||
use crate::quantized::k_quants::GgmlType;
|
|
||||||
use crate::{backend::BackendDevice, cuda_backend::WrapErr};
|
|
||||||
use crate::{builder_arg as barg, CudaDevice, CudaStorage, Result};
|
|
||||||
use half::f16;
|
|
||||||
|
|
||||||
use cudarc::driver::{CudaSlice, CudaView, PushKernelArg};
|
|
||||||
|
|
||||||
#[derive(Clone, Debug)]
|
|
||||||
struct PaddedCudaSlice {
|
|
||||||
inner: CudaSlice<u8>,
|
|
||||||
len: usize,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Clone, Debug)]
|
|
||||||
pub struct QCudaStorage {
|
|
||||||
data: PaddedCudaSlice,
|
|
||||||
dtype: GgmlDType,
|
|
||||||
device: CudaDevice,
|
|
||||||
}
|
|
||||||
|
|
||||||
static FORCE_DMMV: std::sync::atomic::AtomicBool = std::sync::atomic::AtomicBool::new(false);
|
|
||||||
|
|
||||||
pub fn set_force_dmmv(f: bool) {
|
|
||||||
FORCE_DMMV.store(f, std::sync::atomic::Ordering::Relaxed)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub const WARP_SIZE: usize = 32;
|
|
||||||
pub const MMQ_X_Q4_0_AMPERE: usize = 4;
|
|
||||||
pub const MMQ_Y_Q4_0_AMPERE: usize = 32;
|
|
||||||
pub const NWARPS_Q4_0_AMPERE: usize = 4;
|
|
||||||
pub const GGML_CUDA_MMV_X: usize = 32;
|
|
||||||
pub const GGML_CUDA_MMV_Y: usize = 1;
|
|
||||||
pub const CUDA_QUANTIZE_BLOCK_SIZE: usize = 256;
|
|
||||||
pub const CUDA_DEQUANTIZE_BLOCK_SIZE: usize = 256;
|
|
||||||
pub const MATRIX_ROW_PADDING: usize = 512;
|
|
||||||
|
|
||||||
fn ceil_div(p: usize, q: usize) -> usize {
|
|
||||||
p.div_ceil(q)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn pad(p: usize, q: usize) -> usize {
|
|
||||||
ceil_div(p, q) * q
|
|
||||||
}
|
|
||||||
|
|
||||||
fn quantize_q8_1(
|
|
||||||
src: &CudaView<f32>,
|
|
||||||
dst: &mut CudaSlice<u8>,
|
|
||||||
elem_count: usize,
|
|
||||||
ky: usize,
|
|
||||||
dev: &CudaDevice,
|
|
||||||
) -> Result<()> {
|
|
||||||
let kx = elem_count;
|
|
||||||
let kx_padded = pad(kx, MATRIX_ROW_PADDING);
|
|
||||||
let num_blocks = ceil_div(kx_padded, CUDA_QUANTIZE_BLOCK_SIZE);
|
|
||||||
let func = dev.get_or_load_func("quantize_q8_1", &candle_kernels::QUANTIZED)?;
|
|
||||||
let cfg = cudarc::driver::LaunchConfig {
|
|
||||||
grid_dim: (num_blocks as u32, ky as u32, 1),
|
|
||||||
block_dim: (CUDA_QUANTIZE_BLOCK_SIZE as u32, 1, 1),
|
|
||||||
shared_mem_bytes: 0,
|
|
||||||
};
|
|
||||||
let mut builder = func.builder();
|
|
||||||
builder.arg(src);
|
|
||||||
builder.arg(dst);
|
|
||||||
barg!(builder, kx as i32, kx_padded as i32);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
fn dequantize_f32(
|
|
||||||
data: &PaddedCudaSlice,
|
|
||||||
dtype: GgmlDType,
|
|
||||||
elem_count: usize,
|
|
||||||
dev: &CudaDevice,
|
|
||||||
) -> Result<CudaStorage> {
|
|
||||||
let nb = elem_count.div_ceil(256);
|
|
||||||
let (kernel_name, is_k, block_dim, num_blocks) = match dtype {
|
|
||||||
GgmlDType::Q4_0 => ("dequantize_block_q4_0_f32", false, 32, nb),
|
|
||||||
GgmlDType::Q4_1 => ("dequantize_block_q4_1_f32", false, 32, nb),
|
|
||||||
GgmlDType::Q5_0 => (
|
|
||||||
"dequantize_block_q5_0_f32",
|
|
||||||
false,
|
|
||||||
CUDA_DEQUANTIZE_BLOCK_SIZE,
|
|
||||||
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
|
|
||||||
),
|
|
||||||
GgmlDType::Q5_1 => (
|
|
||||||
"dequantize_block_q5_1_f32",
|
|
||||||
false,
|
|
||||||
CUDA_DEQUANTIZE_BLOCK_SIZE,
|
|
||||||
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
|
|
||||||
),
|
|
||||||
GgmlDType::Q8_0 => ("dequantize_block_q8_0_f32", false, 32, nb),
|
|
||||||
GgmlDType::Q2K => ("dequantize_block_q2_K_f32", true, 64, nb),
|
|
||||||
GgmlDType::Q3K => ("dequantize_block_q3_K_f32", true, 64, nb),
|
|
||||||
GgmlDType::Q4K => ("dequantize_block_q4_K_f32", true, 32, nb),
|
|
||||||
GgmlDType::Q5K => ("dequantize_block_q5_K_f32", true, 64, nb),
|
|
||||||
GgmlDType::Q6K => ("dequantize_block_q6_K_f32", true, 64, nb),
|
|
||||||
GgmlDType::Q8K => ("dequantize_block_q8_K_f32", true, 32, nb),
|
|
||||||
_ => crate::bail!("unsupported dtype for dequantize {dtype:?}"),
|
|
||||||
};
|
|
||||||
let func = dev.get_or_load_func(kernel_name, &candle_kernels::QUANTIZED)?;
|
|
||||||
let dst = unsafe { dev.alloc::<f32>(elem_count)? };
|
|
||||||
// See e.g.
|
|
||||||
// https://github.com/ggerganov/llama.cpp/blob/cbbd1efa06f8c09f9dff58ff9d9af509cc4c152b/ggml-cuda.cu#L7270
|
|
||||||
let cfg = cudarc::driver::LaunchConfig {
|
|
||||||
grid_dim: (num_blocks as u32, 1, 1),
|
|
||||||
block_dim: (block_dim as u32, 1, 1),
|
|
||||||
shared_mem_bytes: 0,
|
|
||||||
};
|
|
||||||
|
|
||||||
if is_k {
|
|
||||||
let mut builder = func.builder();
|
|
||||||
builder.arg(&data.inner);
|
|
||||||
builder.arg(&dst);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
} else {
|
|
||||||
let nb32 = match dtype {
|
|
||||||
GgmlDType::Q5_0 | GgmlDType::Q5_1 => elem_count,
|
|
||||||
_ => elem_count / 32,
|
|
||||||
};
|
|
||||||
let mut builder = func.builder();
|
|
||||||
builder.arg(&data.inner);
|
|
||||||
builder.arg(&dst);
|
|
||||||
barg!(builder, nb32 as i32);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
}
|
|
||||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
|
||||||
}
|
|
||||||
|
|
||||||
fn dequantize_f16(
|
|
||||||
data: &PaddedCudaSlice,
|
|
||||||
dtype: GgmlDType,
|
|
||||||
elem_count: usize,
|
|
||||||
dev: &CudaDevice,
|
|
||||||
) -> Result<CudaStorage> {
|
|
||||||
let nb = elem_count.div_ceil(256);
|
|
||||||
let (kernel_name, is_k, block_dim, num_blocks) = match dtype {
|
|
||||||
GgmlDType::Q4_0 => ("dequantize_block_q4_0_f16", false, 32, nb),
|
|
||||||
GgmlDType::Q4_1 => ("dequantize_block_q4_1_f16", false, 32, nb),
|
|
||||||
GgmlDType::Q5_0 => (
|
|
||||||
"dequantize_block_q5_0_f16",
|
|
||||||
false,
|
|
||||||
CUDA_DEQUANTIZE_BLOCK_SIZE,
|
|
||||||
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
|
|
||||||
),
|
|
||||||
GgmlDType::Q5_1 => (
|
|
||||||
"dequantize_block_q5_1_f16",
|
|
||||||
false,
|
|
||||||
CUDA_DEQUANTIZE_BLOCK_SIZE,
|
|
||||||
ceil_div(elem_count, 2 * CUDA_DEQUANTIZE_BLOCK_SIZE),
|
|
||||||
),
|
|
||||||
GgmlDType::Q8_0 => ("dequantize_block_q8_0_f16", false, 32, nb),
|
|
||||||
GgmlDType::Q2K => ("dequantize_block_q2_K_f16", true, 64, nb),
|
|
||||||
GgmlDType::Q3K => ("dequantize_block_q3_K_f16", true, 64, nb),
|
|
||||||
GgmlDType::Q4K => ("dequantize_block_q4_K_f16", true, 32, nb),
|
|
||||||
GgmlDType::Q5K => ("dequantize_block_q5_K_f16", true, 64, nb),
|
|
||||||
GgmlDType::Q6K => ("dequantize_block_q6_K_f16", true, 64, nb),
|
|
||||||
GgmlDType::Q8K => ("dequantize_block_q8_K_f16", true, 32, nb),
|
|
||||||
_ => crate::bail!("unsupported dtype for dequantize {dtype:?}"),
|
|
||||||
};
|
|
||||||
let func = dev.get_or_load_func(kernel_name, &candle_kernels::QUANTIZED)?;
|
|
||||||
let dst = unsafe { dev.alloc::<f16>(elem_count)? };
|
|
||||||
// See e.g.
|
|
||||||
// https://github.com/ggerganov/llama.cpp/blob/cbbd1efa06f8c09f9dff58ff9d9af509cc4c152b/ggml-cuda.cu#L7270
|
|
||||||
let cfg = cudarc::driver::LaunchConfig {
|
|
||||||
grid_dim: (num_blocks as u32, 1, 1),
|
|
||||||
block_dim: (block_dim as u32, 1, 1),
|
|
||||||
shared_mem_bytes: 0,
|
|
||||||
};
|
|
||||||
|
|
||||||
if is_k {
|
|
||||||
let mut builder = func.builder();
|
|
||||||
builder.arg(&data.inner);
|
|
||||||
builder.arg(&dst);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
} else {
|
|
||||||
let nb32 = match dtype {
|
|
||||||
GgmlDType::Q5_0 | GgmlDType::Q5_1 => elem_count,
|
|
||||||
_ => elem_count / 32,
|
|
||||||
};
|
|
||||||
let mut builder = func.builder();
|
|
||||||
builder.arg(&data.inner);
|
|
||||||
builder.arg(&dst);
|
|
||||||
barg!(builder, nb32 as i32);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
}
|
|
||||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
|
||||||
}
|
|
||||||
|
|
||||||
fn dequantize_mul_mat_vec(
|
|
||||||
data: &PaddedCudaSlice,
|
|
||||||
y: &CudaView<f32>,
|
|
||||||
dtype: GgmlDType,
|
|
||||||
ncols: usize,
|
|
||||||
nrows: usize,
|
|
||||||
dev: &CudaDevice,
|
|
||||||
) -> Result<CudaStorage> {
|
|
||||||
let data_elems = data.len / dtype.type_size() * dtype.block_size();
|
|
||||||
if data_elems < ncols * nrows {
|
|
||||||
crate::bail!("unexpected data size {}, ncols {ncols} {nrows}", data_elems)
|
|
||||||
}
|
|
||||||
if y.len() != ncols {
|
|
||||||
crate::bail!("unexpected y size {}, ncols {ncols} {nrows}", y.len())
|
|
||||||
}
|
|
||||||
let kernel_name = match dtype {
|
|
||||||
GgmlDType::Q4_0 => "dequantize_mul_mat_vec_q4_0_cuda",
|
|
||||||
GgmlDType::Q4_1 => "dequantize_mul_mat_vec_q4_1_cuda",
|
|
||||||
GgmlDType::Q5_0 => "dequantize_mul_mat_vec_q5_0_cuda",
|
|
||||||
GgmlDType::Q5_1 => "dequantize_mul_mat_vec_q5_1_cuda",
|
|
||||||
GgmlDType::Q8_0 => "dequantize_mul_mat_vec_q8_0_cuda",
|
|
||||||
GgmlDType::Q2K => "dequantize_mul_mat_vec_q2_k",
|
|
||||||
GgmlDType::Q3K => "dequantize_mul_mat_vec_q3_k",
|
|
||||||
GgmlDType::Q4K => "dequantize_mul_mat_vec_q4_k",
|
|
||||||
GgmlDType::Q5K => "dequantize_mul_mat_vec_q5_k",
|
|
||||||
GgmlDType::Q6K => "dequantize_mul_mat_vec_q6_k",
|
|
||||||
_ => crate::bail!("unsupported dtype for quantized matmul {dtype:?}"),
|
|
||||||
};
|
|
||||||
let func = dev.get_or_load_func(kernel_name, &candle_kernels::QUANTIZED)?;
|
|
||||||
let dst = unsafe { dev.alloc::<f32>(nrows)? };
|
|
||||||
let block_num_y = ceil_div(nrows, GGML_CUDA_MMV_Y);
|
|
||||||
let cfg = cudarc::driver::LaunchConfig {
|
|
||||||
grid_dim: (block_num_y as u32, 1, 1),
|
|
||||||
block_dim: (WARP_SIZE as u32, GGML_CUDA_MMV_Y as u32, 1),
|
|
||||||
shared_mem_bytes: 0,
|
|
||||||
};
|
|
||||||
|
|
||||||
let mut builder = func.builder();
|
|
||||||
builder.arg(&data.inner);
|
|
||||||
builder.arg(y);
|
|
||||||
builder.arg(&dst);
|
|
||||||
barg!(builder, ncols as i32, nrows as i32);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
|
||||||
}
|
|
||||||
|
|
||||||
fn mul_mat_vec_via_q8_1(
|
|
||||||
data: &PaddedCudaSlice,
|
|
||||||
y: &CudaView<f32>,
|
|
||||||
dtype: GgmlDType,
|
|
||||||
ncols: usize,
|
|
||||||
nrows: usize,
|
|
||||||
b_size: usize,
|
|
||||||
dev: &CudaDevice,
|
|
||||||
) -> Result<CudaStorage> {
|
|
||||||
let data_elems = data.len / dtype.type_size() * dtype.block_size();
|
|
||||||
if data_elems < ncols * nrows {
|
|
||||||
crate::bail!("unexpected data size {}, ncols {ncols} {nrows}", data_elems)
|
|
||||||
}
|
|
||||||
if y.len() != ncols * b_size {
|
|
||||||
crate::bail!("unexpected y size {}, ncols {ncols} {nrows}", y.len())
|
|
||||||
}
|
|
||||||
if b_size == 0 || b_size > 8 {
|
|
||||||
crate::bail!("only bsize between 1 and 8 are supported, got {b_size}")
|
|
||||||
}
|
|
||||||
// Start by quantizing y
|
|
||||||
let ncols_padded = pad(ncols, MATRIX_ROW_PADDING);
|
|
||||||
let y_size_in_bytes =
|
|
||||||
b_size * ncols_padded * GgmlDType::Q8_1.type_size() / GgmlDType::Q8_1.block_size();
|
|
||||||
let mut y_q8_1 = unsafe { dev.alloc::<u8>(y_size_in_bytes)? };
|
|
||||||
quantize_q8_1(y, &mut y_q8_1, ncols, b_size, dev)?;
|
|
||||||
|
|
||||||
let kernel_name = match dtype {
|
|
||||||
GgmlDType::Q4_0 => "mul_mat_vec_q4_0_q8_1_cuda",
|
|
||||||
GgmlDType::Q4_1 => "mul_mat_vec_q4_1_q8_1_cuda",
|
|
||||||
GgmlDType::Q5_0 => "mul_mat_vec_q5_0_q8_1_cuda",
|
|
||||||
GgmlDType::Q5_1 => "mul_mat_vec_q5_1_q8_1_cuda",
|
|
||||||
GgmlDType::Q8_0 => "mul_mat_vec_q8_0_q8_1_cuda",
|
|
||||||
GgmlDType::Q2K => "mul_mat_vec_q2_K_q8_1_cuda",
|
|
||||||
GgmlDType::Q3K => "mul_mat_vec_q3_K_q8_1_cuda",
|
|
||||||
GgmlDType::Q4K => "mul_mat_vec_q4_K_q8_1_cuda",
|
|
||||||
GgmlDType::Q5K => "mul_mat_vec_q5_K_q8_1_cuda",
|
|
||||||
GgmlDType::Q6K => "mul_mat_vec_q6_K_q8_1_cuda",
|
|
||||||
_ => crate::bail!("unsupported dtype for quantized matmul {dtype:?}"),
|
|
||||||
};
|
|
||||||
let kernel_name = format!("{kernel_name}{b_size}");
|
|
||||||
let func = dev.get_or_load_func(&kernel_name, &candle_kernels::QUANTIZED)?;
|
|
||||||
let dst = unsafe { dev.alloc::<f32>(nrows * b_size)? };
|
|
||||||
// https://github.com/ggerganov/llama.cpp/blob/facb8b56f8fd3bb10a693bf0943ae9d69d0828ef/ggml-cuda/mmvq.cu#L98
|
|
||||||
let (nblocks, nwarps) = match b_size {
|
|
||||||
1 => (nrows as u32, 4),
|
|
||||||
2..=4 => ((nrows as u32).div_ceil(2), 4),
|
|
||||||
5..=8 => ((nrows as u32).div_ceil(2), 2),
|
|
||||||
_ => crate::bail!("unexpected bsize {b_size}"),
|
|
||||||
};
|
|
||||||
let cfg = cudarc::driver::LaunchConfig {
|
|
||||||
grid_dim: (nblocks, 1, 1),
|
|
||||||
block_dim: (WARP_SIZE as u32, nwarps, 1),
|
|
||||||
shared_mem_bytes: 0,
|
|
||||||
};
|
|
||||||
|
|
||||||
let mut builder = func.builder();
|
|
||||||
builder.arg(&data.inner);
|
|
||||||
builder.arg(&y_q8_1);
|
|
||||||
builder.arg(&dst);
|
|
||||||
barg!(
|
|
||||||
builder,
|
|
||||||
/* ncols_x */ ncols as i32,
|
|
||||||
/* nrows_x */ nrows as i32,
|
|
||||||
/* nrows_y */ ncols_padded as i32,
|
|
||||||
/* nrows_dst */ nrows as i32
|
|
||||||
);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
|
||||||
}
|
|
||||||
|
|
||||||
#[allow(clippy::too_many_arguments)]
|
|
||||||
fn mul_mat_via_q8_1(
|
|
||||||
data: &PaddedCudaSlice,
|
|
||||||
y: &CudaView<f32>,
|
|
||||||
dtype: GgmlDType,
|
|
||||||
x_rows: usize,
|
|
||||||
x_cols: usize,
|
|
||||||
y_rows: usize,
|
|
||||||
y_cols: usize,
|
|
||||||
dev: &CudaDevice,
|
|
||||||
) -> Result<CudaStorage> {
|
|
||||||
let data_elems = data.len / dtype.type_size() * dtype.block_size();
|
|
||||||
if data_elems < x_rows * x_cols {
|
|
||||||
crate::bail!("unexpected lhs size {}, {x_rows} {x_cols}", data_elems)
|
|
||||||
}
|
|
||||||
if y.len() != y_rows * y_cols {
|
|
||||||
crate::bail!("unexpected y size {}, {y_rows} {y_cols}", y.len())
|
|
||||||
}
|
|
||||||
if x_cols != y_rows {
|
|
||||||
crate::bail!("unexpected x/y size {x_rows} {x_cols} {y_rows} {y_cols}")
|
|
||||||
}
|
|
||||||
let k = x_cols;
|
|
||||||
// Start by quantizing y
|
|
||||||
let k_padded = pad(k, MATRIX_ROW_PADDING);
|
|
||||||
let y_size_in_bytes =
|
|
||||||
k_padded * y_cols * GgmlDType::Q8_1.type_size() / GgmlDType::Q8_1.block_size();
|
|
||||||
let mut y_q8_1 = unsafe { dev.alloc::<u8>(y_size_in_bytes)? };
|
|
||||||
quantize_q8_1(y, &mut y_q8_1, k, y_cols, dev)?;
|
|
||||||
|
|
||||||
let (kernel_name, mmq_x, mmq_y) = match dtype {
|
|
||||||
GgmlDType::Q4_0 => ("mul_mat_q4_0", 64, 128),
|
|
||||||
GgmlDType::Q4_1 => ("mul_mat_q4_1", 64, 128),
|
|
||||||
GgmlDType::Q5_0 => ("mul_mat_q5_0", 128, 64),
|
|
||||||
GgmlDType::Q5_1 => ("mul_mat_q5_1", 128, 64),
|
|
||||||
GgmlDType::Q8_0 => ("mul_mat_q8_0", 128, 64),
|
|
||||||
GgmlDType::Q2K => ("mul_mat_q2_K", 64, 128),
|
|
||||||
GgmlDType::Q3K => ("mul_mat_q3_K", 128, 128),
|
|
||||||
GgmlDType::Q4K => ("mul_mat_q4_K", 64, 128),
|
|
||||||
GgmlDType::Q5K => ("mul_mat_q5_K", 64, 128),
|
|
||||||
GgmlDType::Q6K => ("mul_mat_q6_K", 64, 64),
|
|
||||||
_ => crate::bail!("unsupported dtype for quantized matmul {dtype:?}"),
|
|
||||||
};
|
|
||||||
let func = dev.get_or_load_func(kernel_name, &candle_kernels::QUANTIZED)?;
|
|
||||||
let dst = unsafe { dev.alloc::<f32>(x_rows * y_cols)? };
|
|
||||||
let cfg = cudarc::driver::LaunchConfig {
|
|
||||||
grid_dim: (
|
|
||||||
ceil_div(x_rows, mmq_y) as u32,
|
|
||||||
ceil_div(y_cols, mmq_x) as u32,
|
|
||||||
1,
|
|
||||||
),
|
|
||||||
block_dim: (WARP_SIZE as u32, 4, 1),
|
|
||||||
shared_mem_bytes: 0,
|
|
||||||
};
|
|
||||||
|
|
||||||
let mut builder = func.builder();
|
|
||||||
builder.arg(/* vx */ &data.inner);
|
|
||||||
builder.arg(/* vy */ &y_q8_1);
|
|
||||||
builder.arg(/* dst */ &dst);
|
|
||||||
barg!(
|
|
||||||
builder,
|
|
||||||
/* ncols_x */ x_cols as i32,
|
|
||||||
/* nrows_x */ x_rows as i32,
|
|
||||||
/* ncols_y */ y_cols as i32,
|
|
||||||
/* nrows_y */ k_padded as i32,
|
|
||||||
/* nrows_dst */ x_rows as i32
|
|
||||||
);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone()))
|
|
||||||
}
|
|
||||||
|
|
||||||
impl QCudaStorage {
|
|
||||||
pub fn zeros(device: &CudaDevice, el_count: usize, dtype: GgmlDType) -> Result<Self> {
|
|
||||||
let size_in_bytes = ceil_div(el_count, dtype.block_size()) * dtype.type_size();
|
|
||||||
let padded_size_in_bytes =
|
|
||||||
ceil_div(el_count + MATRIX_ROW_PADDING, dtype.block_size()) * dtype.type_size();
|
|
||||||
let inner = device.alloc_zeros::<u8>(padded_size_in_bytes)?;
|
|
||||||
Ok(QCudaStorage {
|
|
||||||
data: PaddedCudaSlice {
|
|
||||||
inner,
|
|
||||||
len: size_in_bytes,
|
|
||||||
},
|
|
||||||
device: device.clone(),
|
|
||||||
dtype,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn dtype(&self) -> GgmlDType {
|
|
||||||
self.dtype
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn device(&self) -> &CudaDevice {
|
|
||||||
&self.device
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn dequantize(&self, elem_count: usize) -> Result<CudaStorage> {
|
|
||||||
fn deq<T: GgmlType>(buffer: &[u8], n: usize, dst: &mut [f32]) -> Result<()> {
|
|
||||||
let slice = unsafe { std::slice::from_raw_parts(buffer.as_ptr() as *const T, n) };
|
|
||||||
let vec = slice.to_vec();
|
|
||||||
T::to_float(&vec, dst)
|
|
||||||
}
|
|
||||||
|
|
||||||
let fast_kernel = matches!(
|
|
||||||
self.dtype,
|
|
||||||
GgmlDType::Q4_0
|
|
||||||
| GgmlDType::Q4_1
|
|
||||||
| GgmlDType::Q5_0
|
|
||||||
| GgmlDType::Q5_1
|
|
||||||
| GgmlDType::Q8_0
|
|
||||||
| GgmlDType::Q2K
|
|
||||||
| GgmlDType::Q3K
|
|
||||||
| GgmlDType::Q4K
|
|
||||||
| GgmlDType::Q5K
|
|
||||||
| GgmlDType::Q6K
|
|
||||||
| GgmlDType::Q8K
|
|
||||||
);
|
|
||||||
if fast_kernel {
|
|
||||||
return dequantize_f32(&self.data, self.dtype, elem_count, self.device());
|
|
||||||
}
|
|
||||||
// Run the dequantization on cpu.
|
|
||||||
|
|
||||||
let buffer = self
|
|
||||||
.device
|
|
||||||
.memcpy_dtov(&self.data.inner.slice(..self.data.len))?;
|
|
||||||
let mut out = vec![0.0; elem_count];
|
|
||||||
let block_len = elem_count / self.dtype.block_size();
|
|
||||||
match self.dtype {
|
|
||||||
GgmlDType::F32 => deq::<f32>(&buffer, block_len, &mut out)?,
|
|
||||||
GgmlDType::F16 => deq::<half::f16>(&buffer, block_len, &mut out)?,
|
|
||||||
GgmlDType::Q4_0 => deq::<crate::quantized::BlockQ4_0>(&buffer, block_len, &mut out)?,
|
|
||||||
GgmlDType::Q4_1 => deq::<crate::quantized::BlockQ4_1>(&buffer, block_len, &mut out)?,
|
|
||||||
GgmlDType::Q5_0 => deq::<crate::quantized::BlockQ5_0>(&buffer, block_len, &mut out)?,
|
|
||||||
GgmlDType::Q5_1 => deq::<crate::quantized::BlockQ5_1>(&buffer, block_len, &mut out)?,
|
|
||||||
GgmlDType::Q8_0 => deq::<crate::quantized::BlockQ8_0>(&buffer, block_len, &mut out)?,
|
|
||||||
GgmlDType::Q8_1 => deq::<crate::quantized::BlockQ8_1>(&buffer, block_len, &mut out)?,
|
|
||||||
GgmlDType::Q2K => deq::<crate::quantized::BlockQ2K>(&buffer, block_len, &mut out)?,
|
|
||||||
GgmlDType::Q3K => deq::<crate::quantized::BlockQ3K>(&buffer, block_len, &mut out)?,
|
|
||||||
GgmlDType::Q4K => deq::<crate::quantized::BlockQ4K>(&buffer, block_len, &mut out)?,
|
|
||||||
GgmlDType::Q5K => deq::<crate::quantized::BlockQ5K>(&buffer, block_len, &mut out)?,
|
|
||||||
GgmlDType::Q6K => deq::<crate::quantized::BlockQ6K>(&buffer, block_len, &mut out)?,
|
|
||||||
GgmlDType::Q8K => deq::<crate::quantized::BlockQ8K>(&buffer, block_len, &mut out)?,
|
|
||||||
}
|
|
||||||
|
|
||||||
self.device
|
|
||||||
.storage_from_cpu_storage(&crate::CpuStorage::F32(out))
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn dequantize_f16(&self, elem_count: usize) -> Result<CudaStorage> {
|
|
||||||
dequantize_f16(&self.data, self.dtype, elem_count, self.device())
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn quantize(&mut self, src: &CudaStorage) -> Result<()> {
|
|
||||||
// Run the quantization on cpu.
|
|
||||||
let src = match &src.slice {
|
|
||||||
crate::cuda_backend::CudaStorageSlice::F32(data) => self.device.memcpy_dtov(data)?,
|
|
||||||
_ => crate::bail!("only f32 can be quantized"),
|
|
||||||
};
|
|
||||||
let src_len = src.len();
|
|
||||||
let src = crate::Storage::Cpu(crate::CpuStorage::F32(src));
|
|
||||||
let mut qcpu_storage = crate::Device::Cpu.qzeros(src_len, self.dtype)?;
|
|
||||||
qcpu_storage.quantize(&src)?;
|
|
||||||
let data = qcpu_storage.data()?;
|
|
||||||
let padded_len =
|
|
||||||
data.len() + MATRIX_ROW_PADDING * self.dtype.type_size() / self.dtype.block_size();
|
|
||||||
let mut inner = unsafe { self.device.alloc::<u8>(padded_len)? };
|
|
||||||
self.device
|
|
||||||
.memcpy_htod(data.as_ref(), &mut inner.slice_mut(..data.len()))?;
|
|
||||||
self.data = PaddedCudaSlice {
|
|
||||||
inner,
|
|
||||||
len: data.len(),
|
|
||||||
};
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn storage_size_in_bytes(&self) -> usize {
|
|
||||||
self.data.len
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn fwd(
|
|
||||||
&self,
|
|
||||||
self_shape: &crate::Shape,
|
|
||||||
storage: &CudaStorage,
|
|
||||||
layout: &crate::Layout,
|
|
||||||
) -> Result<(CudaStorage, crate::Shape)> {
|
|
||||||
let max_bm = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
|
|
||||||
1
|
|
||||||
} else {
|
|
||||||
8
|
|
||||||
};
|
|
||||||
let use_vec_kernel = match layout.shape().dims() {
|
|
||||||
[b, m, _k] => b * m <= max_bm,
|
|
||||||
[b, _k] => *b <= max_bm,
|
|
||||||
_ => false,
|
|
||||||
};
|
|
||||||
if use_vec_kernel {
|
|
||||||
self.dequantize_matmul_vec(self_shape, storage, layout)
|
|
||||||
} else {
|
|
||||||
self.dequantize_matmul(self_shape, storage, layout)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl QCudaStorage {
|
|
||||||
fn dequantize_matmul_vec(
|
|
||||||
&self,
|
|
||||||
self_shape: &crate::Shape,
|
|
||||||
rhs: &CudaStorage,
|
|
||||||
rhs_l: &crate::Layout,
|
|
||||||
) -> Result<(CudaStorage, crate::Shape)> {
|
|
||||||
let (nrows, ncols) = self_shape.dims2()?;
|
|
||||||
let rhs = rhs.as_cuda_slice::<f32>()?;
|
|
||||||
let rhs = match rhs_l.contiguous_offsets() {
|
|
||||||
Some((o1, o2)) => rhs.slice(o1..o2),
|
|
||||||
None => Err(crate::Error::RequiresContiguous { op: "dmmv" }.bt())?,
|
|
||||||
};
|
|
||||||
let (b_size, k) = match rhs_l.shape().dims() {
|
|
||||||
[b, m, k] => (b * m, *k),
|
|
||||||
[b, k] => (*b, *k),
|
|
||||||
_ => crate::bail!("unexpected rhs shape in dmmv {:?}", rhs_l.shape()),
|
|
||||||
};
|
|
||||||
if ncols != k {
|
|
||||||
crate::bail!("mismatch on matmul dim {self_shape:?} {:?}", rhs_l.shape())
|
|
||||||
}
|
|
||||||
|
|
||||||
let out = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
|
|
||||||
dequantize_mul_mat_vec(&self.data, &rhs, self.dtype, ncols, nrows, self.device())?
|
|
||||||
} else {
|
|
||||||
mul_mat_vec_via_q8_1(
|
|
||||||
&self.data,
|
|
||||||
&rhs,
|
|
||||||
self.dtype,
|
|
||||||
ncols,
|
|
||||||
nrows,
|
|
||||||
b_size,
|
|
||||||
self.device(),
|
|
||||||
)?
|
|
||||||
};
|
|
||||||
let mut out_shape = rhs_l.shape().dims().to_vec();
|
|
||||||
out_shape.pop();
|
|
||||||
out_shape.push(nrows);
|
|
||||||
Ok((out, out_shape.into()))
|
|
||||||
}
|
|
||||||
|
|
||||||
fn dequantize_matmul(
|
|
||||||
&self,
|
|
||||||
self_shape: &crate::Shape,
|
|
||||||
storage: &CudaStorage,
|
|
||||||
layout: &crate::Layout,
|
|
||||||
) -> Result<(CudaStorage, crate::Shape)> {
|
|
||||||
use crate::backend::BackendStorage;
|
|
||||||
let (n, k) = self_shape.dims2()?;
|
|
||||||
let (b, m, k2) = match layout.shape().dims() {
|
|
||||||
&[b, m, k2] => (b, m, k2),
|
|
||||||
&[m, k2] => (1, m, k2),
|
|
||||||
s => crate::bail!("unexpected shape for input {s:?}"),
|
|
||||||
};
|
|
||||||
if k2 != k {
|
|
||||||
crate::bail!("mismatch on matmul dim {self_shape:?} {:?}", layout.shape())
|
|
||||||
}
|
|
||||||
|
|
||||||
let out = if FORCE_DMMV.load(std::sync::atomic::Ordering::Relaxed) {
|
|
||||||
let data_f32 = self.dequantize(n * k)?;
|
|
||||||
let rhs_l = crate::Layout::new((k, n).into(), vec![1, k], 0).broadcast_as((b, k, n))?;
|
|
||||||
storage.matmul(&data_f32, (b, m, n, k), layout, &rhs_l)?
|
|
||||||
} else {
|
|
||||||
let storage = storage.as_cuda_slice::<f32>()?;
|
|
||||||
let storage = match layout.contiguous_offsets() {
|
|
||||||
Some((o1, o2)) => storage.slice(o1..o2),
|
|
||||||
None => Err(crate::Error::RequiresContiguous {
|
|
||||||
op: "quantized-matmul",
|
|
||||||
}
|
|
||||||
.bt())?,
|
|
||||||
};
|
|
||||||
mul_mat_via_q8_1(
|
|
||||||
&self.data,
|
|
||||||
&storage,
|
|
||||||
self.dtype,
|
|
||||||
/* x_rows */ n,
|
|
||||||
/* x_cols */ k,
|
|
||||||
/* y_rows */ k,
|
|
||||||
/* y_cols */ b * m,
|
|
||||||
self.device(),
|
|
||||||
)?
|
|
||||||
};
|
|
||||||
let mut out_shape = layout.shape().dims().to_vec();
|
|
||||||
out_shape.pop();
|
|
||||||
out_shape.push(n);
|
|
||||||
Ok((out, out_shape.into()))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
|
|
||||||
device: &CudaDevice,
|
|
||||||
data: &[T],
|
|
||||||
) -> Result<super::QStorage> {
|
|
||||||
let data = unsafe {
|
|
||||||
std::slice::from_raw_parts(data.as_ptr() as *const u8, core::mem::size_of_val(data))
|
|
||||||
};
|
|
||||||
let dtype = T::DTYPE;
|
|
||||||
let padded_len = data.len() + MATRIX_ROW_PADDING * dtype.type_size() / dtype.block_size();
|
|
||||||
let mut inner = unsafe { device.alloc::<u8>(padded_len)? };
|
|
||||||
device.memcpy_htod(data, &mut inner.slice_mut(..data.len()))?;
|
|
||||||
Ok(QStorage::Cuda(QCudaStorage {
|
|
||||||
data: PaddedCudaSlice {
|
|
||||||
inner,
|
|
||||||
len: data.len(),
|
|
||||||
},
|
|
||||||
device: device.clone(),
|
|
||||||
dtype,
|
|
||||||
}))
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod test {
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn cuda_quantize_q8_1() -> Result<()> {
|
|
||||||
let dev = CudaDevice::new(0)?;
|
|
||||||
let el = 256;
|
|
||||||
let el_padded = pad(el, MATRIX_ROW_PADDING);
|
|
||||||
let y_size_in_bytes =
|
|
||||||
el_padded * GgmlDType::Q8_1.type_size() / GgmlDType::Q8_1.block_size();
|
|
||||||
let mut y_q8_1 = unsafe { dev.alloc::<u8>(y_size_in_bytes)? };
|
|
||||||
let vs: Vec<f32> = (0..el).map(|v| v as f32).collect();
|
|
||||||
let y = dev.memcpy_stod(&vs)?;
|
|
||||||
quantize_q8_1(&y.slice(..), &mut y_q8_1, el, 1, &dev)?;
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn cuda_mmv_q8_1() -> Result<()> {
|
|
||||||
let dev = CudaDevice::new(0)?;
|
|
||||||
let ncols = 256;
|
|
||||||
let vs: Vec<f32> = (0..ncols).map(|v| v as f32).collect();
|
|
||||||
let y = dev.memcpy_stod(&vs)?;
|
|
||||||
let mut xs = QCudaStorage::zeros(&dev, ncols, GgmlDType::Q4_0)?;
|
|
||||||
xs.quantize(&CudaStorage::wrap_cuda_slice(y.clone(), dev.clone()))?;
|
|
||||||
let cuda_storage = mul_mat_vec_via_q8_1(
|
|
||||||
&xs.data,
|
|
||||||
&y.slice(..),
|
|
||||||
/* dtype */ GgmlDType::Q4_0,
|
|
||||||
/* ncols */ ncols,
|
|
||||||
/* nrows */ 1,
|
|
||||||
/* b_size */ 1,
|
|
||||||
&dev,
|
|
||||||
)?;
|
|
||||||
let vs = cuda_storage.as_cuda_slice::<f32>()?;
|
|
||||||
let vs = dev.memcpy_dtov(&vs.slice(..))?;
|
|
||||||
assert_eq!(vs.len(), 1);
|
|
||||||
// for n = 255, n.(n+1).(2n+1) / 6 = 5559680
|
|
||||||
// Q8 means 1/256 precision.
|
|
||||||
assert_eq!(vs[0], 5561664.5);
|
|
||||||
|
|
||||||
let cuda_storage = dequantize_mul_mat_vec(
|
|
||||||
&xs.data,
|
|
||||||
&y.slice(..),
|
|
||||||
/* dtype */ GgmlDType::Q4_0,
|
|
||||||
/* ncols */ ncols,
|
|
||||||
/* nrows */ 1,
|
|
||||||
&dev,
|
|
||||||
)?;
|
|
||||||
let vs = cuda_storage.as_cuda_slice::<f32>()?;
|
|
||||||
let vs = dev.memcpy_dtov(&vs.slice(..))?;
|
|
||||||
assert_eq!(vs.len(), 1);
|
|
||||||
assert_eq!(vs[0], 5561851.0);
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn cuda_mm_q8_1() -> Result<()> {
|
|
||||||
let dev = CudaDevice::new(0)?;
|
|
||||||
let ncols = 256;
|
|
||||||
let vs: Vec<f32> = (0..ncols * 4).map(|v| v as f32 / 4.).collect();
|
|
||||||
let y = dev.memcpy_stod(&vs)?;
|
|
||||||
let mut xs = QCudaStorage::zeros(&dev, ncols * 4, GgmlDType::Q4_0)?;
|
|
||||||
xs.quantize(&CudaStorage::wrap_cuda_slice(y.clone(), dev.clone()))?;
|
|
||||||
let cuda_storage = mul_mat_via_q8_1(
|
|
||||||
&xs.data,
|
|
||||||
&y.slice(..),
|
|
||||||
/* dtype */ GgmlDType::Q4_0,
|
|
||||||
/* x_rows */ 4,
|
|
||||||
/* x_cols */ ncols,
|
|
||||||
/* y_rows */ ncols,
|
|
||||||
/* y_cols */ 4,
|
|
||||||
&dev,
|
|
||||||
)?;
|
|
||||||
let vs = cuda_storage.as_cuda_slice::<f32>()?;
|
|
||||||
let vs = dev.memcpy_dtov(&vs.slice(..))?;
|
|
||||||
|
|
||||||
/*
|
|
||||||
x = torch.tensor([float(v) for v in range(1024)]).reshape(4, 256)
|
|
||||||
x @ x.t() / 16
|
|
||||||
tensor([[ 347480.0000, 869720.0000, 1391960.0000, 1914200.0000],
|
|
||||||
[ 869720.0000, 2440536.0000, 4011352.0000, 5582166.5000],
|
|
||||||
[ 1391960.0000, 4011352.0000, 6630742.0000, 9250132.0000],
|
|
||||||
[ 1914200.0000, 5582166.5000, 9250132.0000, 12918099.0000]])
|
|
||||||
*/
|
|
||||||
assert_eq!(vs.len(), 16);
|
|
||||||
assert_eq!(vs[0], 347604.0);
|
|
||||||
assert_eq!(vs[1], 888153.06);
|
|
||||||
assert_eq!(vs[4], 869780.7);
|
|
||||||
assert_eq!(vs[5], 2483145.0);
|
|
||||||
assert_eq!(vs[11], 9407368.0);
|
|
||||||
assert_eq!(vs[14], 9470856.0);
|
|
||||||
assert_eq!(vs[15], 13138824.0);
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
// The following test used to fail under compute-sanitizer until #2526.
|
|
||||||
#[test]
|
|
||||||
fn cuda_mm_q8_1_pad() -> Result<()> {
|
|
||||||
let dev = CudaDevice::new(0)?;
|
|
||||||
let (x_rows, ncols, y_cols) = (4, 16, 2048);
|
|
||||||
let vs: Vec<f32> = (0..ncols * y_cols).map(|v| v as f32 / 256.).collect();
|
|
||||||
let y = dev.memcpy_stod(&vs)?;
|
|
||||||
let mut xs = QCudaStorage::zeros(&dev, ncols * x_rows, GgmlDType::Q4_0)?;
|
|
||||||
xs.quantize(&CudaStorage::wrap_cuda_slice(y.clone(), dev.clone()))?;
|
|
||||||
let cuda_storage = mul_mat_via_q8_1(
|
|
||||||
&xs.data,
|
|
||||||
&y.slice(..),
|
|
||||||
/* dtype */ GgmlDType::Q4_0,
|
|
||||||
/* x_rows */ x_rows,
|
|
||||||
/* x_cols */ ncols,
|
|
||||||
/* y_rows */ ncols,
|
|
||||||
/* y_cols */ y_cols,
|
|
||||||
&dev,
|
|
||||||
)?;
|
|
||||||
let vs = cuda_storage.as_cuda_slice::<f32>()?;
|
|
||||||
let _vs = dev.memcpy_dtov(&vs.slice(..))?;
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,54 +0,0 @@
|
|||||||
#![allow(unused)]
|
|
||||||
use super::GgmlDType;
|
|
||||||
use crate::{CudaDevice, CudaStorage, Error, Result};
|
|
||||||
|
|
||||||
pub struct QCudaStorage {
|
|
||||||
dtype: GgmlDType,
|
|
||||||
device: CudaDevice,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl QCudaStorage {
|
|
||||||
pub fn zeros(_: &CudaDevice, _: usize, _: GgmlDType) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn dtype(&self) -> GgmlDType {
|
|
||||||
self.dtype
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn device(&self) -> &CudaDevice {
|
|
||||||
&self.device
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn dequantize(&self, _elem_count: usize) -> Result<CudaStorage> {
|
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn dequantize_f16(&self, _elem_count: usize) -> Result<CudaStorage> {
|
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn quantize(&mut self, _src: &CudaStorage) -> Result<()> {
|
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn storage_size_in_bytes(&self) -> usize {
|
|
||||||
0
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn fwd(
|
|
||||||
&self,
|
|
||||||
_self_shape: &crate::Shape,
|
|
||||||
_storage: &CudaStorage,
|
|
||||||
_layout: &crate::Layout,
|
|
||||||
) -> Result<(CudaStorage, crate::Shape)> {
|
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
|
|
||||||
_device: &CudaDevice,
|
|
||||||
_data: &[T],
|
|
||||||
) -> Result<super::QStorage> {
|
|
||||||
Err(Error::NotCompiledWithCudaSupport)
|
|
||||||
}
|
|
@ -1,50 +0,0 @@
|
|||||||
#![allow(unused)]
|
|
||||||
use super::GgmlDType;
|
|
||||||
use crate::{Error, MetalDevice, MetalStorage, Result};
|
|
||||||
|
|
||||||
pub struct QMetalStorage {
|
|
||||||
dtype: GgmlDType,
|
|
||||||
device: MetalDevice,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl QMetalStorage {
|
|
||||||
pub fn zeros(_: &MetalDevice, _: usize, _: GgmlDType) -> Result<Self> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn dtype(&self) -> GgmlDType {
|
|
||||||
self.dtype
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn device(&self) -> &MetalDevice {
|
|
||||||
&self.device
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn dequantize(&self, _elem_count: usize) -> Result<MetalStorage> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn quantize(&mut self, _src: &MetalStorage) -> Result<()> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn storage_size_in_bytes(&self) -> usize {
|
|
||||||
0
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn fwd(
|
|
||||||
&self,
|
|
||||||
_self_shape: &crate::Shape,
|
|
||||||
_storage: &MetalStorage,
|
|
||||||
_layout: &crate::Layout,
|
|
||||||
) -> Result<(MetalStorage, crate::Shape)> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
|
|
||||||
_device: &MetalDevice,
|
|
||||||
_data: &[T],
|
|
||||||
) -> Result<super::QStorage> {
|
|
||||||
Err(Error::NotCompiledWithMetalSupport)
|
|
||||||
}
|
|
@ -1,7 +1,7 @@
|
|||||||
//! Support for the GGML file format.
|
//! Support for the GGML file format.
|
||||||
|
|
||||||
use super::{k_quants, GgmlDType, QStorage};
|
use super::{k_quants, GgmlDType};
|
||||||
use crate::{Device, Result};
|
use crate::Result;
|
||||||
use byteorder::{LittleEndian, ReadBytesExt};
|
use byteorder::{LittleEndian, ReadBytesExt};
|
||||||
use std::collections::HashMap;
|
use std::collections::HashMap;
|
||||||
|
|
||||||
@ -121,68 +121,35 @@ fn from_raw_data<T: super::GgmlType + Send + Sync + 'static>(
|
|||||||
raw_data: &[u8],
|
raw_data: &[u8],
|
||||||
size_in_bytes: usize,
|
size_in_bytes: usize,
|
||||||
dims: Vec<usize>,
|
dims: Vec<usize>,
|
||||||
device: &Device,
|
|
||||||
) -> Result<super::QTensor> {
|
) -> Result<super::QTensor> {
|
||||||
let raw_data_ptr = raw_data.as_ptr();
|
let raw_data_ptr = raw_data.as_ptr();
|
||||||
let n_blocks = size_in_bytes / std::mem::size_of::<T>();
|
let n_blocks = size_in_bytes / std::mem::size_of::<T>();
|
||||||
let data = unsafe { std::slice::from_raw_parts(raw_data_ptr as *const T, n_blocks) };
|
let data = unsafe { std::slice::from_raw_parts(raw_data_ptr as *const T, n_blocks) };
|
||||||
let data: QStorage = match device {
|
super::QTensor::new(data.to_vec(), dims)
|
||||||
Device::Cpu => QStorage::Cpu(Box::new(data.to_vec())),
|
|
||||||
Device::Metal(metal) => super::metal::load_quantized(metal, data)?,
|
|
||||||
Device::Cuda(cuda) => super::cuda::load_quantized(cuda, data)?,
|
|
||||||
};
|
|
||||||
super::QTensor::new(data, dims)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Creates a Tensor from a raw GGML tensor.
|
/// Creates a [Tensor] from a raw GGML tensor.
|
||||||
pub fn qtensor_from_ggml(
|
pub fn qtensor_from_ggml(
|
||||||
ggml_dtype: GgmlDType,
|
ggml_dtype: GgmlDType,
|
||||||
raw_data: &[u8],
|
raw_data: &[u8],
|
||||||
dims: Vec<usize>,
|
dims: Vec<usize>,
|
||||||
device: &Device,
|
|
||||||
) -> Result<super::QTensor> {
|
) -> Result<super::QTensor> {
|
||||||
let tensor_elems = dims.iter().product::<usize>();
|
let tensor_elems = dims.iter().product::<usize>();
|
||||||
let block_size = ggml_dtype.block_size();
|
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.blck_size();
|
||||||
if tensor_elems % block_size != 0 {
|
|
||||||
crate::bail!(
|
|
||||||
"the number of elements {tensor_elems} is not divisible by the block size {block_size}"
|
|
||||||
)
|
|
||||||
}
|
|
||||||
let size_in_bytes = tensor_elems / block_size * ggml_dtype.type_size();
|
|
||||||
|
|
||||||
match ggml_dtype {
|
match ggml_dtype {
|
||||||
GgmlDType::F32 => from_raw_data::<f32>(raw_data, size_in_bytes, dims, device),
|
GgmlDType::F32 => from_raw_data::<f32>(raw_data, size_in_bytes, dims),
|
||||||
GgmlDType::F16 => from_raw_data::<half::f16>(raw_data, size_in_bytes, dims, device),
|
GgmlDType::F16 => from_raw_data::<half::f16>(raw_data, size_in_bytes, dims),
|
||||||
GgmlDType::Q4_0 => {
|
GgmlDType::Q4_0 => from_raw_data::<k_quants::BlockQ4_0>(raw_data, size_in_bytes, dims),
|
||||||
from_raw_data::<k_quants::BlockQ4_0>(raw_data, size_in_bytes, dims, device)
|
GgmlDType::Q4_1 => from_raw_data::<k_quants::BlockQ4_1>(raw_data, size_in_bytes, dims),
|
||||||
}
|
GgmlDType::Q5_0 => from_raw_data::<k_quants::BlockQ5_0>(raw_data, size_in_bytes, dims),
|
||||||
GgmlDType::Q4_1 => {
|
GgmlDType::Q5_1 => from_raw_data::<k_quants::BlockQ5_1>(raw_data, size_in_bytes, dims),
|
||||||
from_raw_data::<k_quants::BlockQ4_1>(raw_data, size_in_bytes, dims, device)
|
GgmlDType::Q8_0 => from_raw_data::<k_quants::BlockQ8_0>(raw_data, size_in_bytes, dims),
|
||||||
}
|
GgmlDType::Q2K => from_raw_data::<k_quants::BlockQ2K>(raw_data, size_in_bytes, dims),
|
||||||
GgmlDType::Q5_0 => {
|
GgmlDType::Q3K => from_raw_data::<k_quants::BlockQ3K>(raw_data, size_in_bytes, dims),
|
||||||
from_raw_data::<k_quants::BlockQ5_0>(raw_data, size_in_bytes, dims, device)
|
GgmlDType::Q4K => from_raw_data::<k_quants::BlockQ4K>(raw_data, size_in_bytes, dims),
|
||||||
}
|
GgmlDType::Q5K => from_raw_data::<k_quants::BlockQ5K>(raw_data, size_in_bytes, dims),
|
||||||
GgmlDType::Q5_1 => {
|
GgmlDType::Q6K => from_raw_data::<k_quants::BlockQ6K>(raw_data, size_in_bytes, dims),
|
||||||
from_raw_data::<k_quants::BlockQ5_1>(raw_data, size_in_bytes, dims, device)
|
|
||||||
}
|
|
||||||
GgmlDType::Q8_0 => {
|
|
||||||
from_raw_data::<k_quants::BlockQ8_0>(raw_data, size_in_bytes, dims, device)
|
|
||||||
}
|
|
||||||
GgmlDType::Q2K => {
|
|
||||||
from_raw_data::<k_quants::BlockQ2K>(raw_data, size_in_bytes, dims, device)
|
|
||||||
}
|
|
||||||
GgmlDType::Q3K => {
|
|
||||||
from_raw_data::<k_quants::BlockQ3K>(raw_data, size_in_bytes, dims, device)
|
|
||||||
}
|
|
||||||
GgmlDType::Q4K => {
|
|
||||||
from_raw_data::<k_quants::BlockQ4K>(raw_data, size_in_bytes, dims, device)
|
|
||||||
}
|
|
||||||
GgmlDType::Q5K => {
|
|
||||||
from_raw_data::<k_quants::BlockQ5K>(raw_data, size_in_bytes, dims, device)
|
|
||||||
}
|
|
||||||
GgmlDType::Q6K => {
|
|
||||||
from_raw_data::<k_quants::BlockQ6K>(raw_data, size_in_bytes, dims, device)
|
|
||||||
}
|
|
||||||
_ => crate::bail!("quantized type {ggml_dtype:?} is not supported yet"),
|
_ => crate::bail!("quantized type {ggml_dtype:?} is not supported yet"),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -190,7 +157,6 @@ pub fn qtensor_from_ggml(
|
|||||||
fn read_one_tensor<R: std::io::Seek + std::io::Read>(
|
fn read_one_tensor<R: std::io::Seek + std::io::Read>(
|
||||||
reader: &mut R,
|
reader: &mut R,
|
||||||
magic: VersionedMagic,
|
magic: VersionedMagic,
|
||||||
device: &Device,
|
|
||||||
) -> Result<(String, super::QTensor)> {
|
) -> Result<(String, super::QTensor)> {
|
||||||
let n_dims = reader.read_u32::<LittleEndian>()?;
|
let n_dims = reader.read_u32::<LittleEndian>()?;
|
||||||
let name_len = reader.read_u32::<LittleEndian>()?;
|
let name_len = reader.read_u32::<LittleEndian>()?;
|
||||||
@ -211,11 +177,11 @@ fn read_one_tensor<R: std::io::Seek + std::io::Read>(
|
|||||||
}
|
}
|
||||||
let dims = dims.iter().map(|&u| u as usize).collect::<Vec<_>>();
|
let dims = dims.iter().map(|&u| u as usize).collect::<Vec<_>>();
|
||||||
let tensor_elems = dims.iter().product::<usize>();
|
let tensor_elems = dims.iter().product::<usize>();
|
||||||
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.block_size();
|
let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.blck_size();
|
||||||
// TODO: Mmap version to avoid copying the data around?
|
// TODO: Mmap version to avoid copying the data around?
|
||||||
let mut raw_data = vec![0u8; size_in_bytes];
|
let mut raw_data = vec![0u8; size_in_bytes];
|
||||||
reader.read_exact(&mut raw_data)?;
|
reader.read_exact(&mut raw_data)?;
|
||||||
match qtensor_from_ggml(ggml_dtype, &raw_data, dims, device) {
|
match qtensor_from_ggml(ggml_dtype, &raw_data, dims) {
|
||||||
Ok(tensor) => Ok((name, tensor)),
|
Ok(tensor) => Ok((name, tensor)),
|
||||||
Err(e) => crate::bail!("Error creating tensor {name}: {e}"),
|
Err(e) => crate::bail!("Error creating tensor {name}: {e}"),
|
||||||
}
|
}
|
||||||
@ -226,14 +192,10 @@ pub struct Content {
|
|||||||
pub hparams: HParams,
|
pub hparams: HParams,
|
||||||
pub vocab: Vocab,
|
pub vocab: Vocab,
|
||||||
pub tensors: HashMap<String, super::QTensor>,
|
pub tensors: HashMap<String, super::QTensor>,
|
||||||
pub device: Device,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Content {
|
impl Content {
|
||||||
pub fn read<R: std::io::Seek + std::io::Read>(
|
pub fn read<R: std::io::Seek + std::io::Read>(reader: &mut R) -> Result<Content> {
|
||||||
reader: &mut R,
|
|
||||||
device: &Device,
|
|
||||||
) -> Result<Content> {
|
|
||||||
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L505
|
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L505
|
||||||
let last_position = reader.seek(std::io::SeekFrom::End(0))?;
|
let last_position = reader.seek(std::io::SeekFrom::End(0))?;
|
||||||
reader.seek(std::io::SeekFrom::Start(0))?;
|
reader.seek(std::io::SeekFrom::Start(0))?;
|
||||||
@ -243,16 +205,14 @@ impl Content {
|
|||||||
let mut tensors = HashMap::new();
|
let mut tensors = HashMap::new();
|
||||||
|
|
||||||
while reader.stream_position()? != last_position {
|
while reader.stream_position()? != last_position {
|
||||||
let (name, tensor) = read_one_tensor(reader, magic, device)?;
|
let (name, tensor) = read_one_tensor(reader, magic)?;
|
||||||
tensors.insert(name, tensor);
|
tensors.insert(name, tensor);
|
||||||
}
|
}
|
||||||
let device = device.clone();
|
|
||||||
Ok(Self {
|
Ok(Self {
|
||||||
magic,
|
magic,
|
||||||
hparams,
|
hparams,
|
||||||
vocab,
|
vocab,
|
||||||
tensors,
|
tensors,
|
||||||
device,
|
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1,8 +1,9 @@
|
|||||||
//! Support for the [GGUF file format](https://github.com/philpax/ggml/blob/gguf-spec/docs/gguf.md).
|
//! Support for the GGUF file format.
|
||||||
//!
|
//!
|
||||||
|
//! Spec: https://github.com/philpax/ggml/blob/gguf-spec/docs/gguf.md
|
||||||
|
|
||||||
use super::{GgmlDType, QTensor};
|
use super::{GgmlDType, QTensor};
|
||||||
use crate::{Context, Device, Result};
|
use crate::Result;
|
||||||
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
|
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
|
||||||
use std::collections::HashMap;
|
use std::collections::HashMap;
|
||||||
|
|
||||||
@ -28,7 +29,6 @@ impl TryFrom<u32> for Magic {
|
|||||||
pub enum VersionedMagic {
|
pub enum VersionedMagic {
|
||||||
GgufV1,
|
GgufV1,
|
||||||
GgufV2,
|
GgufV2,
|
||||||
GgufV3,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl VersionedMagic {
|
impl VersionedMagic {
|
||||||
@ -39,8 +39,7 @@ impl VersionedMagic {
|
|||||||
let versioned_magic = match (magic, version) {
|
let versioned_magic = match (magic, version) {
|
||||||
(Magic::Gguf, 1) => Self::GgufV1,
|
(Magic::Gguf, 1) => Self::GgufV1,
|
||||||
(Magic::Gguf, 2) => Self::GgufV2,
|
(Magic::Gguf, 2) => Self::GgufV2,
|
||||||
(Magic::Gguf, 3) => Self::GgufV3,
|
_ => crate::bail!("ggml: unsupported magic/version {magic:?}/{version}"),
|
||||||
_ => crate::bail!("gguf: unsupported magic/version {magic:?}/{version}"),
|
|
||||||
};
|
};
|
||||||
Ok(versioned_magic)
|
Ok(versioned_magic)
|
||||||
}
|
}
|
||||||
@ -58,25 +57,14 @@ impl TensorInfo {
|
|||||||
&self,
|
&self,
|
||||||
reader: &mut R,
|
reader: &mut R,
|
||||||
tensor_data_offset: u64,
|
tensor_data_offset: u64,
|
||||||
device: &Device,
|
|
||||||
) -> Result<QTensor> {
|
) -> Result<QTensor> {
|
||||||
let tensor_elems = self.shape.elem_count();
|
let tensor_elems = self.shape.elem_count();
|
||||||
let block_size = self.ggml_dtype.block_size();
|
let size_in_bytes =
|
||||||
if tensor_elems % block_size != 0 {
|
tensor_elems * self.ggml_dtype.type_size() / self.ggml_dtype.blck_size();
|
||||||
crate::bail!(
|
|
||||||
"the number of elements {tensor_elems} is not divisible by the block size {block_size}"
|
|
||||||
)
|
|
||||||
}
|
|
||||||
let size_in_bytes = tensor_elems / block_size * self.ggml_dtype.type_size();
|
|
||||||
let mut raw_data = vec![0u8; size_in_bytes];
|
let mut raw_data = vec![0u8; size_in_bytes];
|
||||||
reader.seek(std::io::SeekFrom::Start(tensor_data_offset + self.offset))?;
|
reader.seek(std::io::SeekFrom::Start(tensor_data_offset + self.offset))?;
|
||||||
reader.read_exact(&mut raw_data)?;
|
reader.read_exact(&mut raw_data)?;
|
||||||
super::ggml_file::qtensor_from_ggml(
|
super::ggml_file::qtensor_from_ggml(self.ggml_dtype, &raw_data, self.shape.dims().to_vec())
|
||||||
self.ggml_dtype,
|
|
||||||
&raw_data,
|
|
||||||
self.shape.dims().to_vec(),
|
|
||||||
device,
|
|
||||||
)
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -91,9 +79,7 @@ pub struct Content {
|
|||||||
fn read_string<R: std::io::Read>(reader: &mut R, magic: &VersionedMagic) -> Result<String> {
|
fn read_string<R: std::io::Read>(reader: &mut R, magic: &VersionedMagic) -> Result<String> {
|
||||||
let len = match magic {
|
let len = match magic {
|
||||||
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
|
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
|
||||||
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
|
VersionedMagic::GgufV2 => reader.read_u64::<LittleEndian>()? as usize,
|
||||||
reader.read_u64::<LittleEndian>()? as usize
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
let mut v = vec![0u8; len];
|
let mut v = vec![0u8; len];
|
||||||
reader.read_exact(&mut v)?;
|
reader.read_exact(&mut v)?;
|
||||||
@ -134,6 +120,7 @@ pub enum ValueType {
|
|||||||
// The value is a UTF-8 non-null-terminated string, with length prepended.
|
// The value is a UTF-8 non-null-terminated string, with length prepended.
|
||||||
String,
|
String,
|
||||||
// The value is an array of other values, with the length and type prepended.
|
// The value is an array of other values, with the length and type prepended.
|
||||||
|
///
|
||||||
// Arrays can be nested, and the length of the array is the number of elements in the array, not the number of bytes.
|
// Arrays can be nested, and the length of the array is the number of elements in the array, not the number of bytes.
|
||||||
Array,
|
Array,
|
||||||
}
|
}
|
||||||
@ -216,16 +203,10 @@ impl Value {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// This will also automatically upcast any integral types which will not truncate.
|
|
||||||
pub fn to_u64(&self) -> Result<u64> {
|
pub fn to_u64(&self) -> Result<u64> {
|
||||||
match self {
|
match self {
|
||||||
Self::U64(v) => Ok(*v),
|
Self::U64(v) => Ok(*v),
|
||||||
// Autoupcast cases here
|
v => crate::bail!("not a u64 {v:?}"),
|
||||||
Self::U8(v) => Ok(*v as u64),
|
|
||||||
Self::U16(v) => Ok(*v as u64),
|
|
||||||
Self::U32(v) => Ok(*v as u64),
|
|
||||||
Self::Bool(v) => Ok(*v as u64),
|
|
||||||
v => crate::bail!("not a u64 or upcastable to u64 {v:?}"),
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -298,9 +279,7 @@ impl Value {
|
|||||||
let value_type = ValueType::from_u32(value_type)?;
|
let value_type = ValueType::from_u32(value_type)?;
|
||||||
let len = match magic {
|
let len = match magic {
|
||||||
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
|
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
|
||||||
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
|
VersionedMagic::GgufV2 => reader.read_u64::<LittleEndian>()? as usize,
|
||||||
reader.read_u64::<LittleEndian>()? as usize
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
let mut vs = Vec::with_capacity(len);
|
let mut vs = Vec::with_capacity(len);
|
||||||
for _ in 0..len {
|
for _ in 0..len {
|
||||||
@ -338,7 +317,7 @@ impl Value {
|
|||||||
if value_type.len() != 1 {
|
if value_type.len() != 1 {
|
||||||
crate::bail!("multiple value-types in the same array {value_type:?}")
|
crate::bail!("multiple value-types in the same array {value_type:?}")
|
||||||
}
|
}
|
||||||
value_type.into_iter().next().context("empty value_type")?
|
value_type.into_iter().next().unwrap()
|
||||||
};
|
};
|
||||||
w.write_u32::<LittleEndian>(value_type.to_u32())?;
|
w.write_u32::<LittleEndian>(value_type.to_u32())?;
|
||||||
w.write_u64::<LittleEndian>(v.len() as u64)?;
|
w.write_u64::<LittleEndian>(v.len() as u64)?;
|
||||||
@ -397,15 +376,11 @@ impl Content {
|
|||||||
|
|
||||||
let tensor_count = match magic {
|
let tensor_count = match magic {
|
||||||
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
|
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
|
||||||
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
|
VersionedMagic::GgufV2 => reader.read_u64::<LittleEndian>()? as usize,
|
||||||
reader.read_u64::<LittleEndian>()? as usize
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
let metadata_kv_count = match magic {
|
let metadata_kv_count = match magic {
|
||||||
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
|
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
|
||||||
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
|
VersionedMagic::GgufV2 => reader.read_u64::<LittleEndian>()? as usize,
|
||||||
reader.read_u64::<LittleEndian>()? as usize
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
|
|
||||||
let mut metadata = HashMap::new();
|
let mut metadata = HashMap::new();
|
||||||
@ -427,7 +402,7 @@ impl Content {
|
|||||||
reader.read_u32_into::<LittleEndian>(&mut dimensions)?;
|
reader.read_u32_into::<LittleEndian>(&mut dimensions)?;
|
||||||
dimensions.into_iter().map(|c| c as usize).collect()
|
dimensions.into_iter().map(|c| c as usize).collect()
|
||||||
}
|
}
|
||||||
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
|
VersionedMagic::GgufV2 => {
|
||||||
let mut dimensions = vec![0; n_dimensions as usize];
|
let mut dimensions = vec![0; n_dimensions as usize];
|
||||||
reader.read_u64_into::<LittleEndian>(&mut dimensions)?;
|
reader.read_u64_into::<LittleEndian>(&mut dimensions)?;
|
||||||
dimensions.into_iter().map(|c| c as usize).collect()
|
dimensions.into_iter().map(|c| c as usize).collect()
|
||||||
@ -457,7 +432,7 @@ impl Content {
|
|||||||
Some(Value::I32(v)) if *v >= 0 => *v as u64,
|
Some(Value::I32(v)) if *v >= 0 => *v as u64,
|
||||||
_ => DEFAULT_ALIGNMENT,
|
_ => DEFAULT_ALIGNMENT,
|
||||||
};
|
};
|
||||||
let tensor_data_offset = position.div_ceil(alignment) * alignment;
|
let tensor_data_offset = (position + alignment - 1) / alignment * alignment;
|
||||||
Ok(Self {
|
Ok(Self {
|
||||||
magic,
|
magic,
|
||||||
metadata,
|
metadata,
|
||||||
@ -470,13 +445,12 @@ impl Content {
|
|||||||
&self,
|
&self,
|
||||||
reader: &mut R,
|
reader: &mut R,
|
||||||
name: &str,
|
name: &str,
|
||||||
device: &Device,
|
|
||||||
) -> Result<QTensor> {
|
) -> Result<QTensor> {
|
||||||
let tensor_info = match self.tensor_infos.get(name) {
|
let tensor_info = match self.tensor_infos.get(name) {
|
||||||
Some(tensor_info) => tensor_info,
|
Some(tensor_info) => tensor_info,
|
||||||
None => crate::bail!("cannot find tensor info for {name}"),
|
None => crate::bail!("cannot find tensor-infor for {name}"),
|
||||||
};
|
};
|
||||||
tensor_info.read(reader, self.tensor_data_offset, device)
|
tensor_info.read(reader, self.tensor_data_offset)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -528,9 +502,10 @@ pub fn write<W: std::io::Seek + std::io::Write>(
|
|||||||
"internal error, unexpected current position {tensor_start_pos} {offset} {pos}"
|
"internal error, unexpected current position {tensor_start_pos} {offset} {pos}"
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
let data = tensor.data()?;
|
let data_ptr = tensor.as_ptr();
|
||||||
let size_in_bytes = data.len();
|
let size_in_bytes = tensor.storage_size_in_bytes();
|
||||||
w.write_all(&data)?;
|
let data = unsafe { std::slice::from_raw_parts(data_ptr, size_in_bytes) };
|
||||||
|
w.write_all(data)?;
|
||||||
let padding = 31 - (31 + size_in_bytes) % 32;
|
let padding = 31 - (31 + size_in_bytes) % 32;
|
||||||
w.write_all(&vec![0u8; padding])?;
|
w.write_all(&vec![0u8; padding])?;
|
||||||
}
|
}
|
||||||
|
@ -34,9 +34,6 @@ pub trait GgmlType: Sized + Clone + Send + Sync {
|
|||||||
/// Dot product used as a building block for quantized mat-mul.
|
/// Dot product used as a building block for quantized mat-mul.
|
||||||
/// n is the number of elements to be considered.
|
/// n is the number of elements to be considered.
|
||||||
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32>;
|
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32>;
|
||||||
|
|
||||||
/// Generic implementation of the dot product without simd optimizations.
|
|
||||||
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32>;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Debug, Clone, PartialEq)]
|
#[derive(Debug, Clone, PartialEq)]
|
||||||
@ -228,17 +225,15 @@ impl GgmlType for BlockQ4_0 {
|
|||||||
#[cfg(target_feature = "neon")]
|
#[cfg(target_feature = "neon")]
|
||||||
return super::neon::vec_dot_q4_0_q8_0(n, xs, ys);
|
return super::neon::vec_dot_q4_0_q8_0(n, xs, ys);
|
||||||
|
|
||||||
#[cfg(target_feature = "simd128")]
|
|
||||||
return super::simd128::vec_dot_q4_0_q8_0(n, xs, ys);
|
|
||||||
|
|
||||||
Self::vec_dot_unopt(n, xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
|
||||||
let qk = QK8_0;
|
let qk = QK8_0;
|
||||||
|
let nb = n / qk;
|
||||||
if n % QK8_0 != 0 {
|
if n % QK8_0 != 0 {
|
||||||
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
|
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
|
||||||
}
|
}
|
||||||
|
if nb % 2 != 0 {
|
||||||
|
crate::bail!("vec_dot_q4_0_q8_0: {nb} is not even")
|
||||||
|
}
|
||||||
|
|
||||||
// Generic implementation.
|
// Generic implementation.
|
||||||
let mut sumf = 0f32;
|
let mut sumf = 0f32;
|
||||||
for (xs, ys) in xs.iter().zip(ys.iter()) {
|
for (xs, ys) in xs.iter().zip(ys.iter()) {
|
||||||
@ -260,10 +255,6 @@ impl GgmlType for BlockQ4_1 {
|
|||||||
type VecDotType = BlockQ8_1;
|
type VecDotType = BlockQ8_1;
|
||||||
|
|
||||||
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
||||||
Self::vec_dot_unopt(n, xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
|
||||||
// ggml_vec_dot_q4_1_q8_1
|
// ggml_vec_dot_q4_1_q8_1
|
||||||
let qk = QK8_1;
|
let qk = QK8_1;
|
||||||
if n % qk != 0 {
|
if n % qk != 0 {
|
||||||
@ -363,10 +354,7 @@ impl GgmlType for BlockQ5_0 {
|
|||||||
if nb % 2 != 0 {
|
if nb % 2 != 0 {
|
||||||
crate::bail!("vec_dot_q5_0_q8_0: {n}, nb is not divisible by 2")
|
crate::bail!("vec_dot_q5_0_q8_0: {n}, nb is not divisible by 2")
|
||||||
}
|
}
|
||||||
Self::vec_dot_unopt(n, xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn vec_dot_unopt(_n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
|
||||||
// Generic implementation.
|
// Generic implementation.
|
||||||
let mut sumf = 0f32;
|
let mut sumf = 0f32;
|
||||||
|
|
||||||
@ -457,10 +445,6 @@ impl GgmlType for BlockQ5_1 {
|
|||||||
type VecDotType = BlockQ8_1;
|
type VecDotType = BlockQ8_1;
|
||||||
|
|
||||||
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
||||||
Self::vec_dot_unopt(n, xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
|
||||||
let qk = Self::BLCK_SIZE;
|
let qk = Self::BLCK_SIZE;
|
||||||
if n % Self::BLCK_SIZE != 0 {
|
if n % Self::BLCK_SIZE != 0 {
|
||||||
crate::bail!("vec_dot_q5_1_q8_1: {n} is not divisible by {qk}")
|
crate::bail!("vec_dot_q5_1_q8_1: {n} is not divisible by {qk}")
|
||||||
@ -622,13 +606,6 @@ impl GgmlType for BlockQ8_0 {
|
|||||||
#[cfg(target_feature = "neon")]
|
#[cfg(target_feature = "neon")]
|
||||||
return super::neon::vec_dot_q8_0_q8_0(n, xs, ys);
|
return super::neon::vec_dot_q8_0_q8_0(n, xs, ys);
|
||||||
|
|
||||||
#[cfg(target_feature = "simd128")]
|
|
||||||
return super::simd128::vec_dot_q8_0_q8_0(n, xs, ys);
|
|
||||||
|
|
||||||
Self::vec_dot_unopt(n, xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
|
||||||
let qk = QK8_0;
|
let qk = QK8_0;
|
||||||
if n % QK8_0 != 0 {
|
if n % QK8_0 != 0 {
|
||||||
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
|
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
|
||||||
@ -654,11 +631,7 @@ impl GgmlType for BlockQ8_1 {
|
|||||||
const BLCK_SIZE: usize = QK8_1;
|
const BLCK_SIZE: usize = QK8_1;
|
||||||
type VecDotType = BlockQ8_1;
|
type VecDotType = BlockQ8_1;
|
||||||
|
|
||||||
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
fn vec_dot(_n: usize, _xs: &[Self], _ys: &[Self::VecDotType]) -> Result<f32> {
|
||||||
Self::vec_dot_unopt(n, xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn vec_dot_unopt(_n: usize, _xs: &[Self], _ys: &[Self::VecDotType]) -> Result<f32> {
|
|
||||||
unimplemented!("no support for vec-dot on Q8_1")
|
unimplemented!("no support for vec-dot on Q8_1")
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -708,13 +681,6 @@ impl GgmlType for BlockQ2K {
|
|||||||
#[cfg(target_feature = "neon")]
|
#[cfg(target_feature = "neon")]
|
||||||
return super::neon::vec_dot_q2k_q8k(n, xs, ys);
|
return super::neon::vec_dot_q2k_q8k(n, xs, ys);
|
||||||
|
|
||||||
#[cfg(target_feature = "simd128")]
|
|
||||||
return super::simd128::vec_dot_q2k_q8k(n, xs, ys);
|
|
||||||
|
|
||||||
Self::vec_dot_unopt(n, xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
|
||||||
if n % QK_K != 0 {
|
if n % QK_K != 0 {
|
||||||
crate::bail!("vec_dot_q2k_q8k: {n} is not divisible by {QK_K}")
|
crate::bail!("vec_dot_q2k_q8k: {n} is not divisible by {QK_K}")
|
||||||
}
|
}
|
||||||
@ -735,17 +701,18 @@ impl GgmlType for BlockQ2K {
|
|||||||
|
|
||||||
let mut isum = 0;
|
let mut isum = 0;
|
||||||
let mut is = 0;
|
let mut is = 0;
|
||||||
|
let mut d;
|
||||||
for _ in 0..(QK_K / 128) {
|
for _ in 0..(QK_K / 128) {
|
||||||
let mut shift = 0;
|
let mut shift = 0;
|
||||||
for _ in 0..4 {
|
for _ in 0..4 {
|
||||||
let d = (sc[is] & 0xF) as i32;
|
d = (sc[is] & 0xF) as i32;
|
||||||
is += 1;
|
is += 1;
|
||||||
let mut isuml = 0;
|
let mut isuml = 0;
|
||||||
for l in 0..16 {
|
for l in 0..16 {
|
||||||
isuml += q8[l] as i32 * (((q2[l] >> shift) & 3) as i32);
|
isuml += q8[l] as i32 * (((q2[l] >> shift) & 3) as i32);
|
||||||
}
|
}
|
||||||
isum += d * isuml;
|
isum += d * isuml;
|
||||||
let d = (sc[is] & 0xF) as i32;
|
d = (sc[is] & 0xF) as i32;
|
||||||
is += 1;
|
is += 1;
|
||||||
isuml = 0;
|
isuml = 0;
|
||||||
for l in 16..32 {
|
for l in 16..32 {
|
||||||
@ -884,10 +851,6 @@ impl GgmlType for BlockQ3K {
|
|||||||
#[cfg(target_feature = "neon")]
|
#[cfg(target_feature = "neon")]
|
||||||
return super::neon::vec_dot_q3k_q8k(n, xs, ys);
|
return super::neon::vec_dot_q3k_q8k(n, xs, ys);
|
||||||
|
|
||||||
Self::vec_dot_unopt(n, xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
|
||||||
if n % QK_K != 0 {
|
if n % QK_K != 0 {
|
||||||
crate::bail!("vec_dot_q3k_q8k: {n} is not divisible by {QK_K}")
|
crate::bail!("vec_dot_q3k_q8k: {n} is not divisible by {QK_K}")
|
||||||
}
|
}
|
||||||
@ -1114,6 +1077,7 @@ impl GgmlType for BlockQ3K {
|
|||||||
let d_all = block.d.to_f32();
|
let d_all = block.d.to_f32();
|
||||||
let mut m = 1;
|
let mut m = 1;
|
||||||
let mut is = 0;
|
let mut is = 0;
|
||||||
|
let mut dl;
|
||||||
|
|
||||||
// Dequantize both 128 long blocks
|
// Dequantize both 128 long blocks
|
||||||
// 32 qs values per 128 long block
|
// 32 qs values per 128 long block
|
||||||
@ -1124,7 +1088,7 @@ impl GgmlType for BlockQ3K {
|
|||||||
for (scale_index, scale_scoped_y) in
|
for (scale_index, scale_scoped_y) in
|
||||||
shift_scoped_y.chunks_exact_mut(16).enumerate()
|
shift_scoped_y.chunks_exact_mut(16).enumerate()
|
||||||
{
|
{
|
||||||
let dl = d_all * (scales[is] as f32 - 32.0);
|
dl = d_all * (scales[is] as f32 - 32.0);
|
||||||
for (i, inner_y) in scale_scoped_y.iter_mut().enumerate() {
|
for (i, inner_y) in scale_scoped_y.iter_mut().enumerate() {
|
||||||
let new_y = dl
|
let new_y = dl
|
||||||
* (((qs[i + 16 * scale_index] >> shift) & 3) as i8
|
* (((qs[i + 16 * scale_index] >> shift) & 3) as i8
|
||||||
@ -1162,13 +1126,6 @@ impl GgmlType for BlockQ4K {
|
|||||||
#[cfg(target_feature = "neon")]
|
#[cfg(target_feature = "neon")]
|
||||||
return super::neon::vec_dot_q4k_q8k(n, xs, ys);
|
return super::neon::vec_dot_q4k_q8k(n, xs, ys);
|
||||||
|
|
||||||
#[cfg(target_feature = "simd128")]
|
|
||||||
return super::simd128::vec_dot_q4k_q8k(n, xs, ys);
|
|
||||||
|
|
||||||
Self::vec_dot_unopt(n, xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
|
||||||
if n % QK_K != 0 {
|
if n % QK_K != 0 {
|
||||||
crate::bail!("vec_dot_q4k_q8k: {n} is not divisible by {QK_K}")
|
crate::bail!("vec_dot_q4k_q8k: {n} is not divisible by {QK_K}")
|
||||||
}
|
}
|
||||||
@ -1355,10 +1312,6 @@ impl GgmlType for BlockQ5K {
|
|||||||
#[cfg(target_feature = "neon")]
|
#[cfg(target_feature = "neon")]
|
||||||
return super::neon::vec_dot_q5k_q8k(n, xs, ys);
|
return super::neon::vec_dot_q5k_q8k(n, xs, ys);
|
||||||
|
|
||||||
Self::vec_dot_unopt(n, xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
|
||||||
if n % QK_K != 0 {
|
if n % QK_K != 0 {
|
||||||
crate::bail!("vec_dot_q5k_q8k: {n} is not divisible by {QK_K}")
|
crate::bail!("vec_dot_q5k_q8k: {n} is not divisible by {QK_K}")
|
||||||
}
|
}
|
||||||
@ -1545,13 +1498,13 @@ impl GgmlType for BlockQ5K {
|
|||||||
let d2 = d * sc as f32;
|
let d2 = d * sc as f32;
|
||||||
let m2 = min * m as f32;
|
let m2 = min * m as f32;
|
||||||
for (ql, qh) in ql.iter().zip(qh) {
|
for (ql, qh) in ql.iter().zip(qh) {
|
||||||
let to_add = if qh & u1 != 0 { 16f32 } else { 0f32 };
|
let to_add = if qh & u1 != 0 { 16 } else { 1 };
|
||||||
y[ys_index] = d1 * ((ql & 0xF) as f32 + to_add) - m1;
|
y[ys_index] = d1 * ((ql & 0xF) + to_add) as f32 - m1;
|
||||||
ys_index += 1;
|
ys_index += 1;
|
||||||
}
|
}
|
||||||
for (ql, qh) in ql.iter().zip(qh) {
|
for (ql, qh) in ql.iter().zip(qh) {
|
||||||
let to_add = if qh & u2 != 0 { 16f32 } else { 0f32 };
|
let to_add = if qh & u2 != 0 { 16 } else { 1 };
|
||||||
y[ys_index] = d2 * ((ql >> 4) as f32 + to_add) - m2;
|
y[ys_index] = d2 * ((ql >> 4) + to_add) as f32 - m2;
|
||||||
ys_index += 1;
|
ys_index += 1;
|
||||||
}
|
}
|
||||||
is += 2;
|
is += 2;
|
||||||
@ -1576,13 +1529,6 @@ impl GgmlType for BlockQ6K {
|
|||||||
#[cfg(target_feature = "neon")]
|
#[cfg(target_feature = "neon")]
|
||||||
return super::neon::vec_dot_q6k_q8k(n, xs, ys);
|
return super::neon::vec_dot_q6k_q8k(n, xs, ys);
|
||||||
|
|
||||||
#[cfg(target_feature = "simd128")]
|
|
||||||
return super::simd128::vec_dot_q6k_q8k(n, xs, ys);
|
|
||||||
|
|
||||||
Self::vec_dot_unopt(n, xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
|
||||||
if n % QK_K != 0 {
|
if n % QK_K != 0 {
|
||||||
crate::bail!("vec_dot_q6k_q8k: {n} is not divisible by {QK_K}")
|
crate::bail!("vec_dot_q6k_q8k: {n} is not divisible by {QK_K}")
|
||||||
}
|
}
|
||||||
@ -1751,38 +1697,8 @@ impl GgmlType for BlockQ8K {
|
|||||||
const BLCK_SIZE: usize = QK_K;
|
const BLCK_SIZE: usize = QK_K;
|
||||||
type VecDotType = BlockQ8K;
|
type VecDotType = BlockQ8K;
|
||||||
|
|
||||||
#[allow(unreachable_code)]
|
fn vec_dot(_n: usize, _xs: &[Self], _ys: &[Self::VecDotType]) -> Result<f32> {
|
||||||
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
unreachable!()
|
||||||
#[cfg(target_feature = "avx")]
|
|
||||||
return super::avx::vec_dot_q8k_q8k(n, xs, ys);
|
|
||||||
|
|
||||||
#[cfg(target_feature = "neon")]
|
|
||||||
return super::neon::vec_dot_q8k_q8k(n, xs, ys);
|
|
||||||
|
|
||||||
#[cfg(target_feature = "simd128")]
|
|
||||||
return super::simd128::vec_dot_q8k_q8k(n, xs, ys);
|
|
||||||
|
|
||||||
Self::vec_dot_unopt(n, xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
|
||||||
let qk = QK_K;
|
|
||||||
if n % QK_K != 0 {
|
|
||||||
crate::bail!("vec_dot_q8k_q8k: {n} is not divisible by {qk}")
|
|
||||||
}
|
|
||||||
|
|
||||||
// Generic implementation.
|
|
||||||
let mut sumf = 0f32;
|
|
||||||
for (xs, ys) in xs.iter().zip(ys.iter()) {
|
|
||||||
let sum_i = xs
|
|
||||||
.qs
|
|
||||||
.iter()
|
|
||||||
.zip(ys.qs.iter())
|
|
||||||
.map(|(&x, &y)| x as i32 * y as i32)
|
|
||||||
.sum::<i32>();
|
|
||||||
sumf += sum_i as f32 * xs.d * ys.d
|
|
||||||
}
|
|
||||||
Ok(sumf)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
|
fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> {
|
||||||
@ -1850,8 +1766,8 @@ pub fn matmul<T: GgmlType>(
|
|||||||
crate::bail!("unexpected lhs length {} {mkn:?}", lhs.len());
|
crate::bail!("unexpected lhs length {} {mkn:?}", lhs.len());
|
||||||
}
|
}
|
||||||
|
|
||||||
let k_in_lhs_blocks = k.div_ceil(T::BLCK_SIZE);
|
let k_in_lhs_blocks = (k + T::BLCK_SIZE - 1) / T::BLCK_SIZE;
|
||||||
let k_in_rhs_blocks = k.div_ceil(T::VecDotType::BLCK_SIZE);
|
let k_in_rhs_blocks = (k + T::VecDotType::BLCK_SIZE - 1) / T::VecDotType::BLCK_SIZE;
|
||||||
// TODO: Do not make this copy if the DotType is f32.
|
// TODO: Do not make this copy if the DotType is f32.
|
||||||
// TODO: Pre-allocate this.
|
// TODO: Pre-allocate this.
|
||||||
let mut lhs_b = vec![T::VecDotType::zeros(); m * k_in_lhs_blocks];
|
let mut lhs_b = vec![T::VecDotType::zeros(); m * k_in_lhs_blocks];
|
||||||
@ -1888,10 +1804,6 @@ impl GgmlType for f32 {
|
|||||||
type VecDotType = f32;
|
type VecDotType = f32;
|
||||||
|
|
||||||
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
||||||
Self::vec_dot_unopt(n, xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
|
||||||
if xs.len() < n {
|
if xs.len() < n {
|
||||||
crate::bail!("size mismatch {} < {n}", xs.len())
|
crate::bail!("size mismatch {} < {n}", xs.len())
|
||||||
}
|
}
|
||||||
@ -1926,10 +1838,6 @@ impl GgmlType for f16 {
|
|||||||
type VecDotType = f16;
|
type VecDotType = f16;
|
||||||
|
|
||||||
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
||||||
Self::vec_dot_unopt(n, xs, ys)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> {
|
|
||||||
if xs.len() < n {
|
if xs.len() < n {
|
||||||
crate::bail!("size mismatch {} < {n}", xs.len())
|
crate::bail!("size mismatch {} < {n}", xs.len())
|
||||||
}
|
}
|
||||||
|
@ -1,230 +0,0 @@
|
|||||||
use super::{GgmlDType, QStorage};
|
|
||||||
use crate::backend::BackendStorage;
|
|
||||||
use crate::{DType, MetalDevice, MetalStorage, Result, Shape};
|
|
||||||
use metal::Buffer;
|
|
||||||
use std::sync::Arc;
|
|
||||||
|
|
||||||
pub struct QMetalStorage {
|
|
||||||
dtype: GgmlDType,
|
|
||||||
device: MetalDevice,
|
|
||||||
buffer: Arc<Buffer>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl QMetalStorage {
|
|
||||||
pub fn zeros(device: &MetalDevice, elem_count: usize, dtype: GgmlDType) -> Result<Self> {
|
|
||||||
let size = elem_count * dtype.type_size() / dtype.block_size();
|
|
||||||
let buffer = device.allocate_zeros(size)?;
|
|
||||||
Ok(Self {
|
|
||||||
buffer,
|
|
||||||
device: device.clone(),
|
|
||||||
dtype,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn dtype(&self) -> GgmlDType {
|
|
||||||
self.dtype
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn device(&self) -> &MetalDevice {
|
|
||||||
&self.device
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn buffer(&self) -> &Buffer {
|
|
||||||
&self.buffer
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn dequantize(&self, elem_count: usize) -> Result<MetalStorage> {
|
|
||||||
use crate::quantized::k_quants::GgmlType;
|
|
||||||
|
|
||||||
let buffer = self.device.new_buffer_managed(self.buffer.length())?;
|
|
||||||
let command_buffer = self.device.command_buffer()?;
|
|
||||||
command_buffer.set_label("to_cpu");
|
|
||||||
let blit = command_buffer.new_blit_command_encoder();
|
|
||||||
blit.set_label("blit_to_cpu");
|
|
||||||
blit.copy_from_buffer(&self.buffer, 0, &buffer, 0, self.buffer.length());
|
|
||||||
blit.end_encoding();
|
|
||||||
self.device.wait_until_completed()?;
|
|
||||||
let mut out = vec![0.0; elem_count];
|
|
||||||
let block_len = elem_count / self.dtype.block_size();
|
|
||||||
match self.dtype {
|
|
||||||
GgmlDType::F32 => {
|
|
||||||
let vec: Vec<f32> = read_to_vec(&buffer, block_len);
|
|
||||||
f32::to_float(&vec, &mut out)?;
|
|
||||||
}
|
|
||||||
GgmlDType::F16 => {
|
|
||||||
let vec: Vec<half::f16> = read_to_vec(&buffer, block_len);
|
|
||||||
half::f16::to_float(&vec, &mut out)?;
|
|
||||||
}
|
|
||||||
GgmlDType::Q4_0 => {
|
|
||||||
let vec: Vec<crate::quantized::BlockQ4_0> = read_to_vec(&buffer, block_len);
|
|
||||||
crate::quantized::BlockQ4_0::to_float(&vec, &mut out)?;
|
|
||||||
}
|
|
||||||
GgmlDType::Q4_1 => {
|
|
||||||
let vec: Vec<crate::quantized::BlockQ4_1> = read_to_vec(&buffer, block_len);
|
|
||||||
crate::quantized::BlockQ4_1::to_float(&vec, &mut out)?;
|
|
||||||
}
|
|
||||||
GgmlDType::Q5_0 => {
|
|
||||||
let vec: Vec<crate::quantized::BlockQ5_0> = read_to_vec(&buffer, block_len);
|
|
||||||
crate::quantized::BlockQ5_0::to_float(&vec, &mut out)?;
|
|
||||||
}
|
|
||||||
GgmlDType::Q5_1 => {
|
|
||||||
let vec: Vec<crate::quantized::BlockQ5_1> = read_to_vec(&buffer, block_len);
|
|
||||||
crate::quantized::BlockQ5_1::to_float(&vec, &mut out)?;
|
|
||||||
}
|
|
||||||
GgmlDType::Q8_0 => {
|
|
||||||
let vec: Vec<crate::quantized::BlockQ8_0> = read_to_vec(&buffer, block_len);
|
|
||||||
crate::quantized::BlockQ8_0::to_float(&vec, &mut out)?;
|
|
||||||
}
|
|
||||||
GgmlDType::Q8_1 => {
|
|
||||||
let vec: Vec<crate::quantized::BlockQ8_1> = read_to_vec(&buffer, block_len);
|
|
||||||
crate::quantized::BlockQ8_1::to_float(&vec, &mut out)?;
|
|
||||||
}
|
|
||||||
GgmlDType::Q2K => {
|
|
||||||
let vec: Vec<crate::quantized::BlockQ2K> = read_to_vec(&buffer, block_len);
|
|
||||||
crate::quantized::BlockQ2K::to_float(&vec, &mut out)?;
|
|
||||||
}
|
|
||||||
GgmlDType::Q3K => {
|
|
||||||
let vec: Vec<crate::quantized::BlockQ3K> = read_to_vec(&buffer, block_len);
|
|
||||||
crate::quantized::BlockQ3K::to_float(&vec, &mut out)?;
|
|
||||||
}
|
|
||||||
GgmlDType::Q4K => {
|
|
||||||
let vec: Vec<crate::quantized::BlockQ4K> = read_to_vec(&buffer, block_len);
|
|
||||||
crate::quantized::BlockQ4K::to_float(&vec, &mut out)?;
|
|
||||||
}
|
|
||||||
GgmlDType::Q5K => {
|
|
||||||
let vec: Vec<crate::quantized::BlockQ5K> = read_to_vec(&buffer, block_len);
|
|
||||||
crate::quantized::BlockQ5K::to_float(&vec, &mut out)?;
|
|
||||||
}
|
|
||||||
GgmlDType::Q6K => {
|
|
||||||
let vec: Vec<crate::quantized::BlockQ6K> = read_to_vec(&buffer, block_len);
|
|
||||||
crate::quantized::BlockQ6K::to_float(&vec, &mut out)?;
|
|
||||||
}
|
|
||||||
GgmlDType::Q8K => {
|
|
||||||
let vec: Vec<crate::quantized::BlockQ8K> = read_to_vec(&buffer, block_len);
|
|
||||||
crate::quantized::BlockQ8K::to_float(&vec, &mut out)?;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
let buffer = self.device.new_buffer_with_data(&out)?;
|
|
||||||
Ok(MetalStorage::new(
|
|
||||||
buffer,
|
|
||||||
self.device.clone(),
|
|
||||||
elem_count,
|
|
||||||
DType::F32,
|
|
||||||
))
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn quantize(&mut self, src: &MetalStorage) -> Result<()> {
|
|
||||||
// Quantization only happens on CPU for now.
|
|
||||||
let src = src.to_cpu::<f32>()?;
|
|
||||||
let elem_count = src.len();
|
|
||||||
let src = crate::Storage::Cpu(crate::CpuStorage::F32(src));
|
|
||||||
let mut qcpu_storage = crate::Device::Cpu.qzeros(elem_count, self.dtype)?;
|
|
||||||
qcpu_storage.quantize(&src)?;
|
|
||||||
let buffer = self.device.new_buffer_with_data(&qcpu_storage.data()?)?;
|
|
||||||
self.buffer = buffer;
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn storage_size_in_bytes(&self) -> usize {
|
|
||||||
self.buffer.length() as usize
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn fwd(
|
|
||||||
&self,
|
|
||||||
self_shape: &Shape,
|
|
||||||
storage: &MetalStorage,
|
|
||||||
layout: &crate::Layout,
|
|
||||||
) -> Result<(MetalStorage, Shape)> {
|
|
||||||
use crate::MetalError;
|
|
||||||
|
|
||||||
if !layout.is_contiguous() {
|
|
||||||
crate::bail!("input tensor is not contiguous {layout:?}")
|
|
||||||
}
|
|
||||||
let src_shape = layout.shape();
|
|
||||||
// self is transposed so n is first then k.
|
|
||||||
if src_shape.rank() < 2 {
|
|
||||||
crate::bail!("input tensor has only one dimension {layout:?}")
|
|
||||||
}
|
|
||||||
let (n, k) = self_shape.dims2()?;
|
|
||||||
let mut dst_shape = src_shape.dims().to_vec();
|
|
||||||
|
|
||||||
// We always use a single batch dimension and stack all the tensors in the batch on the
|
|
||||||
// second dimension as the implementation in candle-metal-kernels doesn't handle batch
|
|
||||||
// properly.
|
|
||||||
let m = match dst_shape.len() {
|
|
||||||
3 => dst_shape[0] * dst_shape[1],
|
|
||||||
2 => dst_shape[0],
|
|
||||||
n => crate::bail!("Invalid rank {n} for quantized matmul metal"),
|
|
||||||
};
|
|
||||||
let last_k = dst_shape.pop().unwrap();
|
|
||||||
if last_k != k {
|
|
||||||
crate::bail!("input tensor {layout:?} incompatible with {:?}", self_shape)
|
|
||||||
}
|
|
||||||
dst_shape.push(n);
|
|
||||||
let dst_shape = Shape::from(dst_shape);
|
|
||||||
let device = storage.device().clone();
|
|
||||||
let dst = device.new_buffer(dst_shape.elem_count(), DType::F32, "qmatmul")?;
|
|
||||||
let command_buffer = device.command_buffer()?;
|
|
||||||
// In some cases it would be better to use the mm variant, though it has its drawbacks
|
|
||||||
// around memory alignemnt.
|
|
||||||
for batch_id in 0..m {
|
|
||||||
candle_metal_kernels::call_quantized_matmul_mv_t(
|
|
||||||
device.device(),
|
|
||||||
&command_buffer,
|
|
||||||
device.kernels(),
|
|
||||||
self.dtype.into(),
|
|
||||||
(1, 1, n, k),
|
|
||||||
storage.buffer(),
|
|
||||||
(layout.start_offset() + batch_id * k) * storage.dtype().size_in_bytes(),
|
|
||||||
&self.buffer,
|
|
||||||
batch_id * n * DType::F32.size_in_bytes(),
|
|
||||||
&dst,
|
|
||||||
)
|
|
||||||
.map_err(MetalError::from)?;
|
|
||||||
}
|
|
||||||
let dst_storage = crate::MetalStorage::new(dst, device, dst_shape.elem_count(), DType::F32);
|
|
||||||
Ok((dst_storage, dst_shape))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>(
|
|
||||||
device: &MetalDevice,
|
|
||||||
data: &[T],
|
|
||||||
) -> Result<QStorage> {
|
|
||||||
let buffer = device.new_buffer_with_data(data)?;
|
|
||||||
let device = device.clone();
|
|
||||||
Ok(QStorage::Metal(QMetalStorage {
|
|
||||||
dtype: T::DTYPE,
|
|
||||||
device,
|
|
||||||
buffer,
|
|
||||||
}))
|
|
||||||
}
|
|
||||||
|
|
||||||
fn read_to_vec<T: Clone>(buffer: &Buffer, n: usize) -> Vec<T> {
|
|
||||||
let ptr = buffer.contents() as *const T;
|
|
||||||
assert!(!ptr.is_null());
|
|
||||||
let slice = unsafe { std::slice::from_raw_parts(ptr, n) };
|
|
||||||
slice.to_vec()
|
|
||||||
}
|
|
||||||
|
|
||||||
impl From<GgmlDType> for candle_metal_kernels::GgmlDType {
|
|
||||||
fn from(value: GgmlDType) -> Self {
|
|
||||||
match value {
|
|
||||||
GgmlDType::Q4_0 => candle_metal_kernels::GgmlDType::Q4_0,
|
|
||||||
GgmlDType::Q4_1 => candle_metal_kernels::GgmlDType::Q4_1,
|
|
||||||
GgmlDType::Q5_0 => candle_metal_kernels::GgmlDType::Q5_0,
|
|
||||||
GgmlDType::Q5_1 => candle_metal_kernels::GgmlDType::Q5_1,
|
|
||||||
GgmlDType::Q8_0 => candle_metal_kernels::GgmlDType::Q8_0,
|
|
||||||
GgmlDType::Q8_1 => candle_metal_kernels::GgmlDType::Q8_1,
|
|
||||||
GgmlDType::Q2K => candle_metal_kernels::GgmlDType::Q2K,
|
|
||||||
GgmlDType::Q3K => candle_metal_kernels::GgmlDType::Q3K,
|
|
||||||
GgmlDType::Q4K => candle_metal_kernels::GgmlDType::Q4K,
|
|
||||||
GgmlDType::Q5K => candle_metal_kernels::GgmlDType::Q5K,
|
|
||||||
GgmlDType::Q6K => candle_metal_kernels::GgmlDType::Q6K,
|
|
||||||
GgmlDType::Q8K => candle_metal_kernels::GgmlDType::Q8K,
|
|
||||||
GgmlDType::F16 => candle_metal_kernels::GgmlDType::F16,
|
|
||||||
GgmlDType::F32 => candle_metal_kernels::GgmlDType::F32,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,135 +1,21 @@
|
|||||||
//! Code for GGML and GGUF files
|
use crate::{Device, Result, Shape, Tensor};
|
||||||
use crate::{Context, CpuStorage, DType, Device, Result, Shape, Storage, Tensor};
|
|
||||||
use k_quants::*;
|
|
||||||
use std::borrow::Cow;
|
|
||||||
|
|
||||||
#[cfg(target_feature = "avx")]
|
#[cfg(target_feature = "avx")]
|
||||||
pub mod avx;
|
pub mod avx;
|
||||||
mod dummy_cuda;
|
|
||||||
mod dummy_metal;
|
|
||||||
pub mod ggml_file;
|
pub mod ggml_file;
|
||||||
pub mod gguf_file;
|
pub mod gguf_file;
|
||||||
pub mod k_quants;
|
pub mod k_quants;
|
||||||
#[cfg(feature = "metal")]
|
|
||||||
pub mod metal;
|
|
||||||
#[cfg(not(feature = "metal"))]
|
|
||||||
mod metal {
|
|
||||||
pub use super::dummy_metal::*;
|
|
||||||
}
|
|
||||||
#[cfg(feature = "cuda")]
|
|
||||||
pub mod cuda;
|
|
||||||
#[cfg(not(feature = "cuda"))]
|
|
||||||
mod cuda {
|
|
||||||
pub use super::dummy_cuda::*;
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(target_feature = "neon")]
|
#[cfg(target_feature = "neon")]
|
||||||
pub mod neon;
|
pub mod neon;
|
||||||
#[cfg(target_feature = "simd128")]
|
|
||||||
pub mod simd128;
|
|
||||||
pub mod utils;
|
pub mod utils;
|
||||||
use half::f16;
|
|
||||||
|
|
||||||
pub use k_quants::GgmlType;
|
pub use k_quants::GgmlType;
|
||||||
|
|
||||||
pub struct QTensor {
|
pub struct QTensor {
|
||||||
storage: QStorage,
|
data: Box<dyn QuantizedType>,
|
||||||
shape: Shape,
|
shape: Shape,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Device {
|
|
||||||
fn qzeros(&self, elem_count: usize, dtype: GgmlDType) -> Result<QStorage> {
|
|
||||||
match self {
|
|
||||||
Device::Cpu => {
|
|
||||||
let storage = dtype.cpu_zeros(elem_count);
|
|
||||||
Ok(QStorage::Cpu(storage))
|
|
||||||
}
|
|
||||||
Device::Metal(metal) => {
|
|
||||||
let storage = metal::QMetalStorage::zeros(metal, elem_count, dtype)?;
|
|
||||||
Ok(QStorage::Metal(storage))
|
|
||||||
}
|
|
||||||
Device::Cuda(cuda) => {
|
|
||||||
let storage = cuda::QCudaStorage::zeros(cuda, elem_count, dtype)?;
|
|
||||||
Ok(QStorage::Cuda(storage))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub enum QStorage {
|
|
||||||
Cpu(Box<dyn QuantizedType>),
|
|
||||||
Metal(metal::QMetalStorage),
|
|
||||||
Cuda(cuda::QCudaStorage),
|
|
||||||
}
|
|
||||||
|
|
||||||
impl QStorage {
|
|
||||||
fn block_size(&self) -> usize {
|
|
||||||
match self {
|
|
||||||
QStorage::Cpu(storage) => storage.block_size(),
|
|
||||||
QStorage::Metal(storage) => storage.dtype().block_size(),
|
|
||||||
QStorage::Cuda(storage) => storage.dtype().block_size(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn dtype(&self) -> GgmlDType {
|
|
||||||
match self {
|
|
||||||
QStorage::Cpu(storage) => storage.dtype(),
|
|
||||||
QStorage::Metal(storage) => storage.dtype(),
|
|
||||||
QStorage::Cuda(storage) => storage.dtype(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn device(&self) -> Device {
|
|
||||||
match self {
|
|
||||||
QStorage::Cpu(_storage) => Device::Cpu,
|
|
||||||
QStorage::Metal(storage) => Device::Metal(storage.device().clone()),
|
|
||||||
QStorage::Cuda(storage) => Device::Cuda(storage.device().clone()),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn size_in_bytes(&self) -> usize {
|
|
||||||
match self {
|
|
||||||
QStorage::Cpu(storage) => storage.storage_size_in_bytes(),
|
|
||||||
QStorage::Metal(storage) => storage.storage_size_in_bytes(),
|
|
||||||
QStorage::Cuda(storage) => storage.storage_size_in_bytes(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn quantize(&mut self, src: &Storage) -> Result<()> {
|
|
||||||
match (self, src) {
|
|
||||||
(QStorage::Cpu(storage), Storage::Cpu(src)) => {
|
|
||||||
storage.from_float(src.as_slice::<f32>()?)?;
|
|
||||||
}
|
|
||||||
(QStorage::Metal(storage), Storage::Metal(src)) => storage.quantize(src)?,
|
|
||||||
(QStorage::Cuda(storage), Storage::Cuda(src)) => storage.quantize(src)?,
|
|
||||||
_ => crate::bail!("Invalid dequantize storage locations do not match"),
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
fn dequantize(&self, elem_count: usize) -> Result<Storage> {
|
|
||||||
match self {
|
|
||||||
QStorage::Cpu(storage) => Ok(Storage::Cpu(storage.dequantize(elem_count)?)),
|
|
||||||
QStorage::Metal(storage) => Ok(Storage::Metal(storage.dequantize(elem_count)?)),
|
|
||||||
QStorage::Cuda(storage) => Ok(Storage::Cuda(storage.dequantize(elem_count)?)),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn data(&self) -> Result<Cow<[u8]>> {
|
|
||||||
match self {
|
|
||||||
QStorage::Cpu(storage) => {
|
|
||||||
let data_ptr = storage.as_ptr();
|
|
||||||
let size_in_bytes = storage.storage_size_in_bytes();
|
|
||||||
let data = unsafe { std::slice::from_raw_parts(data_ptr, size_in_bytes) };
|
|
||||||
Ok(Cow::from(data))
|
|
||||||
}
|
|
||||||
QStorage::Metal(_) | QStorage::Cuda(_) => {
|
|
||||||
crate::bail!("not implemented");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||||
pub enum GgmlDType {
|
pub enum GgmlDType {
|
||||||
F32,
|
F32,
|
||||||
@ -189,25 +75,6 @@ impl GgmlDType {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// The block dtype
|
|
||||||
pub fn cpu_zeros(&self, elem_count: usize) -> Box<dyn QuantizedType> {
|
|
||||||
match self {
|
|
||||||
Self::F32 => Box::new(vec![f32::zeros(); elem_count]),
|
|
||||||
Self::F16 => Box::new(vec![f16::zeros(); elem_count]),
|
|
||||||
Self::Q4_0 => Box::new(vec![BlockQ4_0::zeros(); elem_count / BlockQ4_0::BLCK_SIZE]),
|
|
||||||
Self::Q4_1 => Box::new(vec![BlockQ4_1::zeros(); elem_count / BlockQ4_1::BLCK_SIZE]),
|
|
||||||
Self::Q5_0 => Box::new(vec![BlockQ5_0::zeros(); elem_count / BlockQ5_0::BLCK_SIZE]),
|
|
||||||
Self::Q5_1 => Box::new(vec![BlockQ5_1::zeros(); elem_count / BlockQ5_1::BLCK_SIZE]),
|
|
||||||
Self::Q8_0 => Box::new(vec![BlockQ8_0::zeros(); elem_count / BlockQ8_0::BLCK_SIZE]),
|
|
||||||
Self::Q8_1 => Box::new(vec![BlockQ8_1::zeros(); elem_count / BlockQ8_1::BLCK_SIZE]),
|
|
||||||
Self::Q2K => Box::new(vec![BlockQ2K::zeros(); elem_count / BlockQ2K::BLCK_SIZE]),
|
|
||||||
Self::Q3K => Box::new(vec![BlockQ3K::zeros(); elem_count / BlockQ3K::BLCK_SIZE]),
|
|
||||||
Self::Q4K => Box::new(vec![BlockQ4K::zeros(); elem_count / BlockQ4K::BLCK_SIZE]),
|
|
||||||
Self::Q5K => Box::new(vec![BlockQ5K::zeros(); elem_count / BlockQ5K::BLCK_SIZE]),
|
|
||||||
Self::Q6K => Box::new(vec![BlockQ6K::zeros(); elem_count / BlockQ6K::BLCK_SIZE]),
|
|
||||||
Self::Q8K => Box::new(vec![BlockQ8K::zeros(); elem_count / BlockQ8K::BLCK_SIZE]),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
/// The type size for blocks in bytes.
|
/// The type size for blocks in bytes.
|
||||||
pub fn type_size(&self) -> usize {
|
pub fn type_size(&self) -> usize {
|
||||||
use k_quants::*;
|
use k_quants::*;
|
||||||
@ -231,7 +98,7 @@ impl GgmlDType {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/// The block size, i.e. the number of elements stored in each block.
|
/// The block size, i.e. the number of elements stored in each block.
|
||||||
pub fn block_size(&self) -> usize {
|
pub fn blck_size(&self) -> usize {
|
||||||
match self {
|
match self {
|
||||||
Self::F32 => 1,
|
Self::F32 => 1,
|
||||||
Self::F16 => 1,
|
Self::F16 => 1,
|
||||||
@ -250,13 +117,9 @@ impl GgmlDType {
|
|||||||
pub trait QuantizedType: Send + Sync {
|
pub trait QuantizedType: Send + Sync {
|
||||||
fn dtype(&self) -> GgmlDType;
|
fn dtype(&self) -> GgmlDType;
|
||||||
fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()>;
|
fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()>;
|
||||||
fn dequantize(&self, elem_count: usize) -> Result<CpuStorage>;
|
fn to_float(&self, ys: &mut [f32]) -> Result<()>;
|
||||||
fn storage_size_in_bytes(&self) -> usize;
|
fn storage_size_in_bytes(&self) -> usize;
|
||||||
fn as_ptr(&self) -> *const u8;
|
fn as_ptr(&self) -> *const u8;
|
||||||
fn block_size(&self) -> usize;
|
|
||||||
#[allow(clippy::wrong_self_convention)]
|
|
||||||
fn from_float(&mut self, xs: &[f32]) -> Result<()>;
|
|
||||||
fn size(&self) -> usize;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T: k_quants::GgmlType + Send + Sync> QuantizedType for Vec<T> {
|
impl<T: k_quants::GgmlType + Send + Sync> QuantizedType for Vec<T> {
|
||||||
@ -264,26 +127,12 @@ impl<T: k_quants::GgmlType + Send + Sync> QuantizedType for Vec<T> {
|
|||||||
k_quants::matmul(mkn, lhs, self.as_slice(), dst)
|
k_quants::matmul(mkn, lhs, self.as_slice(), dst)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn size(&self) -> usize {
|
|
||||||
self.len() * core::mem::size_of::<T>()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn from_float(&mut self, xs: &[f32]) -> Result<()> {
|
|
||||||
T::from_float(xs, self)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn dtype(&self) -> GgmlDType {
|
fn dtype(&self) -> GgmlDType {
|
||||||
T::DTYPE
|
T::DTYPE
|
||||||
}
|
}
|
||||||
|
|
||||||
fn block_size(&self) -> usize {
|
fn to_float(&self, ys: &mut [f32]) -> Result<()> {
|
||||||
T::BLCK_SIZE
|
T::to_float(self.as_slice(), ys)
|
||||||
}
|
|
||||||
|
|
||||||
fn dequantize(&self, elem_count: usize) -> Result<CpuStorage> {
|
|
||||||
let mut ys = vec![0.0f32; elem_count];
|
|
||||||
T::to_float(self.as_slice(), &mut ys)?;
|
|
||||||
Ok(CpuStorage::F32(ys))
|
|
||||||
}
|
}
|
||||||
|
|
||||||
fn storage_size_in_bytes(&self) -> usize {
|
fn storage_size_in_bytes(&self) -> usize {
|
||||||
@ -301,53 +150,56 @@ impl std::fmt::Debug for QTensor {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn check_shape(shape: &Shape, block_size: usize) -> Result<()> {
|
fn check_shape<T: k_quants::GgmlType>(shape: &Shape) -> Result<()> {
|
||||||
let dims = shape.dims();
|
let dims = shape.dims();
|
||||||
if dims.is_empty() {
|
if dims.is_empty() {
|
||||||
crate::bail!("scalar tensor cannot be quantized {shape:?}")
|
crate::bail!("scalar tensor cannot be quantized {shape:?}")
|
||||||
}
|
}
|
||||||
if dims[dims.len() - 1] % block_size != 0 {
|
if dims[dims.len() - 1] % T::BLCK_SIZE != 0 {
|
||||||
crate::bail!(
|
crate::bail!(
|
||||||
"quantized tensor must have their last dim divisible by block size {shape:?} {}",
|
"quantized tensor must have their last dim divisible by block size {shape:?} {}",
|
||||||
block_size
|
T::BLCK_SIZE
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
impl QTensor {
|
impl QTensor {
|
||||||
pub fn new<S: Into<Shape>>(storage: QStorage, shape: S) -> Result<Self> {
|
pub fn new<S: Into<Shape>, T: k_quants::GgmlType + Send + Sync + 'static>(
|
||||||
|
data: Vec<T>,
|
||||||
|
shape: S,
|
||||||
|
) -> Result<Self> {
|
||||||
let shape = shape.into();
|
let shape = shape.into();
|
||||||
check_shape(&shape, storage.block_size())?;
|
check_shape::<T>(&shape)?;
|
||||||
Ok(Self { storage, shape })
|
Ok(Self {
|
||||||
|
data: Box::new(data),
|
||||||
|
shape,
|
||||||
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn quantize(src: &Tensor, dtype: GgmlDType) -> Result<Self> {
|
pub fn quantize<T: k_quants::GgmlType + Send + Sync + 'static>(src: &Tensor) -> Result<Self> {
|
||||||
let shape = src.shape();
|
let shape = src.shape();
|
||||||
let block_size = dtype.block_size();
|
check_shape::<T>(shape)?;
|
||||||
check_shape(shape, block_size)?;
|
let src = src
|
||||||
let src = src.to_dtype(crate::DType::F32)?.flatten_all()?;
|
.to_dtype(crate::DType::F32)?
|
||||||
let elem_count = shape.elem_count();
|
.flatten_all()?
|
||||||
if elem_count % block_size != 0 {
|
.to_vec1::<f32>()?;
|
||||||
|
if src.len() % T::BLCK_SIZE != 0 {
|
||||||
crate::bail!(
|
crate::bail!(
|
||||||
"tensor size ({shape:?}) is not divisible by block size {}",
|
"tensor size ({shape:?}) is not divisible by block size {}",
|
||||||
block_size
|
T::BLCK_SIZE
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
let mut storage = src.device().qzeros(elem_count, dtype)?;
|
let mut data = vec![T::zeros(); src.len() / T::BLCK_SIZE];
|
||||||
storage.quantize(&src.storage())?;
|
T::from_float(&src, &mut data)?;
|
||||||
Ok(Self {
|
Ok(Self {
|
||||||
storage,
|
data: Box::new(data),
|
||||||
shape: shape.clone(),
|
shape: shape.clone(),
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn dtype(&self) -> GgmlDType {
|
pub fn dtype(&self) -> GgmlDType {
|
||||||
self.storage.dtype()
|
self.data.dtype()
|
||||||
}
|
|
||||||
|
|
||||||
pub fn device(&self) -> Device {
|
|
||||||
self.storage.device()
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn rank(&self) -> usize {
|
pub fn rank(&self) -> usize {
|
||||||
@ -359,105 +211,38 @@ impl QTensor {
|
|||||||
}
|
}
|
||||||
|
|
||||||
pub fn dequantize(&self, device: &Device) -> Result<Tensor> {
|
pub fn dequantize(&self, device: &Device) -> Result<Tensor> {
|
||||||
let storage = self.storage.dequantize(self.shape.elem_count())?;
|
let mut f32_data = vec![0f32; self.shape.elem_count()];
|
||||||
let none = crate::op::BackpropOp::none();
|
self.data.to_float(&mut f32_data)?;
|
||||||
crate::tensor::from_storage(storage, self.shape.clone(), none, false).to_device(device)
|
Tensor::from_vec(f32_data, &self.shape, device)
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn dequantize_f16(&self, device: &Device) -> Result<Tensor> {
|
pub fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()> {
|
||||||
// In the CUDA case, we have a specialized kernel as this can be useful for volta
|
self.data.matmul_t(mkn, lhs, dst)
|
||||||
// architectures. https://github.com/huggingface/candle/issues/2136
|
|
||||||
match &self.storage {
|
|
||||||
QStorage::Cuda(s) => {
|
|
||||||
let s = s.dequantize_f16(self.shape.elem_count())?;
|
|
||||||
let none = crate::op::BackpropOp::none();
|
|
||||||
crate::tensor::from_storage(Storage::Cuda(s), self.shape.clone(), none, false)
|
|
||||||
.to_device(device)
|
|
||||||
}
|
|
||||||
_ => {
|
|
||||||
let s = self.dequantize(device)?.to_dtype(crate::DType::F16)?;
|
|
||||||
Ok(s)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn storage_size_in_bytes(&self) -> usize {
|
pub fn storage_size_in_bytes(&self) -> usize {
|
||||||
self.storage.size_in_bytes()
|
self.data.storage_size_in_bytes()
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn data(&self) -> Result<Cow<'_, [u8]>> {
|
pub fn as_ptr(&self) -> *const u8 {
|
||||||
self.storage.data()
|
self.data.as_ptr()
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Clone, Debug)]
|
#[derive(Debug)]
|
||||||
pub enum QMatMul {
|
pub struct QMatMul(std::sync::Arc<QTensor>);
|
||||||
QTensor(std::sync::Arc<QTensor>),
|
|
||||||
Tensor(Tensor),
|
|
||||||
TensorF16(Tensor),
|
|
||||||
}
|
|
||||||
|
|
||||||
thread_local! {
|
|
||||||
static DEQUANTIZE_ALL: bool = {
|
|
||||||
match std::env::var("CANDLE_DEQUANTIZE_ALL") {
|
|
||||||
Ok(s) => {
|
|
||||||
!s.is_empty() && s != "0"
|
|
||||||
},
|
|
||||||
Err(_) => false,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
thread_local! {
|
|
||||||
static DEQUANTIZE_ALL_F16: bool = {
|
|
||||||
match std::env::var("CANDLE_DEQUANTIZE_ALL_F16") {
|
|
||||||
Ok(s) => {
|
|
||||||
!s.is_empty() && s != "0"
|
|
||||||
},
|
|
||||||
Err(_) => false,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl QMatMul {
|
impl QMatMul {
|
||||||
pub fn from_arc(qtensor: std::sync::Arc<QTensor>) -> Result<Self> {
|
pub fn from_arc(qtensor: std::sync::Arc<QTensor>) -> Self {
|
||||||
let dequantize = match qtensor.dtype() {
|
Self(qtensor)
|
||||||
GgmlDType::F32 | GgmlDType::F16 => true,
|
|
||||||
_ => DEQUANTIZE_ALL.with(|b| *b),
|
|
||||||
};
|
|
||||||
let t = if dequantize {
|
|
||||||
let tensor = qtensor.dequantize(&qtensor.device())?;
|
|
||||||
Self::Tensor(tensor)
|
|
||||||
} else if DEQUANTIZE_ALL_F16.with(|b| *b) {
|
|
||||||
let tensor = qtensor.dequantize_f16(&qtensor.device())?;
|
|
||||||
Self::TensorF16(tensor)
|
|
||||||
} else {
|
|
||||||
Self::QTensor(qtensor)
|
|
||||||
};
|
|
||||||
Ok(t)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn from_qtensor(qtensor: QTensor) -> Result<Self> {
|
pub fn from_qtensor(qtensor: QTensor) -> Self {
|
||||||
Self::from_arc(std::sync::Arc::new(qtensor))
|
Self(std::sync::Arc::new(qtensor))
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn dequantize_f16(&self) -> Result<Tensor> {
|
pub fn inner(&self) -> &std::sync::Arc<QTensor> {
|
||||||
match self {
|
&self.0
|
||||||
Self::QTensor(t) => t.dequantize_f16(&t.device()),
|
|
||||||
Self::Tensor(t) => t.to_dtype(DType::F16),
|
|
||||||
Self::TensorF16(t) => Ok(t.clone()),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn forward_via_f16(&self, xs: &Tensor) -> Result<Tensor> {
|
|
||||||
let w = self.dequantize_f16()?;
|
|
||||||
let in_dtype = xs.dtype();
|
|
||||||
let w = match *xs.dims() {
|
|
||||||
[b1, b2, _, _] => w.broadcast_left((b1, b2))?.t()?,
|
|
||||||
[bsize, _, _] => w.broadcast_left(bsize)?.t()?,
|
|
||||||
_ => w.t()?,
|
|
||||||
};
|
|
||||||
xs.to_dtype(DType::F16)?.matmul(&w)?.to_dtype(in_dtype)
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -481,70 +266,27 @@ impl crate::CustomOp1 for QTensor {
|
|||||||
crate::bail!("input tensor has only one dimension {layout:?}")
|
crate::bail!("input tensor has only one dimension {layout:?}")
|
||||||
}
|
}
|
||||||
let mut dst_shape = src_shape.dims().to_vec();
|
let mut dst_shape = src_shape.dims().to_vec();
|
||||||
let last_k = dst_shape.pop().context("empty dst_shape")?;
|
let last_k = dst_shape.pop().unwrap();
|
||||||
if last_k != k {
|
if last_k != k {
|
||||||
crate::bail!("input tensor {layout:?} incompatible with {:?}", self.shape)
|
crate::bail!("input tensor {layout:?} incompatible with {:?}", self.shape)
|
||||||
}
|
}
|
||||||
dst_shape.push(n);
|
dst_shape.push(n);
|
||||||
let dst_shape = Shape::from(dst_shape);
|
let dst_shape = Shape::from(dst_shape);
|
||||||
#[allow(clippy::infallible_destructuring_match)]
|
let storage = storage.as_slice::<f32>()?;
|
||||||
let self_storage = match &self.storage {
|
let storage =
|
||||||
QStorage::Cpu(storage) => storage,
|
&storage[layout.start_offset()..layout.start_offset() + src_shape.elem_count()];
|
||||||
QStorage::Metal(_) | QStorage::Cuda(_) => crate::bail!("Invalid storage"),
|
|
||||||
};
|
|
||||||
let slice = storage.as_slice::<f32>()?;
|
|
||||||
let slice = &slice[layout.start_offset()..layout.start_offset() + src_shape.elem_count()];
|
|
||||||
let mut dst_storage = vec![0f32; dst_shape.elem_count()];
|
let mut dst_storage = vec![0f32; dst_shape.elem_count()];
|
||||||
self_storage.matmul_t((dst_shape.elem_count() / n, k, n), slice, &mut dst_storage)?;
|
self.matmul_t(
|
||||||
|
(dst_shape.elem_count() / n, k, n),
|
||||||
|
storage,
|
||||||
|
&mut dst_storage,
|
||||||
|
)?;
|
||||||
Ok((crate::CpuStorage::F32(dst_storage), dst_shape))
|
Ok((crate::CpuStorage::F32(dst_storage), dst_shape))
|
||||||
}
|
}
|
||||||
|
|
||||||
fn metal_fwd(
|
|
||||||
&self,
|
|
||||||
storage: &crate::MetalStorage,
|
|
||||||
layout: &crate::Layout,
|
|
||||||
) -> Result<(crate::MetalStorage, Shape)> {
|
|
||||||
let self_storage = match &self.storage {
|
|
||||||
QStorage::Metal(metal) => metal,
|
|
||||||
_ => unreachable!("Cannot call metal matmul on non metal QTensor"),
|
|
||||||
};
|
|
||||||
self_storage.fwd(&self.shape, storage, layout)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn cuda_fwd(
|
|
||||||
&self,
|
|
||||||
storage: &crate::CudaStorage,
|
|
||||||
layout: &crate::Layout,
|
|
||||||
) -> Result<(crate::CudaStorage, Shape)> {
|
|
||||||
let self_storage = match &self.storage {
|
|
||||||
QStorage::Cuda(cuda) => cuda,
|
|
||||||
_ => unreachable!("Cannot call cuda matmul on non cuda QTensor"),
|
|
||||||
};
|
|
||||||
self_storage.fwd(&self.shape, storage, layout)
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl crate::Module for QMatMul {
|
impl QMatMul {
|
||||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
pub fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||||
match self {
|
xs.apply_op1_no_bwd(self.0.as_ref())
|
||||||
Self::QTensor(t) => xs.apply_op1_no_bwd(t.as_ref()),
|
|
||||||
Self::Tensor(w) => {
|
|
||||||
let w = match *xs.dims() {
|
|
||||||
[b1, b2, _, _] => w.broadcast_left((b1, b2))?.t()?,
|
|
||||||
[bsize, _, _] => w.broadcast_left(bsize)?.t()?,
|
|
||||||
_ => w.t()?,
|
|
||||||
};
|
|
||||||
xs.matmul(&w)
|
|
||||||
}
|
|
||||||
Self::TensorF16(w) => {
|
|
||||||
let in_dtype = xs.dtype();
|
|
||||||
let w = match *xs.dims() {
|
|
||||||
[b1, b2, _, _] => w.broadcast_left((b1, b2))?.t()?,
|
|
||||||
[bsize, _, _] => w.broadcast_left(bsize)?.t()?,
|
|
||||||
_ => w.t()?,
|
|
||||||
};
|
|
||||||
xs.to_dtype(DType::F16)?.matmul(&w)?.to_dtype(in_dtype)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -12,14 +12,6 @@ use core::arch::arm::*;
|
|||||||
#[cfg(target_arch = "aarch64")]
|
#[cfg(target_arch = "aarch64")]
|
||||||
use core::arch::aarch64::*;
|
use core::arch::aarch64::*;
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
unsafe fn vdotq_s32(a: int8x16_t, b: int8x16_t) -> int32x4_t {
|
|
||||||
// TODO: dotprod
|
|
||||||
let p0 = vmull_s8(vget_low_s8(a), vget_low_s8(b));
|
|
||||||
let p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
|
|
||||||
vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1))
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
#[inline(always)]
|
||||||
pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) -> Result<f32> {
|
pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) -> Result<f32> {
|
||||||
let qk = QK8_0;
|
let qk = QK8_0;
|
||||||
@ -27,39 +19,71 @@ pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) ->
|
|||||||
if n % QK8_0 != 0 {
|
if n % QK8_0 != 0 {
|
||||||
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
|
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
|
||||||
}
|
}
|
||||||
|
if nb % 2 != 0 {
|
||||||
|
crate::bail!("vec_dot_q4_0_q8_0: {nb} is not even")
|
||||||
|
}
|
||||||
|
|
||||||
unsafe {
|
unsafe {
|
||||||
let mut sumv0 = vdupq_n_f32(0.0f32);
|
let mut sumv0 = vdupq_n_f32(0.0f32);
|
||||||
for i in 0..nb {
|
let mut sumv1 = vdupq_n_f32(0.0f32);
|
||||||
|
for i in (0..nb).step_by(2) {
|
||||||
let x0 = &xs[i];
|
let x0 = &xs[i];
|
||||||
|
let x1 = &xs[i + 1];
|
||||||
let y0 = &ys[i];
|
let y0 = &ys[i];
|
||||||
|
let y1 = &ys[i + 1];
|
||||||
|
|
||||||
let m4b = vdupq_n_u8(0x0F);
|
let m4b = vdupq_n_u8(0x0F);
|
||||||
let s8b = vdupq_n_s8(0x8);
|
let s8b = vdupq_n_s8(0x8);
|
||||||
|
|
||||||
let v0_0 = vld1q_u8(x0.qs.as_ptr());
|
let v0_0 = vld1q_u8(x0.qs.as_ptr());
|
||||||
|
let v0_1 = vld1q_u8(x1.qs.as_ptr());
|
||||||
|
|
||||||
// 4-bit -> 8-bit
|
// 4-bit -> 8-bit
|
||||||
let v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
|
let v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
|
||||||
let v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
|
let v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
|
||||||
|
let v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
|
||||||
|
let v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
|
||||||
|
|
||||||
// sub 8
|
// sub 8
|
||||||
let v0_0ls = vsubq_s8(v0_0l, s8b);
|
let v0_0ls = vsubq_s8(v0_0l, s8b);
|
||||||
let v0_0hs = vsubq_s8(v0_0h, s8b);
|
let v0_0hs = vsubq_s8(v0_0h, s8b);
|
||||||
|
let v0_1ls = vsubq_s8(v0_1l, s8b);
|
||||||
|
let v0_1hs = vsubq_s8(v0_1h, s8b);
|
||||||
|
|
||||||
// load y
|
// load y
|
||||||
let v1_0l = vld1q_s8(y0.qs.as_ptr());
|
let v1_0l = vld1q_s8(y0.qs.as_ptr());
|
||||||
let v1_0h = vld1q_s8(y0.qs.as_ptr().add(16));
|
let v1_0h = vld1q_s8(y0.qs.as_ptr().add(16));
|
||||||
|
let v1_1l = vld1q_s8(y1.qs.as_ptr());
|
||||||
|
let v1_1h = vld1q_s8(y1.qs.as_ptr().add(16));
|
||||||
|
|
||||||
|
// TODO: Support dotprod when it's available outside of nightly.
|
||||||
|
let pl0l = vmull_s8(vget_low_s8(v0_0ls), vget_low_s8(v1_0l));
|
||||||
|
let pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
|
||||||
|
let ph0l = vmull_s8(vget_low_s8(v0_0hs), vget_low_s8(v1_0h));
|
||||||
|
let ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
|
||||||
|
|
||||||
|
let pl1l = vmull_s8(vget_low_s8(v0_1ls), vget_low_s8(v1_1l));
|
||||||
|
let pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
|
||||||
|
let ph1l = vmull_s8(vget_low_s8(v0_1hs), vget_low_s8(v1_1h));
|
||||||
|
let ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
|
||||||
|
|
||||||
|
let pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
|
||||||
|
let ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
|
||||||
|
let pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
|
||||||
|
let ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
|
||||||
|
|
||||||
let pl0 = vdotq_s32(v0_0ls, v1_0l);
|
|
||||||
let ph0 = vdotq_s32(v0_0hs, v1_0h);
|
|
||||||
sumv0 = vmlaq_n_f32(
|
sumv0 = vmlaq_n_f32(
|
||||||
sumv0,
|
sumv0,
|
||||||
vcvtq_f32_s32(vaddq_s32(pl0, ph0)),
|
vcvtq_f32_s32(vaddq_s32(pl0, ph0)),
|
||||||
x0.d.to_f32() * y0.d.to_f32(),
|
x0.d.to_f32() * y0.d.to_f32(),
|
||||||
);
|
);
|
||||||
|
sumv1 = vmlaq_n_f32(
|
||||||
|
sumv1,
|
||||||
|
vcvtq_f32_s32(vaddq_s32(pl1, ph1)),
|
||||||
|
x1.d.to_f32() * y1.d.to_f32(),
|
||||||
|
);
|
||||||
}
|
}
|
||||||
Ok(vaddvq_f32(sumv0))
|
Ok(vaddvq_f32(sumv0) + vaddvq_f32(sumv1))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -70,58 +94,60 @@ pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) ->
|
|||||||
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
|
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
|
||||||
}
|
}
|
||||||
let nb = n / QK8_0;
|
let nb = n / QK8_0;
|
||||||
|
if nb % 2 != 0 {
|
||||||
|
crate::bail!("vec_dot_q8_0_q8_0: {nb} is not even")
|
||||||
|
}
|
||||||
unsafe {
|
unsafe {
|
||||||
let mut sumv0 = vdupq_n_f32(0.0f32);
|
let mut sumv0 = vdupq_n_f32(0.0f32);
|
||||||
for i in 0..nb {
|
let mut sumv1 = vdupq_n_f32(0.0f32);
|
||||||
|
for i in (0..nb).step_by(2) {
|
||||||
let x0 = &xs[i];
|
let x0 = &xs[i];
|
||||||
|
let x1 = &xs[i + 1];
|
||||||
let y0 = &ys[i];
|
let y0 = &ys[i];
|
||||||
|
let y1 = &ys[i + 1];
|
||||||
|
|
||||||
let x0_0 = vld1q_s8(x0.qs.as_ptr());
|
let x0_0 = vld1q_s8(x0.qs.as_ptr());
|
||||||
let x0_1 = vld1q_s8(x0.qs.as_ptr().add(16));
|
let x0_1 = vld1q_s8(x0.qs.as_ptr().add(16));
|
||||||
|
let x1_0 = vld1q_s8(x1.qs.as_ptr());
|
||||||
|
let x1_1 = vld1q_s8(x1.qs.as_ptr().add(16));
|
||||||
|
|
||||||
// load y
|
// load y
|
||||||
let y0_0 = vld1q_s8(y0.qs.as_ptr());
|
let y0_0 = vld1q_s8(y0.qs.as_ptr());
|
||||||
let y0_1 = vld1q_s8(y0.qs.as_ptr().add(16));
|
let y0_1 = vld1q_s8(y0.qs.as_ptr().add(16));
|
||||||
|
let y1_0 = vld1q_s8(y1.qs.as_ptr());
|
||||||
|
let y1_1 = vld1q_s8(y1.qs.as_ptr().add(16));
|
||||||
|
|
||||||
let p0 = vdotq_s32(x0_0, y0_0);
|
// TODO dotprod once this is the intrinsics are.
|
||||||
let p1 = vdotq_s32(x0_1, y0_1);
|
let p0_0 = vmull_s8(vget_low_s8(x0_0), vget_low_s8(y0_0));
|
||||||
|
let p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
|
||||||
|
let p0_2 = vmull_s8(vget_low_s8(x0_1), vget_low_s8(y0_1));
|
||||||
|
let p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
|
||||||
|
|
||||||
|
let p1_0 = vmull_s8(vget_low_s8(x1_0), vget_low_s8(y1_0));
|
||||||
|
let p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
|
||||||
|
let p1_2 = vmull_s8(vget_low_s8(x1_1), vget_low_s8(y1_1));
|
||||||
|
let p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
|
||||||
|
|
||||||
|
let p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
|
||||||
|
let p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
|
||||||
|
let p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
|
||||||
|
let p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
|
||||||
|
|
||||||
sumv0 = vmlaq_n_f32(
|
sumv0 = vmlaq_n_f32(
|
||||||
sumv0,
|
sumv0,
|
||||||
vcvtq_f32_s32(vaddq_s32(p0, p1)),
|
vcvtq_f32_s32(vaddq_s32(p0, p1)),
|
||||||
x0.d.to_f32() * y0.d.to_f32(),
|
x0.d.to_f32() * y0.d.to_f32(),
|
||||||
);
|
);
|
||||||
|
sumv1 = vmlaq_n_f32(
|
||||||
|
sumv1,
|
||||||
|
vcvtq_f32_s32(vaddq_s32(p2, p3)),
|
||||||
|
x1.d.to_f32() * y1.d.to_f32(),
|
||||||
|
);
|
||||||
}
|
}
|
||||||
Ok(vaddvq_f32(sumv0))
|
Ok(vaddvq_f32(sumv0) + vaddvq_f32(sumv1))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
pub(crate) fn vec_dot_q8k_q8k(n: usize, xs: &[BlockQ8K], ys: &[BlockQ8K]) -> Result<f32> {
|
|
||||||
let qk = QK_K;
|
|
||||||
if n % QK_K != 0 {
|
|
||||||
crate::bail!("vec_dot_q8k_q8k: {n} is not divisible by {qk}")
|
|
||||||
}
|
|
||||||
|
|
||||||
let mut sumf = 0f32;
|
|
||||||
for (xs, ys) in xs.iter().zip(ys.iter()) {
|
|
||||||
unsafe {
|
|
||||||
let mut sum_i = vdupq_n_s32(0);
|
|
||||||
let scale = xs.d * ys.d;
|
|
||||||
let xs = xs.qs.as_ptr();
|
|
||||||
let ys = ys.qs.as_ptr();
|
|
||||||
for i in (0..QK_K).step_by(16) {
|
|
||||||
let xs = vld1q_s8(xs.add(i));
|
|
||||||
let ys = vld1q_s8(ys.add(i));
|
|
||||||
let xy = vdotq_s32(xs, ys);
|
|
||||||
sum_i = vaddq_s32(sum_i, xy)
|
|
||||||
}
|
|
||||||
sumf += vaddvq_s32(sum_i) as f32 * scale
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Ok(sumf)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
#[inline(always)]
|
||||||
pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Result<f32> {
|
pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Result<f32> {
|
||||||
if n % QK_K != 0 {
|
if n % QK_K != 0 {
|
||||||
@ -183,16 +209,30 @@ pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Res
|
|||||||
let q6bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.2, m4b), q6h_2));
|
let q6bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.2, m4b), q6h_2));
|
||||||
let q6bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.3, m4b), q6h_3));
|
let q6bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.3, m4b), q6h_3));
|
||||||
|
|
||||||
let p0 = vdotq_s32(q6bytes_0, q8bytes.0);
|
// TODO: dotprod
|
||||||
let p1 = vdotq_s32(q6bytes_1, q8bytes.1);
|
|
||||||
|
let p0 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q6bytes_0), vget_low_s8(q8bytes.0)),
|
||||||
|
vmull_s8(vget_high_s8(q6bytes_0), vget_high_s8(q8bytes.0)),
|
||||||
|
);
|
||||||
|
let p1 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q6bytes_1), vget_low_s8(q8bytes.1)),
|
||||||
|
vmull_s8(vget_high_s8(q6bytes_1), vget_high_s8(q8bytes.1)),
|
||||||
|
);
|
||||||
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
|
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
|
||||||
isum += vaddvq_s32(p0) * scale0 + vaddvq_s32(p1) * scale1;
|
isum += vaddvq_s16(p0) as i32 * scale0 + vaddvq_s16(p1) as i32 * scale1;
|
||||||
scale = scale.add(2);
|
scale = scale.add(2);
|
||||||
|
|
||||||
let p2 = vdotq_s32(q6bytes_2, q8bytes.2);
|
let p2 = vaddq_s16(
|
||||||
let p3 = vdotq_s32(q6bytes_3, q8bytes.3);
|
vmull_s8(vget_low_s8(q6bytes_2), vget_low_s8(q8bytes.2)),
|
||||||
|
vmull_s8(vget_high_s8(q6bytes_2), vget_high_s8(q8bytes.2)),
|
||||||
|
);
|
||||||
|
let p3 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q6bytes_3), vget_low_s8(q8bytes.3)),
|
||||||
|
vmull_s8(vget_high_s8(q6bytes_3), vget_high_s8(q8bytes.3)),
|
||||||
|
);
|
||||||
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
|
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
|
||||||
isum += vaddvq_s32(p2) * scale0 + vaddvq_s32(p3) * scale1;
|
isum += vaddvq_s16(p2) as i32 * scale0 + vaddvq_s16(p3) as i32 * scale1;
|
||||||
scale = scale.add(2);
|
scale = scale.add(2);
|
||||||
|
|
||||||
let q8bytes = vld1q_s8_x4(q8);
|
let q8bytes = vld1q_s8_x4(q8);
|
||||||
@ -212,16 +252,29 @@ pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Res
|
|||||||
let q6bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.2, 4), q6h_2));
|
let q6bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.2, 4), q6h_2));
|
||||||
let q6bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.3, 4), q6h_3));
|
let q6bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.3, 4), q6h_3));
|
||||||
|
|
||||||
let p0 = vdotq_s32(q6bytes_0, q8bytes.0);
|
// TODO: dotprod case.
|
||||||
let p1 = vdotq_s32(q6bytes_1, q8bytes.1);
|
let p0 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q6bytes_0), vget_low_s8(q8bytes.0)),
|
||||||
|
vmull_s8(vget_high_s8(q6bytes_0), vget_high_s8(q8bytes.0)),
|
||||||
|
);
|
||||||
|
let p1 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q6bytes_1), vget_low_s8(q8bytes.1)),
|
||||||
|
vmull_s8(vget_high_s8(q6bytes_1), vget_high_s8(q8bytes.1)),
|
||||||
|
);
|
||||||
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
|
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
|
||||||
isum += vaddvq_s32(p0) * scale0 + vaddvq_s32(p1) * scale1;
|
isum += vaddvq_s16(p0) as i32 * scale0 + vaddvq_s16(p1) as i32 * scale1;
|
||||||
scale = scale.add(2);
|
scale = scale.add(2);
|
||||||
|
|
||||||
let p2 = vdotq_s32(q6bytes_2, q8bytes.2);
|
let p2 = vaddq_s16(
|
||||||
let p3 = vdotq_s32(q6bytes_3, q8bytes.3);
|
vmull_s8(vget_low_s8(q6bytes_2), vget_low_s8(q8bytes.2)),
|
||||||
|
vmull_s8(vget_high_s8(q6bytes_2), vget_high_s8(q8bytes.2)),
|
||||||
|
);
|
||||||
|
let p3 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q6bytes_3), vget_low_s8(q8bytes.3)),
|
||||||
|
vmull_s8(vget_high_s8(q6bytes_3), vget_high_s8(q8bytes.3)),
|
||||||
|
);
|
||||||
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
|
let (scale0, scale1) = (*scale as i32, *scale.add(1) as i32);
|
||||||
isum += vaddvq_s32(p2) * scale0 + vaddvq_s32(p3) * scale1;
|
isum += vaddvq_s16(p2) as i32 * scale0 + vaddvq_s16(p3) as i32 * scale1;
|
||||||
scale = scale.add(2);
|
scale = scale.add(2);
|
||||||
}
|
}
|
||||||
sum += d_all * y.d * ((isum - 32 * isum_mins) as f32);
|
sum += d_all * y.d * ((isum - 32 * isum_mins) as f32);
|
||||||
@ -298,14 +351,28 @@ pub(crate) fn vec_dot_q5k_q8k(n: usize, xs: &[BlockQ5K], ys: &[BlockQ8K]) -> Res
|
|||||||
let q5bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.0, 4), q5h_2));
|
let q5bytes_2 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.0, 4), q5h_2));
|
||||||
let q5bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.1, 4), q5h_3));
|
let q5bytes_3 = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.1, 4), q5h_3));
|
||||||
|
|
||||||
let p0 = vdotq_s32(q5bytes_0, q8bytes.0);
|
// TODO: dotprod
|
||||||
let p1 = vdotq_s32(q5bytes_1, q8bytes.1);
|
|
||||||
sumi += vaddvq_s32(vaddq_s32(p0, p1)) * *scales as i32;
|
let p0 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q5bytes_0), vget_low_s8(q8bytes.0)),
|
||||||
|
vmull_s8(vget_high_s8(q5bytes_0), vget_high_s8(q8bytes.0)),
|
||||||
|
);
|
||||||
|
let p1 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q5bytes_1), vget_low_s8(q8bytes.1)),
|
||||||
|
vmull_s8(vget_high_s8(q5bytes_1), vget_high_s8(q8bytes.1)),
|
||||||
|
);
|
||||||
|
sumi += vaddvq_s16(vaddq_s16(p0, p1)) as i32 * *scales as i32;
|
||||||
scales = scales.add(1);
|
scales = scales.add(1);
|
||||||
|
|
||||||
let p2 = vdotq_s32(q5bytes_2, q8bytes.2);
|
let p2 = vaddq_s16(
|
||||||
let p3 = vdotq_s32(q5bytes_3, q8bytes.3);
|
vmull_s8(vget_low_s8(q5bytes_2), vget_low_s8(q8bytes.2)),
|
||||||
sumi += vaddvq_s32(vaddq_s32(p2, p3)) * *scales as i32;
|
vmull_s8(vget_high_s8(q5bytes_2), vget_high_s8(q8bytes.2)),
|
||||||
|
);
|
||||||
|
let p3 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q5bytes_3), vget_low_s8(q8bytes.3)),
|
||||||
|
vmull_s8(vget_high_s8(q5bytes_3), vget_high_s8(q8bytes.3)),
|
||||||
|
);
|
||||||
|
sumi += vaddvq_s16(vaddq_s16(p2, p3)) as i32 * *scales as i32;
|
||||||
scales = scales.add(1);
|
scales = scales.add(1);
|
||||||
}
|
}
|
||||||
sumf += d * sumi as f32 - dmin * sumi_mins as f32;
|
sumf += d * sumi as f32 - dmin * sumi_mins as f32;
|
||||||
@ -368,15 +435,22 @@ pub(crate) fn vec_dot_q4k_q8k(n: usize, xs: &[BlockQ4K], ys: &[BlockQ8K]) -> Res
|
|||||||
for j in 0..QK_K / 64 {
|
for j in 0..QK_K / 64 {
|
||||||
let q4bits = vld1q_u8_x2(q4);
|
let q4bits = vld1q_u8_x2(q4);
|
||||||
q4 = q4.add(32);
|
q4 = q4.add(32);
|
||||||
|
// TODO: dotprod
|
||||||
let q8bytes = vld1q_s8_x2(q8);
|
let q8bytes = vld1q_s8_x2(q8);
|
||||||
q8 = q8.add(32);
|
q8 = q8.add(32);
|
||||||
let q4bytes = int8x16x2_t(
|
let q4bytes = int8x16x2_t(
|
||||||
vreinterpretq_s8_u8(vandq_u8(q4bits.0, m4b)),
|
vreinterpretq_s8_u8(vandq_u8(q4bits.0, m4b)),
|
||||||
vreinterpretq_s8_u8(vandq_u8(q4bits.1, m4b)),
|
vreinterpretq_s8_u8(vandq_u8(q4bits.1, m4b)),
|
||||||
);
|
);
|
||||||
let p0 = vdotq_s32(q4bytes.0, q8bytes.0);
|
let p0 = vaddq_s16(
|
||||||
let p1 = vdotq_s32(q4bytes.1, q8bytes.1);
|
vmull_s8(vget_low_s8(q4bytes.0), vget_low_s8(q8bytes.0)),
|
||||||
sumi1 += vaddvq_s32(vaddq_s32(p0, p1)) * scales[2 * j] as i32;
|
vmull_s8(vget_high_s8(q4bytes.0), vget_high_s8(q8bytes.0)),
|
||||||
|
);
|
||||||
|
let p1 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q4bytes.1), vget_low_s8(q8bytes.1)),
|
||||||
|
vmull_s8(vget_high_s8(q4bytes.1), vget_high_s8(q8bytes.1)),
|
||||||
|
);
|
||||||
|
sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) as i32 * scales[2 * j] as i32;
|
||||||
|
|
||||||
let q8bytes = vld1q_s8_x2(q8);
|
let q8bytes = vld1q_s8_x2(q8);
|
||||||
q8 = q8.add(32);
|
q8 = q8.add(32);
|
||||||
@ -384,9 +458,15 @@ pub(crate) fn vec_dot_q4k_q8k(n: usize, xs: &[BlockQ4K], ys: &[BlockQ8K]) -> Res
|
|||||||
vreinterpretq_s8_u8(vshrq_n_u8(q4bits.0, 4)),
|
vreinterpretq_s8_u8(vshrq_n_u8(q4bits.0, 4)),
|
||||||
vreinterpretq_s8_u8(vshrq_n_u8(q4bits.1, 4)),
|
vreinterpretq_s8_u8(vshrq_n_u8(q4bits.1, 4)),
|
||||||
);
|
);
|
||||||
let p2 = vdotq_s32(q4bytes.0, q8bytes.0);
|
let p2 = vaddq_s16(
|
||||||
let p3 = vdotq_s32(q4bytes.1, q8bytes.1);
|
vmull_s8(vget_low_s8(q4bytes.0), vget_low_s8(q8bytes.0)),
|
||||||
sumi2 += vaddvq_s32(vaddq_s32(p2, p3)) * scales[2 * j + 1] as i32;
|
vmull_s8(vget_high_s8(q4bytes.0), vget_high_s8(q8bytes.0)),
|
||||||
|
);
|
||||||
|
let p3 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q4bytes.1), vget_low_s8(q8bytes.1)),
|
||||||
|
vmull_s8(vget_high_s8(q4bytes.1), vget_high_s8(q8bytes.1)),
|
||||||
|
);
|
||||||
|
sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) as i32 * scales[2 * j + 1] as i32;
|
||||||
}
|
}
|
||||||
sumf += d * (sumi1 + sumi2) as f32;
|
sumf += d * (sumi1 + sumi2) as f32;
|
||||||
}
|
}
|
||||||
@ -464,14 +544,27 @@ pub(crate) fn vec_dot_q3k_q8k(n: usize, xs: &[BlockQ3K], ys: &[BlockQ8K]) -> Res
|
|||||||
vreinterpretq_s8_u8(q3h_3),
|
vreinterpretq_s8_u8(q3h_3),
|
||||||
);
|
);
|
||||||
|
|
||||||
let p0 = vdotq_s32(q3bytes_0, q8bytes_1.0);
|
// TODO: dotprod
|
||||||
let p1 = vdotq_s32(q3bytes_1, q8bytes_1.1);
|
let p0 = vaddq_s16(
|
||||||
let p2 = vdotq_s32(q3bytes_2, q8bytes_1.2);
|
vmull_s8(vget_low_s8(q3bytes_0), vget_low_s8(q8bytes_1.0)),
|
||||||
let p3 = vdotq_s32(q3bytes_3, q8bytes_1.3);
|
vmull_s8(vget_high_s8(q3bytes_0), vget_high_s8(q8bytes_1.0)),
|
||||||
isum += vaddvq_s32(p0) * *scale as i32
|
);
|
||||||
+ vaddvq_s32(p1) * *scale.add(1) as i32
|
let p1 = vaddq_s16(
|
||||||
+ vaddvq_s32(p2) * *scale.add(2) as i32
|
vmull_s8(vget_low_s8(q3bytes_1), vget_low_s8(q8bytes_1.1)),
|
||||||
+ vaddvq_s32(p3) * *scale.add(3) as i32;
|
vmull_s8(vget_high_s8(q3bytes_1), vget_high_s8(q8bytes_1.1)),
|
||||||
|
);
|
||||||
|
let p2 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q3bytes_2), vget_low_s8(q8bytes_1.2)),
|
||||||
|
vmull_s8(vget_high_s8(q3bytes_2), vget_high_s8(q8bytes_1.2)),
|
||||||
|
);
|
||||||
|
let p3 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q3bytes_3), vget_low_s8(q8bytes_1.3)),
|
||||||
|
vmull_s8(vget_high_s8(q3bytes_3), vget_high_s8(q8bytes_1.3)),
|
||||||
|
);
|
||||||
|
isum += vaddvq_s16(p0) as i32 * *scale as i32
|
||||||
|
+ vaddvq_s16(p1) as i32 * *scale.add(1) as i32
|
||||||
|
+ vaddvq_s16(p2) as i32 * *scale.add(2) as i32
|
||||||
|
+ vaddvq_s16(p3) as i32 * *scale.add(3) as i32;
|
||||||
scale = scale.add(4);
|
scale = scale.add(4);
|
||||||
|
|
||||||
let q3h_0 = vbicq_u8(m2, qhbits.0);
|
let q3h_0 = vbicq_u8(m2, qhbits.0);
|
||||||
@ -496,14 +589,27 @@ pub(crate) fn vec_dot_q3k_q8k(n: usize, xs: &[BlockQ3K], ys: &[BlockQ8K]) -> Res
|
|||||||
vreinterpretq_s8_u8(q3h_3),
|
vreinterpretq_s8_u8(q3h_3),
|
||||||
);
|
);
|
||||||
|
|
||||||
let p0 = vdotq_s32(q3bytes_0, q8bytes_2.0);
|
// TODO: dotprod
|
||||||
let p1 = vdotq_s32(q3bytes_1, q8bytes_2.1);
|
let p0 = vaddq_s16(
|
||||||
let p2 = vdotq_s32(q3bytes_2, q8bytes_2.2);
|
vmull_s8(vget_low_s8(q3bytes_0), vget_low_s8(q8bytes_2.0)),
|
||||||
let p3 = vdotq_s32(q3bytes_3, q8bytes_2.3);
|
vmull_s8(vget_high_s8(q3bytes_0), vget_high_s8(q8bytes_2.0)),
|
||||||
isum += vaddvq_s32(p0) * *scale as i32
|
);
|
||||||
+ vaddvq_s32(p1) * *scale.add(1) as i32
|
let p1 = vaddq_s16(
|
||||||
+ vaddvq_s32(p2) * *scale.add(2) as i32
|
vmull_s8(vget_low_s8(q3bytes_1), vget_low_s8(q8bytes_2.1)),
|
||||||
+ vaddvq_s32(p3) * *scale.add(3) as i32;
|
vmull_s8(vget_high_s8(q3bytes_1), vget_high_s8(q8bytes_2.1)),
|
||||||
|
);
|
||||||
|
let p2 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q3bytes_2), vget_low_s8(q8bytes_2.2)),
|
||||||
|
vmull_s8(vget_high_s8(q3bytes_2), vget_high_s8(q8bytes_2.2)),
|
||||||
|
);
|
||||||
|
let p3 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q3bytes_3), vget_low_s8(q8bytes_2.3)),
|
||||||
|
vmull_s8(vget_high_s8(q3bytes_3), vget_high_s8(q8bytes_2.3)),
|
||||||
|
);
|
||||||
|
isum += vaddvq_s16(p0) as i32 * *scale as i32
|
||||||
|
+ vaddvq_s16(p1) as i32 * *scale.add(1) as i32
|
||||||
|
+ vaddvq_s16(p2) as i32 * *scale.add(2) as i32
|
||||||
|
+ vaddvq_s16(p3) as i32 * *scale.add(3) as i32;
|
||||||
scale = scale.add(4);
|
scale = scale.add(4);
|
||||||
|
|
||||||
if j == 0 {
|
if j == 0 {
|
||||||
@ -561,6 +667,7 @@ pub(crate) fn vec_dot_q2k_q8k(n: usize, xs: &[BlockQ2K], ys: &[BlockQ8K]) -> Res
|
|||||||
let mut is = 0usize;
|
let mut is = 0usize;
|
||||||
|
|
||||||
// TODO: dotprod
|
// TODO: dotprod
|
||||||
|
|
||||||
for _j in 0..QK_K / 128 {
|
for _j in 0..QK_K / 128 {
|
||||||
let q2bits = vld1q_u8_x2(q2);
|
let q2bits = vld1q_u8_x2(q2);
|
||||||
q2 = q2.add(32);
|
q2 = q2.add(32);
|
||||||
@ -607,7 +714,14 @@ unsafe fn multiply_accum_with_scale(
|
|||||||
q2bytes: int8x16x2_t,
|
q2bytes: int8x16x2_t,
|
||||||
q8bytes: int8x16x2_t,
|
q8bytes: int8x16x2_t,
|
||||||
) -> i32 {
|
) -> i32 {
|
||||||
let p1 = vdotq_s32(q2bytes.0, q8bytes.0);
|
let p1 = vaddq_s16(
|
||||||
let p2 = vdotq_s32(q2bytes.1, q8bytes.1);
|
vmull_s8(vget_low_s8(q2bytes.0), vget_low_s8(q8bytes.0)),
|
||||||
vaddvq_s32(p1) * aux[is + index] as i32 + vaddvq_s32(p2) * aux[is + 1 + index] as i32
|
vmull_s8(vget_high_s8(q2bytes.0), vget_high_s8(q8bytes.0)),
|
||||||
|
);
|
||||||
|
let p2 = vaddq_s16(
|
||||||
|
vmull_s8(vget_low_s8(q2bytes.1), vget_low_s8(q8bytes.1)),
|
||||||
|
vmull_s8(vget_high_s8(q2bytes.1), vget_high_s8(q8bytes.1)),
|
||||||
|
);
|
||||||
|
vaddvq_s16(p1) as i32 * aux[is + index] as i32
|
||||||
|
+ vaddvq_s16(p2) as i32 * aux[is + 1 + index] as i32
|
||||||
}
|
}
|
||||||
|
@ -1,419 +0,0 @@
|
|||||||
use super::k_quants::{BlockQ2K, BlockQ4K, BlockQ4_0, BlockQ6K, BlockQ8K, BlockQ8_0, QK8_0, QK_K};
|
|
||||||
use crate::Result;
|
|
||||||
use byteorder::{ByteOrder, LittleEndian};
|
|
||||||
use half::f16;
|
|
||||||
|
|
||||||
use core::arch::wasm32::*;
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) -> Result<f32> {
|
|
||||||
let qk = QK8_0;
|
|
||||||
if n % QK8_0 != 0 {
|
|
||||||
crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
|
|
||||||
}
|
|
||||||
unsafe {
|
|
||||||
let mut acc = f32x4_splat(0.0f32);
|
|
||||||
for (x, y) in xs.iter().zip(ys.iter()) {
|
|
||||||
let x1234 = v128_load(x.qs.as_ptr() as *const v128);
|
|
||||||
let x12 = v128_and(x1234, u8x16_splat(0x0F));
|
|
||||||
let x12 = i8x16_sub(x12, i8x16_splat(8));
|
|
||||||
let x34 = u8x16_shr(x1234, 4);
|
|
||||||
let x34 = i8x16_sub(x34, i8x16_splat(8));
|
|
||||||
|
|
||||||
let x1 = i16x8_extend_low_i8x16(x12);
|
|
||||||
let y1 = i16x8_load_extend_i8x8(y.qs.as_ptr());
|
|
||||||
let sum_xy = i32x4_dot_i16x8(x1, y1);
|
|
||||||
|
|
||||||
let x2 = i16x8_extend_high_i8x16(x12);
|
|
||||||
let y2 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(8));
|
|
||||||
let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x2, y2));
|
|
||||||
|
|
||||||
let x3 = i16x8_extend_low_i8x16(x34);
|
|
||||||
let y3 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(16));
|
|
||||||
let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x3, y3));
|
|
||||||
|
|
||||||
let x4 = i16x8_extend_high_i8x16(x34);
|
|
||||||
let y4 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(24));
|
|
||||||
let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x4, y4));
|
|
||||||
|
|
||||||
let sum_xy = f32x4_convert_i32x4(sum_xy);
|
|
||||||
|
|
||||||
// f32x4_relaxed_madd is nightly only.
|
|
||||||
let d = f32x4_splat(f16::to_f32(x.d) * f16::to_f32(y.d));
|
|
||||||
let scaled = f32x4_mul(sum_xy, d);
|
|
||||||
acc = f32x4_add(acc, scaled)
|
|
||||||
}
|
|
||||||
let res = f32x4_extract_lane::<0>(acc)
|
|
||||||
+ f32x4_extract_lane::<1>(acc)
|
|
||||||
+ f32x4_extract_lane::<2>(acc)
|
|
||||||
+ f32x4_extract_lane::<3>(acc);
|
|
||||||
Ok(res)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) -> Result<f32> {
|
|
||||||
let qk = QK8_0;
|
|
||||||
if n % QK8_0 != 0 {
|
|
||||||
crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
|
|
||||||
}
|
|
||||||
unsafe {
|
|
||||||
let mut acc = f32x4_splat(0.0f32);
|
|
||||||
for (x, y) in xs.iter().zip(ys.iter()) {
|
|
||||||
let x1 = i16x8_load_extend_i8x8(x.qs.as_ptr());
|
|
||||||
let y1 = i16x8_load_extend_i8x8(y.qs.as_ptr());
|
|
||||||
let sum_xy = i32x4_dot_i16x8(x1, y1);
|
|
||||||
|
|
||||||
let x2 = i16x8_load_extend_i8x8(x.qs.as_ptr().add(8));
|
|
||||||
let y2 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(8));
|
|
||||||
let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x2, y2));
|
|
||||||
|
|
||||||
let x3 = i16x8_load_extend_i8x8(x.qs.as_ptr().add(16));
|
|
||||||
let y3 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(16));
|
|
||||||
let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x3, y3));
|
|
||||||
|
|
||||||
let x4 = i16x8_load_extend_i8x8(x.qs.as_ptr().add(24));
|
|
||||||
let y4 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(24));
|
|
||||||
let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x4, y4));
|
|
||||||
|
|
||||||
let sum_xy = f32x4_convert_i32x4(sum_xy);
|
|
||||||
|
|
||||||
// f32x4_relaxed_madd is nightly only.
|
|
||||||
let d = f32x4_splat(f16::to_f32(x.d) * f16::to_f32(y.d));
|
|
||||||
let scaled = f32x4_mul(sum_xy, d);
|
|
||||||
acc = f32x4_add(acc, scaled)
|
|
||||||
}
|
|
||||||
let res = f32x4_extract_lane::<0>(acc)
|
|
||||||
+ f32x4_extract_lane::<1>(acc)
|
|
||||||
+ f32x4_extract_lane::<2>(acc)
|
|
||||||
+ f32x4_extract_lane::<3>(acc);
|
|
||||||
Ok(res)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
pub(crate) fn vec_dot_q2k_q8k(n: usize, xs: &[BlockQ2K], ys: &[BlockQ8K]) -> Result<f32> {
|
|
||||||
if n % QK_K != 0 {
|
|
||||||
crate::bail!("vec_dot_q2k_q8k: {n} is not divisible by {QK_K}")
|
|
||||||
}
|
|
||||||
unsafe {
|
|
||||||
let mut sumf = f32x4_splat(0f32);
|
|
||||||
for (x, y) in xs.iter().zip(ys.iter()) {
|
|
||||||
let mut q2: &[_] = &x.qs;
|
|
||||||
let mut q8: &[_] = &y.qs;
|
|
||||||
let sc = &x.scales;
|
|
||||||
|
|
||||||
let mut summs = i32x4_splat(0);
|
|
||||||
for i in (0..(QK_K / 16)).step_by(4) {
|
|
||||||
let bsums = i32x4_load_extend_i16x4(y.bsums.as_ptr().add(i));
|
|
||||||
let scales = i32x4_shr(
|
|
||||||
i32x4(
|
|
||||||
sc[i] as i32,
|
|
||||||
sc[i + 1] as i32,
|
|
||||||
sc[i + 2] as i32,
|
|
||||||
sc[i + 3] as i32,
|
|
||||||
),
|
|
||||||
4,
|
|
||||||
);
|
|
||||||
summs = i32x4_add(summs, i32x4_mul(bsums, scales))
|
|
||||||
}
|
|
||||||
let summs = f32x4_convert_i32x4(summs);
|
|
||||||
|
|
||||||
let dall = y.d * x.d.to_f32();
|
|
||||||
let dmin = y.d * x.dmin.to_f32();
|
|
||||||
|
|
||||||
let mut isum = i32x4_splat(0);
|
|
||||||
let mut is = 0;
|
|
||||||
for _ in 0..(QK_K / 128) {
|
|
||||||
let mut shift = 0;
|
|
||||||
for _ in 0..4 {
|
|
||||||
let d = (sc[is] & 0xF) as i32;
|
|
||||||
is += 1;
|
|
||||||
let mut isuml = i16x8_splat(0);
|
|
||||||
for l in (0..16).step_by(8) {
|
|
||||||
let q8 = i16x8_load_extend_i8x8(q8.as_ptr().add(l));
|
|
||||||
let q2 = i16x8_load_extend_u8x8(q2.as_ptr().add(l));
|
|
||||||
let q2 = v128_and(i16x8_shr(q2, shift), i16x8_splat(3));
|
|
||||||
isuml = i16x8_add(isuml, i16x8_mul(q2, q8))
|
|
||||||
}
|
|
||||||
let dd = i32x4_splat(d);
|
|
||||||
isum = i32x4_add(isum, i32x4_mul(i32x4_extend_low_i16x8(isuml), dd));
|
|
||||||
isum = i32x4_add(isum, i32x4_mul(i32x4_extend_high_i16x8(isuml), dd));
|
|
||||||
let d = (sc[is] & 0xF) as i32;
|
|
||||||
is += 1;
|
|
||||||
let mut isuml = i16x8_splat(0);
|
|
||||||
for l in (16..32).step_by(8) {
|
|
||||||
let q8 = i16x8_load_extend_i8x8(q8.as_ptr().add(l));
|
|
||||||
let q2 = i16x8_load_extend_u8x8(q2.as_ptr().add(l));
|
|
||||||
let q2 = v128_and(i16x8_shr(q2, shift), i16x8_splat(3));
|
|
||||||
isuml = i16x8_add(isuml, i16x8_mul(q2, q8))
|
|
||||||
}
|
|
||||||
let dd = i32x4_splat(d);
|
|
||||||
isum = i32x4_add(isum, i32x4_mul(i32x4_extend_low_i16x8(isuml), dd));
|
|
||||||
isum = i32x4_add(isum, i32x4_mul(i32x4_extend_high_i16x8(isuml), dd));
|
|
||||||
shift += 2;
|
|
||||||
// adjust the indexing
|
|
||||||
q8 = &q8[32..];
|
|
||||||
}
|
|
||||||
// adjust the indexing
|
|
||||||
q2 = &q2[32..];
|
|
||||||
}
|
|
||||||
let isum = f32x4_convert_i32x4(isum);
|
|
||||||
sumf = f32x4_add(
|
|
||||||
sumf,
|
|
||||||
f32x4_sub(
|
|
||||||
f32x4_mul(isum, f32x4_splat(dall)),
|
|
||||||
f32x4_mul(summs, f32x4_splat(dmin)),
|
|
||||||
),
|
|
||||||
);
|
|
||||||
}
|
|
||||||
let sumf = f32x4_extract_lane::<0>(sumf)
|
|
||||||
+ f32x4_extract_lane::<1>(sumf)
|
|
||||||
+ f32x4_extract_lane::<2>(sumf)
|
|
||||||
+ f32x4_extract_lane::<3>(sumf);
|
|
||||||
Ok(sumf)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
pub(crate) fn vec_dot_q4k_q8k(n: usize, xs: &[BlockQ4K], ys: &[BlockQ8K]) -> Result<f32> {
|
|
||||||
if n % QK_K != 0 {
|
|
||||||
crate::bail!("vec_dot_q4k_q8k: {n} is not divisible by {QK_K}")
|
|
||||||
}
|
|
||||||
|
|
||||||
const KMASK1: u32 = 0x3f3f3f3f;
|
|
||||||
const KMASK2: u32 = 0x0f0f0f0f;
|
|
||||||
const KMASK3: u32 = 0x03030303;
|
|
||||||
|
|
||||||
let mut utmp: [u32; 4] = [0; 4];
|
|
||||||
let mut scales: [u8; 8] = [0; 8];
|
|
||||||
let mut mins: [u8; 8] = [0; 8];
|
|
||||||
|
|
||||||
let mut aux8: [u8; QK_K] = [0; QK_K];
|
|
||||||
let mut sums = f32x4_splat(0f32);
|
|
||||||
unsafe {
|
|
||||||
for (y, x) in ys.iter().zip(xs.iter()) {
|
|
||||||
let q4 = &x.qs;
|
|
||||||
let q8 = &y.qs;
|
|
||||||
|
|
||||||
for j in 0..QK_K / 64 {
|
|
||||||
let q4_1 = v128_load(q4.as_ptr().add(32 * j) as *const v128);
|
|
||||||
let q4_2 = v128_load(q4.as_ptr().add(32 * j + 16) as *const v128);
|
|
||||||
v128_store(
|
|
||||||
aux8.as_mut_ptr().add(64 * j) as *mut v128,
|
|
||||||
v128_and(q4_1, u8x16_splat(0x0F)),
|
|
||||||
);
|
|
||||||
v128_store(
|
|
||||||
aux8.as_mut_ptr().add(64 * j + 16) as *mut v128,
|
|
||||||
v128_and(q4_2, u8x16_splat(0x0F)),
|
|
||||||
);
|
|
||||||
v128_store(
|
|
||||||
aux8.as_mut_ptr().add(64 * j + 32) as *mut v128,
|
|
||||||
u8x16_shr(q4_1, 4),
|
|
||||||
);
|
|
||||||
v128_store(
|
|
||||||
aux8.as_mut_ptr().add(64 * j + 48) as *mut v128,
|
|
||||||
u8x16_shr(q4_2, 4),
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]);
|
|
||||||
|
|
||||||
utmp[3] = ((utmp[2] >> 4) & KMASK2) | (((utmp[1] >> 6) & KMASK3) << 4);
|
|
||||||
let uaux = utmp[1] & KMASK1;
|
|
||||||
utmp[1] = (utmp[2] & KMASK2) | (((utmp[0] >> 6) & KMASK3) << 4);
|
|
||||||
utmp[2] = uaux;
|
|
||||||
utmp[0] &= KMASK1;
|
|
||||||
|
|
||||||
//extract scales and mins
|
|
||||||
LittleEndian::write_u32_into(&utmp[0..2], &mut scales);
|
|
||||||
LittleEndian::write_u32_into(&utmp[2..4], &mut mins);
|
|
||||||
|
|
||||||
let mut sumi = i32x4_splat(0);
|
|
||||||
for j in (0..QK_K / 16).step_by(4) {
|
|
||||||
let bsums = i32x4_load_extend_i16x4(y.bsums.as_ptr().add(j));
|
|
||||||
let (m1, m2) = (mins[j / 2] as i32, mins[j / 2 + 1] as i32);
|
|
||||||
let mins = i32x4(m1, m1, m2, m2);
|
|
||||||
sumi = i32x4_add(sumi, i32x4_mul(bsums, mins));
|
|
||||||
}
|
|
||||||
|
|
||||||
let mut aux32 = i32x4_splat(0i32);
|
|
||||||
for (scale_i, scale) in scales.iter().enumerate() {
|
|
||||||
let scale = i32x4_splat(*scale as i32);
|
|
||||||
for j in 0..4 {
|
|
||||||
let i = 32 * scale_i + 8 * j;
|
|
||||||
let q8 = i16x8_load_extend_i8x8(q8.as_ptr().add(i));
|
|
||||||
let aux8 = i16x8_load_extend_u8x8(aux8.as_ptr().add(i));
|
|
||||||
let aux16 = i16x8_mul(q8, aux8);
|
|
||||||
aux32 = i32x4_add(aux32, i32x4_mul(scale, i32x4_extend_low_i16x8(aux16)));
|
|
||||||
aux32 = i32x4_add(aux32, i32x4_mul(scale, i32x4_extend_high_i16x8(aux16)));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
let aux32 = f32x4_convert_i32x4(aux32);
|
|
||||||
let d = f32x4_splat(x.d.to_f32() * y.d);
|
|
||||||
sums = f32x4_add(sums, f32x4_mul(aux32, d));
|
|
||||||
let dmin = x.dmin.to_f32() * y.d;
|
|
||||||
let dmin = f32x4_splat(dmin);
|
|
||||||
let sumi = f32x4_convert_i32x4(sumi);
|
|
||||||
sums = f32x4_sub(sums, f32x4_mul(sumi, dmin));
|
|
||||||
}
|
|
||||||
let sums = f32x4_extract_lane::<0>(sums)
|
|
||||||
+ f32x4_extract_lane::<1>(sums)
|
|
||||||
+ f32x4_extract_lane::<2>(sums)
|
|
||||||
+ f32x4_extract_lane::<3>(sums);
|
|
||||||
Ok(sums)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Result<f32> {
|
|
||||||
if n % QK_K != 0 {
|
|
||||||
crate::bail!("vec_dot_q6k_q8k: {n} is not divisible by {QK_K}")
|
|
||||||
}
|
|
||||||
|
|
||||||
let mut aux8 = [0i8; QK_K];
|
|
||||||
unsafe {
|
|
||||||
let mut sums = f32x4_splat(0f32);
|
|
||||||
|
|
||||||
for (x, y) in xs.iter().zip(ys.iter()) {
|
|
||||||
let q4 = &x.ql;
|
|
||||||
let qh = &x.qh;
|
|
||||||
let q8 = &y.qs;
|
|
||||||
let mut aux32 = f32x4_splat(0f32);
|
|
||||||
|
|
||||||
for j in (0..QK_K).step_by(128) {
|
|
||||||
let aux8 = aux8.as_mut_ptr().add(j);
|
|
||||||
let q4 = &q4.as_ptr().add(j / 2);
|
|
||||||
let qh = &qh.as_ptr().add(j / 4);
|
|
||||||
for l in (0..32).step_by(16) {
|
|
||||||
// aux8[l] = (((q4[l] & 0xF) | ((qh[l] & 3) << 4)) as i32 - 32) as i8;
|
|
||||||
let a8 = v128_or(
|
|
||||||
v128_and(v128_load(q4.add(l) as *const v128), u8x16_splat(0xF)),
|
|
||||||
u8x16_shl(
|
|
||||||
v128_and(v128_load(qh.add(l) as *const v128), u8x16_splat(3)),
|
|
||||||
4,
|
|
||||||
),
|
|
||||||
);
|
|
||||||
let a8_low = i16x8_sub(i16x8_extend_low_u8x16(a8), i16x8_splat(32));
|
|
||||||
let a8_high = i16x8_sub(i16x8_extend_high_u8x16(a8), i16x8_splat(32));
|
|
||||||
v128_store(
|
|
||||||
aux8.add(l) as *mut v128,
|
|
||||||
i8x16_narrow_i16x8(a8_low, a8_high),
|
|
||||||
);
|
|
||||||
|
|
||||||
// aux8[l + 32] =
|
|
||||||
// (((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) as i32 - 32) as i8;
|
|
||||||
let a8 = v128_or(
|
|
||||||
v128_and(v128_load(q4.add(l + 32) as *const v128), u8x16_splat(0xF)),
|
|
||||||
u8x16_shl(
|
|
||||||
v128_and(
|
|
||||||
u8x16_shr(v128_load(qh.add(l) as *const v128), 2),
|
|
||||||
u8x16_splat(3),
|
|
||||||
),
|
|
||||||
4,
|
|
||||||
),
|
|
||||||
);
|
|
||||||
let a8_low = i16x8_sub(i16x8_extend_low_u8x16(a8), i16x8_splat(32));
|
|
||||||
let a8_high = i16x8_sub(i16x8_extend_high_u8x16(a8), i16x8_splat(32));
|
|
||||||
v128_store(
|
|
||||||
aux8.add(l + 32) as *mut v128,
|
|
||||||
i8x16_narrow_i16x8(a8_low, a8_high),
|
|
||||||
);
|
|
||||||
|
|
||||||
// aux8[l + 64] = (((q4[l] >> 4) | (((qh[l] >> 4) & 3) << 4)) as i32 - 32) as i8;
|
|
||||||
let a8 = v128_or(
|
|
||||||
u8x16_shr(v128_load(q4.add(l) as *const v128), 4),
|
|
||||||
u8x16_shl(
|
|
||||||
v128_and(
|
|
||||||
u8x16_shr(v128_load(qh.add(l) as *const v128), 4),
|
|
||||||
u8x16_splat(3),
|
|
||||||
),
|
|
||||||
4,
|
|
||||||
),
|
|
||||||
);
|
|
||||||
let a8_low = i16x8_sub(i16x8_extend_low_u8x16(a8), i16x8_splat(32));
|
|
||||||
let a8_high = i16x8_sub(i16x8_extend_high_u8x16(a8), i16x8_splat(32));
|
|
||||||
v128_store(
|
|
||||||
aux8.add(l + 64) as *mut v128,
|
|
||||||
i8x16_narrow_i16x8(a8_low, a8_high),
|
|
||||||
);
|
|
||||||
|
|
||||||
// aux8[l + 96] =
|
|
||||||
// (((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) as i32 - 32) as i8;
|
|
||||||
let a8 = v128_or(
|
|
||||||
u8x16_shr(v128_load(q4.add(l + 32) as *const v128), 4),
|
|
||||||
u8x16_shl(
|
|
||||||
v128_and(
|
|
||||||
u8x16_shr(v128_load(qh.add(l) as *const v128), 6),
|
|
||||||
u8x16_splat(3),
|
|
||||||
),
|
|
||||||
4,
|
|
||||||
),
|
|
||||||
);
|
|
||||||
let a8_low = i16x8_sub(i16x8_extend_low_u8x16(a8), i16x8_splat(32));
|
|
||||||
let a8_high = i16x8_sub(i16x8_extend_high_u8x16(a8), i16x8_splat(32));
|
|
||||||
v128_store(
|
|
||||||
aux8.add(l + 96) as *mut v128,
|
|
||||||
i8x16_narrow_i16x8(a8_low, a8_high),
|
|
||||||
);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
for (j, &scale) in x.scales.iter().enumerate() {
|
|
||||||
let scale = f32x4_splat(scale as f32);
|
|
||||||
for offset in [0, 8] {
|
|
||||||
let aux16 = i16x8_mul(
|
|
||||||
i16x8_load_extend_i8x8(q8.as_ptr().add(16 * j + offset)),
|
|
||||||
i16x8_load_extend_i8x8(aux8.as_ptr().add(16 * j + offset)),
|
|
||||||
);
|
|
||||||
aux32 = f32x4_add(
|
|
||||||
aux32,
|
|
||||||
f32x4_mul(f32x4_convert_i32x4(i32x4_extend_low_i16x8(aux16)), scale),
|
|
||||||
);
|
|
||||||
aux32 = f32x4_add(
|
|
||||||
aux32,
|
|
||||||
f32x4_mul(f32x4_convert_i32x4(i32x4_extend_high_i16x8(aux16)), scale),
|
|
||||||
);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
let d = f32x4_splat(x.d.to_f32() * y.d);
|
|
||||||
sums = f32x4_add(sums, f32x4_mul(aux32, d));
|
|
||||||
}
|
|
||||||
let sums = f32x4_extract_lane::<0>(sums)
|
|
||||||
+ f32x4_extract_lane::<1>(sums)
|
|
||||||
+ f32x4_extract_lane::<2>(sums)
|
|
||||||
+ f32x4_extract_lane::<3>(sums);
|
|
||||||
Ok(sums)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
pub(crate) fn vec_dot_q8k_q8k(n: usize, xs: &[BlockQ8K], ys: &[BlockQ8K]) -> Result<f32> {
|
|
||||||
let qk = QK_K;
|
|
||||||
if n % QK_K != 0 {
|
|
||||||
crate::bail!("vec_dot_q8k_q8k: {n} is not divisible by {qk}")
|
|
||||||
}
|
|
||||||
|
|
||||||
unsafe {
|
|
||||||
let mut acc = f32x4_splat(0.0f32);
|
|
||||||
for (xs, ys) in xs.iter().zip(ys.iter()) {
|
|
||||||
let x_qs = xs.qs.as_ptr();
|
|
||||||
let y_qs = ys.qs.as_ptr();
|
|
||||||
let mut sumi = i32x4_splat(0);
|
|
||||||
for j in (0..QK_K).step_by(8) {
|
|
||||||
let xs = i16x8_load_extend_i8x8(x_qs.add(j));
|
|
||||||
let ys = i16x8_load_extend_i8x8(y_qs.add(j));
|
|
||||||
let sum_xy = i32x4_dot_i16x8(xs, ys);
|
|
||||||
sumi = i32x4_add(sumi, sum_xy)
|
|
||||||
}
|
|
||||||
let d = f32x4_splat(xs.d * ys.d);
|
|
||||||
acc = f32x4_add(acc, f32x4_mul(f32x4_convert_i32x4(sumi), d))
|
|
||||||
}
|
|
||||||
let res = f32x4_extract_lane::<0>(acc)
|
|
||||||
+ f32x4_extract_lane::<1>(acc)
|
|
||||||
+ f32x4_extract_lane::<2>(acc)
|
|
||||||
+ f32x4_extract_lane::<3>(acc);
|
|
||||||
Ok(res)
|
|
||||||
}
|
|
||||||
}
|
|
@ -17,7 +17,7 @@ pub(super) fn group_for_quantization<'a, 'b, T: super::k_quants::GgmlType>(
|
|||||||
let expected_blocks = xs.len() / block_size;
|
let expected_blocks = xs.len() / block_size;
|
||||||
let actual_blocks = ys.len();
|
let actual_blocks = ys.len();
|
||||||
|
|
||||||
// Validate that the input is the right size
|
//validate that the input is the right size
|
||||||
if expected_blocks != actual_blocks {
|
if expected_blocks != actual_blocks {
|
||||||
crate::bail!("quantize {dtype:?}: expected {expected_blocks} blocks but only {actual_blocks} were provided!")
|
crate::bail!("quantize {dtype:?}: expected {expected_blocks} blocks but only {actual_blocks} were provided!")
|
||||||
}
|
}
|
||||||
@ -37,12 +37,12 @@ pub(super) fn group_for_dequantization<'a, 'b, T: super::k_quants::GgmlType>(
|
|||||||
|
|
||||||
let actual_output_len = ys.len();
|
let actual_output_len = ys.len();
|
||||||
let expected_output_len = xs.len() * block_size;
|
let expected_output_len = xs.len() * block_size;
|
||||||
// Validate that the output is the right size
|
//validate that the output is the right size
|
||||||
if expected_output_len != actual_output_len {
|
if expected_output_len != actual_output_len {
|
||||||
crate::bail!("dequantize {dtype:?}: ys (len = {actual_output_len}) does not match the expected length of {expected_output_len}!")
|
crate::bail!("dequantize {dtype:?}: ys (len = {actual_output_len}) does not match the expected length of {expected_output_len}!")
|
||||||
}
|
}
|
||||||
|
|
||||||
// Zip the blocks and outputs together
|
//zip the blocks and outputs together
|
||||||
Ok(xs.iter().zip(ys.chunks_exact_mut(block_size)).collect())
|
Ok(xs.iter().zip(ys.chunks_exact_mut(block_size)).collect())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1,14 +1,3 @@
|
|||||||
//! Module to load `safetensor` files into CPU/GPU memory.
|
|
||||||
//!
|
|
||||||
//! There are multiple ways to load tensors from safetensor files:
|
|
||||||
//! - `load` function for loading directly into memory and returning a HashMap of tensors
|
|
||||||
//! - `MmapedSafetensors` for memory mapping files and avoiding full allocation
|
|
||||||
//! - `SliceSafetensors` for working with in-memory buffers
|
|
||||||
//! - `BufferedSafetensors` for owning a buffer of data
|
|
||||||
//!
|
|
||||||
//! Tensors can also be serialized to safetensor format using the `save` function or
|
|
||||||
//! `Tensor::save_safetensors` method.
|
|
||||||
//!
|
|
||||||
use crate::{DType, Device, Error, Result, Tensor, WithDType};
|
use crate::{DType, Device, Error, Result, Tensor, WithDType};
|
||||||
use safetensors::tensor as st;
|
use safetensors::tensor as st;
|
||||||
use safetensors::tensor::SafeTensors;
|
use safetensors::tensor::SafeTensors;
|
||||||
@ -89,7 +78,11 @@ impl st::View for &Tensor {
|
|||||||
}
|
}
|
||||||
|
|
||||||
impl Tensor {
|
impl Tensor {
|
||||||
pub fn save_safetensors<P: AsRef<Path>>(&self, name: &str, filename: P) -> Result<()> {
|
pub fn save_safetensors<P: AsRef<std::path::Path>>(
|
||||||
|
&self,
|
||||||
|
name: &str,
|
||||||
|
filename: P,
|
||||||
|
) -> Result<()> {
|
||||||
let data = [(name, self.clone())];
|
let data = [(name, self.clone())];
|
||||||
Ok(st::serialize_to_file(data, &None, filename.as_ref())?)
|
Ok(st::serialize_to_file(data, &None, filename.as_ref())?)
|
||||||
}
|
}
|
||||||
@ -182,7 +175,7 @@ pub trait Load {
|
|||||||
fn load(&self, device: &Device) -> Result<Tensor>;
|
fn load(&self, device: &Device) -> Result<Tensor>;
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Load for st::TensorView<'_> {
|
impl<'a> Load for st::TensorView<'a> {
|
||||||
fn load(&self, device: &Device) -> Result<Tensor> {
|
fn load(&self, device: &Device) -> Result<Tensor> {
|
||||||
convert(self, device)
|
convert(self, device)
|
||||||
}
|
}
|
||||||
@ -262,158 +255,6 @@ pub fn save<K: AsRef<str> + Ord + std::fmt::Display, P: AsRef<Path>>(
|
|||||||
Ok(st::serialize_to_file(tensors, &None, filename.as_ref())?)
|
Ok(st::serialize_to_file(tensors, &None, filename.as_ref())?)
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(yoke::Yokeable)]
|
|
||||||
struct SafeTensors_<'a>(SafeTensors<'a>);
|
|
||||||
|
|
||||||
pub struct MmapedSafetensors {
|
|
||||||
safetensors: Vec<yoke::Yoke<SafeTensors_<'static>, memmap2::Mmap>>,
|
|
||||||
routing: Option<HashMap<String, usize>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl MmapedSafetensors {
|
|
||||||
/// Creates a wrapper around a memory mapped file and deserialize the safetensors header.
|
|
||||||
///
|
|
||||||
/// # Safety
|
|
||||||
///
|
|
||||||
/// The unsafe is inherited from [`memmap2::MmapOptions`].
|
|
||||||
pub unsafe fn new<P: AsRef<Path>>(p: P) -> Result<Self> {
|
|
||||||
let p = p.as_ref();
|
|
||||||
let file = std::fs::File::open(p).map_err(|e| Error::from(e).with_path(p))?;
|
|
||||||
let file = memmap2::MmapOptions::new()
|
|
||||||
.map(&file)
|
|
||||||
.map_err(|e| Error::from(e).with_path(p))?;
|
|
||||||
let safetensors = yoke::Yoke::<SafeTensors_<'static>, memmap2::Mmap>::try_attach_to_cart(
|
|
||||||
file,
|
|
||||||
|data: &[u8]| {
|
|
||||||
let st = safetensors::SafeTensors::deserialize(data)
|
|
||||||
.map_err(|e| Error::from(e).with_path(p))?;
|
|
||||||
Ok::<_, Error>(SafeTensors_(st))
|
|
||||||
},
|
|
||||||
)?;
|
|
||||||
Ok(Self {
|
|
||||||
safetensors: vec![safetensors],
|
|
||||||
routing: None,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Creates a wrapper around multiple memory mapped file and deserialize the safetensors headers.
|
|
||||||
///
|
|
||||||
/// If a tensor name appears in multiple files, the last entry is returned.
|
|
||||||
///
|
|
||||||
/// # Safety
|
|
||||||
///
|
|
||||||
/// The unsafe is inherited from [`memmap2::MmapOptions`].
|
|
||||||
pub unsafe fn multi<P: AsRef<Path>>(paths: &[P]) -> Result<Self> {
|
|
||||||
let mut routing = HashMap::new();
|
|
||||||
let mut safetensors = vec![];
|
|
||||||
for (index, p) in paths.iter().enumerate() {
|
|
||||||
let p = p.as_ref();
|
|
||||||
let file = std::fs::File::open(p).map_err(|e| Error::from(e).with_path(p))?;
|
|
||||||
let file = memmap2::MmapOptions::new()
|
|
||||||
.map(&file)
|
|
||||||
.map_err(|e| Error::from(e).with_path(p))?;
|
|
||||||
let data = yoke::Yoke::<SafeTensors_<'static>, memmap2::Mmap>::try_attach_to_cart(
|
|
||||||
file,
|
|
||||||
|data: &[u8]| {
|
|
||||||
let st = safetensors::SafeTensors::deserialize(data)
|
|
||||||
.map_err(|e| Error::from(e).with_path(p))?;
|
|
||||||
Ok::<_, Error>(SafeTensors_(st))
|
|
||||||
},
|
|
||||||
)?;
|
|
||||||
for k in data.get().0.names() {
|
|
||||||
routing.insert(k.to_string(), index);
|
|
||||||
}
|
|
||||||
safetensors.push(data)
|
|
||||||
}
|
|
||||||
Ok(Self {
|
|
||||||
safetensors,
|
|
||||||
routing: Some(routing),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn load(&self, name: &str, dev: &Device) -> Result<Tensor> {
|
|
||||||
self.get(name)?.load(dev)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn tensors(&self) -> Vec<(String, st::TensorView<'_>)> {
|
|
||||||
let mut tensors = vec![];
|
|
||||||
for safetensors in self.safetensors.iter() {
|
|
||||||
tensors.push(safetensors.get().0.tensors())
|
|
||||||
}
|
|
||||||
tensors.into_iter().flatten().collect()
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn get(&self, name: &str) -> Result<st::TensorView<'_>> {
|
|
||||||
let index = match &self.routing {
|
|
||||||
None => 0,
|
|
||||||
Some(routing) => {
|
|
||||||
let index = routing.get(name).ok_or_else(|| {
|
|
||||||
Error::CannotFindTensor {
|
|
||||||
path: name.to_string(),
|
|
||||||
}
|
|
||||||
.bt()
|
|
||||||
})?;
|
|
||||||
*index
|
|
||||||
}
|
|
||||||
};
|
|
||||||
Ok(self.safetensors[index].get().0.tensor(name)?)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub struct SliceSafetensors<'a> {
|
|
||||||
safetensors: SafeTensors<'a>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'a> SliceSafetensors<'a> {
|
|
||||||
/// Creates a wrapper around a binary buffer and deserialize the safetensors header.
|
|
||||||
pub fn new(buffer: &'a [u8]) -> Result<Self> {
|
|
||||||
let safetensors = safetensors::SafeTensors::deserialize(buffer)?;
|
|
||||||
Ok(Self { safetensors })
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn load(&self, name: &str, dev: &Device) -> Result<Tensor> {
|
|
||||||
self.safetensors.tensor(name)?.load(dev)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn tensors(&self) -> Vec<(String, st::TensorView<'_>)> {
|
|
||||||
self.safetensors.tensors()
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn get(&self, name: &str) -> Result<st::TensorView<'_>> {
|
|
||||||
Ok(self.safetensors.tensor(name)?)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub struct BufferedSafetensors {
|
|
||||||
safetensors: yoke::Yoke<SafeTensors_<'static>, Vec<u8>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl BufferedSafetensors {
|
|
||||||
/// Creates a wrapper around a binary buffer and deserialize the safetensors header.
|
|
||||||
pub fn new(buffer: Vec<u8>) -> Result<Self> {
|
|
||||||
let safetensors = yoke::Yoke::<SafeTensors_<'static>, Vec<u8>>::try_attach_to_cart(
|
|
||||||
buffer,
|
|
||||||
|data: &[u8]| {
|
|
||||||
let st = safetensors::SafeTensors::deserialize(data)?;
|
|
||||||
Ok::<_, Error>(SafeTensors_(st))
|
|
||||||
},
|
|
||||||
)?;
|
|
||||||
Ok(Self { safetensors })
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn load(&self, name: &str, dev: &Device) -> Result<Tensor> {
|
|
||||||
self.get(name)?.load(dev)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn tensors(&self) -> Vec<(String, st::TensorView<'_>)> {
|
|
||||||
self.safetensors.get().0.tensors()
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn get(&self, name: &str) -> Result<st::TensorView<'_>> {
|
|
||||||
Ok(self.safetensors.get().0.tensor(name)?)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub struct MmapedFile {
|
pub struct MmapedFile {
|
||||||
path: std::path::PathBuf,
|
path: std::path::PathBuf,
|
||||||
inner: memmap2::Mmap,
|
inner: memmap2::Mmap,
|
||||||
@ -426,7 +267,7 @@ impl MmapedFile {
|
|||||||
/// # Safety
|
/// # Safety
|
||||||
///
|
///
|
||||||
/// The unsafe is inherited from [`memmap2::MmapOptions`].
|
/// The unsafe is inherited from [`memmap2::MmapOptions`].
|
||||||
pub unsafe fn new<P: AsRef<Path>>(p: P) -> Result<Self> {
|
pub unsafe fn new<P: AsRef<std::path::Path>>(p: P) -> Result<Self> {
|
||||||
let p = p.as_ref();
|
let p = p.as_ref();
|
||||||
let file = std::fs::File::open(p).map_err(|e| Error::from(e).with_path(p))?;
|
let file = std::fs::File::open(p).map_err(|e| Error::from(e).with_path(p))?;
|
||||||
let inner = memmap2::MmapOptions::new()
|
let inner = memmap2::MmapOptions::new()
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
//! TensorScalar Enum and Trait
|
|
||||||
//!
|
|
||||||
use crate::{Result, Tensor, WithDType};
|
use crate::{Result, Tensor, WithDType};
|
||||||
|
|
||||||
pub enum TensorScalar {
|
pub enum TensorScalar {
|
||||||
|
@ -43,22 +43,43 @@ impl From<usize> for Shape {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
macro_rules! impl_from_tuple {
|
impl From<(usize,)> for Shape {
|
||||||
($tuple:ty, $($index:tt),+) => {
|
fn from(d1: (usize,)) -> Self {
|
||||||
impl From<$tuple> for Shape {
|
Self(vec![d1.0])
|
||||||
fn from(d: $tuple) -> Self {
|
|
||||||
Self(vec![$(d.$index,)+])
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl_from_tuple!((usize,), 0);
|
impl From<(usize, usize)> for Shape {
|
||||||
impl_from_tuple!((usize, usize), 0, 1);
|
fn from(d12: (usize, usize)) -> Self {
|
||||||
impl_from_tuple!((usize, usize, usize), 0, 1, 2);
|
Self(vec![d12.0, d12.1])
|
||||||
impl_from_tuple!((usize, usize, usize, usize), 0, 1, 2, 3);
|
}
|
||||||
impl_from_tuple!((usize, usize, usize, usize, usize), 0, 1, 2, 3, 4);
|
}
|
||||||
impl_from_tuple!((usize, usize, usize, usize, usize, usize), 0, 1, 2, 3, 4, 5);
|
|
||||||
|
impl From<(usize, usize, usize)> for Shape {
|
||||||
|
fn from(d123: (usize, usize, usize)) -> Self {
|
||||||
|
Self(vec![d123.0, d123.1, d123.2])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<(usize, usize, usize, usize)> for Shape {
|
||||||
|
fn from(d1234: (usize, usize, usize, usize)) -> Self {
|
||||||
|
Self(vec![d1234.0, d1234.1, d1234.2, d1234.3])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<(usize, usize, usize, usize, usize)> for Shape {
|
||||||
|
fn from(d12345: (usize, usize, usize, usize, usize)) -> Self {
|
||||||
|
Self(vec![d12345.0, d12345.1, d12345.2, d12345.3, d12345.4])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<(usize, usize, usize, usize, usize, usize)> for Shape {
|
||||||
|
fn from(d123456: (usize, usize, usize, usize, usize, usize)) -> Self {
|
||||||
|
Self(vec![
|
||||||
|
d123456.0, d123456.1, d123456.2, d123456.3, d123456.4, d123456.5,
|
||||||
|
])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
impl From<Vec<usize>> for Shape {
|
impl From<Vec<usize>> for Shape {
|
||||||
fn from(dims: Vec<usize>) -> Self {
|
fn from(dims: Vec<usize>) -> Self {
|
||||||
@ -121,12 +142,6 @@ impl Shape {
|
|||||||
&self.0
|
&self.0
|
||||||
}
|
}
|
||||||
|
|
||||||
/// The dimension size for a specified dimension index.
|
|
||||||
pub fn dim<D: Dim>(&self, dim: D) -> Result<usize> {
|
|
||||||
let dim = dim.to_index(self, "dim")?;
|
|
||||||
Ok(self.dims()[dim])
|
|
||||||
}
|
|
||||||
|
|
||||||
/// The total number of elements, this is the product of all dimension sizes.
|
/// The total number of elements, this is the product of all dimension sizes.
|
||||||
pub fn elem_count(&self) -> usize {
|
pub fn elem_count(&self) -> usize {
|
||||||
self.0.iter().product()
|
self.0.iter().product()
|
||||||
@ -156,7 +171,7 @@ impl Shape {
|
|||||||
}
|
}
|
||||||
let mut acc = 1;
|
let mut acc = 1;
|
||||||
for (&stride, &dim) in stride.iter().zip(self.0.iter()).rev() {
|
for (&stride, &dim) in stride.iter().zip(self.0.iter()).rev() {
|
||||||
if dim > 1 && stride != acc {
|
if stride != acc {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
acc *= dim;
|
acc *= dim;
|
||||||
@ -171,7 +186,7 @@ impl Shape {
|
|||||||
}
|
}
|
||||||
let mut acc = 1;
|
let mut acc = 1;
|
||||||
for (&stride, &dim) in stride.iter().zip(self.0.iter()) {
|
for (&stride, &dim) in stride.iter().zip(self.0.iter()) {
|
||||||
if dim > 1 && stride != acc {
|
if stride != acc {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
acc *= dim;
|
acc *= dim;
|
||||||
@ -188,7 +203,7 @@ impl Shape {
|
|||||||
|
|
||||||
/// Check whether the two shapes are compatible for broadcast, and if it is the case return the
|
/// Check whether the two shapes are compatible for broadcast, and if it is the case return the
|
||||||
/// broadcasted shape. This is to be used for binary pointwise ops.
|
/// broadcasted shape. This is to be used for binary pointwise ops.
|
||||||
pub fn broadcast_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<Shape> {
|
pub(crate) fn broadcast_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<Shape> {
|
||||||
let lhs = self;
|
let lhs = self;
|
||||||
let lhs_dims = lhs.dims();
|
let lhs_dims = lhs.dims();
|
||||||
let rhs_dims = rhs.dims();
|
let rhs_dims = rhs.dims();
|
||||||
@ -289,7 +304,6 @@ impl Dim for usize {
|
|||||||
pub enum D {
|
pub enum D {
|
||||||
Minus1,
|
Minus1,
|
||||||
Minus2,
|
Minus2,
|
||||||
Minus(usize),
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl D {
|
impl D {
|
||||||
@ -297,7 +311,6 @@ impl D {
|
|||||||
let dim = match self {
|
let dim = match self {
|
||||||
Self::Minus1 => -1,
|
Self::Minus1 => -1,
|
||||||
Self::Minus2 => -2,
|
Self::Minus2 => -2,
|
||||||
Self::Minus(u) => -(*u as i32),
|
|
||||||
};
|
};
|
||||||
Error::DimOutOfRange {
|
Error::DimOutOfRange {
|
||||||
shape: shape.clone(),
|
shape: shape.clone(),
|
||||||
@ -314,7 +327,6 @@ impl Dim for D {
|
|||||||
match self {
|
match self {
|
||||||
Self::Minus1 if rank >= 1 => Ok(rank - 1),
|
Self::Minus1 if rank >= 1 => Ok(rank - 1),
|
||||||
Self::Minus2 if rank >= 2 => Ok(rank - 2),
|
Self::Minus2 if rank >= 2 => Ok(rank - 2),
|
||||||
Self::Minus(u) if *u > 0 && rank >= *u => Ok(rank - *u),
|
|
||||||
_ => Err(self.out_of_range(shape, op)),
|
_ => Err(self.out_of_range(shape, op)),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -324,7 +336,6 @@ impl Dim for D {
|
|||||||
match self {
|
match self {
|
||||||
Self::Minus1 => Ok(rank),
|
Self::Minus1 => Ok(rank),
|
||||||
Self::Minus2 if rank >= 1 => Ok(rank - 1),
|
Self::Minus2 if rank >= 1 => Ok(rank - 1),
|
||||||
Self::Minus(u) if *u > 0 && rank + 1 >= *u => Ok(rank + 1 - *u),
|
|
||||||
_ => Err(self.out_of_range(shape, op)),
|
_ => Err(self.out_of_range(shape, op)),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -433,18 +444,6 @@ impl<D1: Dim, D2: Dim, D3: Dim, D4: Dim, D5: Dim> Dims for (D1, D2, D3, D4, D5)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<D1: Dim, D2: Dim, D3: Dim, D4: Dim, D5: Dim, D6: Dim> Dims for (D1, D2, D3, D4, D5, D6) {
|
|
||||||
fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
|
|
||||||
let d0 = self.0.to_index(shape, op)?;
|
|
||||||
let d1 = self.1.to_index(shape, op)?;
|
|
||||||
let d2 = self.2.to_index(shape, op)?;
|
|
||||||
let d3 = self.3.to_index(shape, op)?;
|
|
||||||
let d4 = self.4.to_index(shape, op)?;
|
|
||||||
let d5 = self.5.to_index(shape, op)?;
|
|
||||||
Ok(vec![d0, d1, d2, d3, d4, d5])
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
extract_dims!(dims0, 0, |_: &[usize]| (), ());
|
extract_dims!(dims0, 0, |_: &[usize]| (), ());
|
||||||
extract_dims!(dims1, 1, |d: &[usize]| d[0], usize);
|
extract_dims!(dims1, 1, |d: &[usize]| d[0], usize);
|
||||||
extract_dims!(dims2, 2, |d: &[usize]| (d[0], d[1]), (usize, usize));
|
extract_dims!(dims2, 2, |d: &[usize]| (d[0], d[1]), (usize, usize));
|
||||||
@ -467,6 +466,23 @@ extract_dims!(
|
|||||||
(usize, usize, usize, usize, usize)
|
(usize, usize, usize, usize, usize)
|
||||||
);
|
);
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn stride() {
|
||||||
|
let shape = Shape::from(());
|
||||||
|
assert_eq!(shape.stride_contiguous(), Vec::<usize>::new());
|
||||||
|
let shape = Shape::from(42);
|
||||||
|
assert_eq!(shape.stride_contiguous(), [1]);
|
||||||
|
let shape = Shape::from((42, 1337));
|
||||||
|
assert_eq!(shape.stride_contiguous(), [1337, 1]);
|
||||||
|
let shape = Shape::from((299, 792, 458));
|
||||||
|
assert_eq!(shape.stride_contiguous(), [458 * 792, 458, 1]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
pub trait ShapeWithOneHole {
|
pub trait ShapeWithOneHole {
|
||||||
fn into_shape(self, el_count: usize) -> Result<Shape>;
|
fn into_shape(self, el_count: usize) -> Result<Shape>;
|
||||||
}
|
}
|
||||||
@ -483,152 +499,154 @@ impl ShapeWithOneHole for ((),) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn hole_size(el_count: usize, prod_d: usize, s: &dyn std::fmt::Debug) -> Result<usize> {
|
|
||||||
if prod_d == 0 {
|
|
||||||
crate::bail!("cannot reshape tensor of {el_count} elements to {s:?}")
|
|
||||||
}
|
|
||||||
if el_count % prod_d != 0 {
|
|
||||||
crate::bail!("cannot reshape tensor with {el_count} elements to {s:?}")
|
|
||||||
}
|
|
||||||
Ok(el_count / prod_d)
|
|
||||||
}
|
|
||||||
|
|
||||||
impl ShapeWithOneHole for ((), usize) {
|
impl ShapeWithOneHole for ((), usize) {
|
||||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||||
let ((), d1) = self;
|
let ((), d1) = self;
|
||||||
Ok((hole_size(el_count, d1, &self)?, d1).into())
|
if el_count % d1 != 0 {
|
||||||
|
crate::bail!("tensor number of elements {el_count} is not divisible by {d1}")
|
||||||
|
}
|
||||||
|
Ok((el_count / d1, d1).into())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ShapeWithOneHole for (usize, ()) {
|
impl ShapeWithOneHole for (usize, ()) {
|
||||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||||
let (d1, ()) = self;
|
let (d1, ()) = self;
|
||||||
Ok((d1, hole_size(el_count, d1, &self)?).into())
|
if el_count % d1 != 0 {
|
||||||
|
crate::bail!("tensor number of elements {el_count} is not divisible by {d1}")
|
||||||
|
}
|
||||||
|
Ok((d1, el_count / d1).into())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ShapeWithOneHole for ((), usize, usize) {
|
impl ShapeWithOneHole for ((), usize, usize) {
|
||||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||||
let ((), d1, d2) = self;
|
let ((), d1, d2) = self;
|
||||||
Ok((hole_size(el_count, d1 * d2, &self)?, d1, d2).into())
|
let d = d1 * d2;
|
||||||
|
if el_count % d != 0 {
|
||||||
|
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||||
|
}
|
||||||
|
Ok((el_count / d, d1, d2).into())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ShapeWithOneHole for (usize, (), usize) {
|
impl ShapeWithOneHole for (usize, (), usize) {
|
||||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||||
let (d1, (), d2) = self;
|
let (d1, (), d2) = self;
|
||||||
Ok((d1, hole_size(el_count, d1 * d2, &self)?, d2).into())
|
let d = d1 * d2;
|
||||||
|
if el_count % d != 0 {
|
||||||
|
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||||
|
}
|
||||||
|
Ok((d1, el_count / d, d2).into())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ShapeWithOneHole for (usize, usize, ()) {
|
impl ShapeWithOneHole for (usize, usize, ()) {
|
||||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||||
let (d1, d2, ()) = self;
|
let (d1, d2, ()) = self;
|
||||||
Ok((d1, d2, hole_size(el_count, d1 * d2, &self)?).into())
|
let d = d1 * d2;
|
||||||
|
if el_count % d != 0 {
|
||||||
|
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||||
|
}
|
||||||
|
Ok((d1, d2, el_count / d).into())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ShapeWithOneHole for ((), usize, usize, usize) {
|
impl ShapeWithOneHole for ((), usize, usize, usize) {
|
||||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||||
let ((), d1, d2, d3) = self;
|
let ((), d1, d2, d3) = self;
|
||||||
let d = hole_size(el_count, d1 * d2 * d3, &self)?;
|
let d = d1 * d2 * d3;
|
||||||
Ok((d, d1, d2, d3).into())
|
if el_count % d != 0 {
|
||||||
|
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||||
|
}
|
||||||
|
Ok((el_count / d, d1, d2, d3).into())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ShapeWithOneHole for (usize, (), usize, usize) {
|
impl ShapeWithOneHole for (usize, (), usize, usize) {
|
||||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||||
let (d1, (), d2, d3) = self;
|
let (d1, (), d2, d3) = self;
|
||||||
let d = hole_size(el_count, d1 * d2 * d3, &self)?;
|
let d = d1 * d2 * d3;
|
||||||
Ok((d1, d, d2, d3).into())
|
if el_count % d != 0 {
|
||||||
|
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||||
|
}
|
||||||
|
Ok((d1, el_count / d, d2, d3).into())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ShapeWithOneHole for (usize, usize, (), usize) {
|
impl ShapeWithOneHole for (usize, usize, (), usize) {
|
||||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||||
let (d1, d2, (), d3) = self;
|
let (d1, d2, (), d3) = self;
|
||||||
let d = hole_size(el_count, d1 * d2 * d3, &self)?;
|
let d = d1 * d2 * d3;
|
||||||
Ok((d1, d2, d, d3).into())
|
if el_count % d != 0 {
|
||||||
|
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||||
|
}
|
||||||
|
Ok((d1, d2, el_count / d, d3).into())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ShapeWithOneHole for (usize, usize, usize, ()) {
|
impl ShapeWithOneHole for (usize, usize, usize, ()) {
|
||||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||||
let (d1, d2, d3, ()) = self;
|
let (d1, d2, d3, ()) = self;
|
||||||
let d = hole_size(el_count, d1 * d2 * d3, &self)?;
|
let d = d1 * d2 * d3;
|
||||||
Ok((d1, d2, d3, d).into())
|
if el_count % d != 0 {
|
||||||
|
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||||
|
}
|
||||||
|
Ok((d1, d2, d3, el_count / d).into())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ShapeWithOneHole for ((), usize, usize, usize, usize) {
|
impl ShapeWithOneHole for ((), usize, usize, usize, usize) {
|
||||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||||
let ((), d1, d2, d3, d4) = self;
|
let ((), d1, d2, d3, d4) = self;
|
||||||
let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
|
let d = d1 * d2 * d3 * d4;
|
||||||
Ok((d, d1, d2, d3, d4).into())
|
if el_count % d != 0 {
|
||||||
|
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||||
|
}
|
||||||
|
Ok((el_count / d, d1, d2, d3, d4).into())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ShapeWithOneHole for (usize, (), usize, usize, usize) {
|
impl ShapeWithOneHole for (usize, (), usize, usize, usize) {
|
||||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||||
let (d1, (), d2, d3, d4) = self;
|
let (d1, (), d2, d3, d4) = self;
|
||||||
let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
|
let d = d1 * d2 * d3 * d4;
|
||||||
Ok((d1, d, d2, d3, d4).into())
|
if el_count % d != 0 {
|
||||||
|
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||||
|
}
|
||||||
|
Ok((d1, el_count / d, d2, d3, d4).into())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ShapeWithOneHole for (usize, usize, (), usize, usize) {
|
impl ShapeWithOneHole for (usize, usize, (), usize, usize) {
|
||||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||||
let (d1, d2, (), d3, d4) = self;
|
let (d1, d2, (), d3, d4) = self;
|
||||||
let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
|
let d = d1 * d2 * d3 * d4;
|
||||||
Ok((d1, d2, d, d3, d4).into())
|
if el_count % d != 0 {
|
||||||
|
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||||
|
}
|
||||||
|
Ok((d1, d2, el_count / d, d3, d4).into())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ShapeWithOneHole for (usize, usize, usize, (), usize) {
|
impl ShapeWithOneHole for (usize, usize, usize, (), usize) {
|
||||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||||
let (d1, d2, d3, (), d4) = self;
|
let (d1, d2, d3, (), d4) = self;
|
||||||
let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
|
let d = d1 * d2 * d3 * d4;
|
||||||
Ok((d1, d2, d3, d, d4).into())
|
if el_count % d != 0 {
|
||||||
|
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||||
|
}
|
||||||
|
Ok((d1, d2, d3, el_count / d, d4).into())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ShapeWithOneHole for (usize, usize, usize, usize, ()) {
|
impl ShapeWithOneHole for (usize, usize, usize, usize, ()) {
|
||||||
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
fn into_shape(self, el_count: usize) -> Result<Shape> {
|
||||||
let (d1, d2, d3, d4, ()) = self;
|
let (d1, d2, d3, d4, ()) = self;
|
||||||
let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
|
let d = d1 * d2 * d3 * d4;
|
||||||
Ok((d1, d2, d3, d4, d).into())
|
if el_count % d != 0 {
|
||||||
}
|
crate::bail!("tensor number of elements {el_count} is not divisible by {d}")
|
||||||
}
|
}
|
||||||
|
Ok((d1, d2, d3, d4, el_count / d).into())
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn stride() {
|
|
||||||
let shape = Shape::from(());
|
|
||||||
assert_eq!(shape.stride_contiguous(), Vec::<usize>::new());
|
|
||||||
let shape = Shape::from(42);
|
|
||||||
assert_eq!(shape.stride_contiguous(), [1]);
|
|
||||||
let shape = Shape::from((42, 1337));
|
|
||||||
assert_eq!(shape.stride_contiguous(), [1337, 1]);
|
|
||||||
let shape = Shape::from((299, 792, 458));
|
|
||||||
assert_eq!(shape.stride_contiguous(), [458 * 792, 458, 1]);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_from_tuple() {
|
|
||||||
let shape = Shape::from((2,));
|
|
||||||
assert_eq!(shape.dims(), &[2]);
|
|
||||||
let shape = Shape::from((2, 3));
|
|
||||||
assert_eq!(shape.dims(), &[2, 3]);
|
|
||||||
let shape = Shape::from((2, 3, 4));
|
|
||||||
assert_eq!(shape.dims(), &[2, 3, 4]);
|
|
||||||
let shape = Shape::from((2, 3, 4, 5));
|
|
||||||
assert_eq!(shape.dims(), &[2, 3, 4, 5]);
|
|
||||||
let shape = Shape::from((2, 3, 4, 5, 6));
|
|
||||||
assert_eq!(shape.dims(), &[2, 3, 4, 5, 6]);
|
|
||||||
let shape = Shape::from((2, 3, 4, 5, 6, 7));
|
|
||||||
assert_eq!(shape.dims(), &[2, 3, 4, 5, 6, 7]);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,250 +0,0 @@
|
|||||||
use crate::{Result, Tensor};
|
|
||||||
use rayon::prelude::*;
|
|
||||||
|
|
||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
struct ArgSort {
|
|
||||||
asc: bool,
|
|
||||||
last_dim: usize,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl ArgSort {
|
|
||||||
fn asort<T: crate::WithDType>(&self, vs: &[T], layout: &crate::Layout) -> Vec<u32> {
|
|
||||||
#[allow(clippy::uninit_vec)]
|
|
||||||
// Safety: indexes are set later in the parallelized section.
|
|
||||||
let mut sort_indexes = unsafe {
|
|
||||||
let el_count = layout.shape().elem_count();
|
|
||||||
let mut v = Vec::with_capacity(el_count);
|
|
||||||
v.set_len(el_count);
|
|
||||||
v
|
|
||||||
};
|
|
||||||
if self.asc {
|
|
||||||
sort_indexes
|
|
||||||
.par_chunks_exact_mut(self.last_dim)
|
|
||||||
.zip(vs.par_chunks_exact(self.last_dim))
|
|
||||||
.for_each(|(indexes, vs)| {
|
|
||||||
indexes
|
|
||||||
.iter_mut()
|
|
||||||
.enumerate()
|
|
||||||
.for_each(|(i, v)| *v = i as u32);
|
|
||||||
indexes.sort_by(|&i, &j| {
|
|
||||||
vs[i as usize]
|
|
||||||
.partial_cmp(&vs[j as usize])
|
|
||||||
.unwrap_or(std::cmp::Ordering::Greater)
|
|
||||||
})
|
|
||||||
});
|
|
||||||
} else {
|
|
||||||
sort_indexes
|
|
||||||
.par_chunks_exact_mut(self.last_dim)
|
|
||||||
.zip(vs.par_chunks_exact(self.last_dim))
|
|
||||||
.for_each(|(indexes, vs)| {
|
|
||||||
indexes
|
|
||||||
.iter_mut()
|
|
||||||
.enumerate()
|
|
||||||
.for_each(|(i, v)| *v = i as u32);
|
|
||||||
indexes.sort_by(|&j, &i| {
|
|
||||||
vs[i as usize]
|
|
||||||
.partial_cmp(&vs[j as usize])
|
|
||||||
.unwrap_or(std::cmp::Ordering::Greater)
|
|
||||||
})
|
|
||||||
});
|
|
||||||
}
|
|
||||||
sort_indexes
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(feature = "cuda")]
|
|
||||||
mod cuda {
|
|
||||||
use super::*;
|
|
||||||
use crate::cuda_backend::cudarc::driver::{
|
|
||||||
CudaSlice, DeviceRepr, LaunchConfig, ValidAsZeroBits,
|
|
||||||
};
|
|
||||||
use crate::cuda_backend::{kernel_name, kernels, CudaStorageSlice as S, WrapErr};
|
|
||||||
use crate::{CudaDevice, WithDType};
|
|
||||||
|
|
||||||
impl crate::cuda_backend::Map1Any for ArgSort {
|
|
||||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
|
|
||||||
&self,
|
|
||||||
src: &CudaSlice<T>,
|
|
||||||
dev: &CudaDevice,
|
|
||||||
layout: &crate::Layout,
|
|
||||||
_wrap: W,
|
|
||||||
) -> Result<S> {
|
|
||||||
use cudarc::driver::PushKernelArg;
|
|
||||||
|
|
||||||
let slice = match layout.contiguous_offsets() {
|
|
||||||
None => crate::bail!("input has to be contiguous"),
|
|
||||||
Some((o1, o2)) => src.slice(o1..o2),
|
|
||||||
};
|
|
||||||
let elem_count = layout.shape().elem_count();
|
|
||||||
let dst = unsafe { dev.alloc::<u32>(elem_count)? };
|
|
||||||
let func = if self.asc {
|
|
||||||
dev.get_or_load_func(&kernel_name::<T>("asort_asc"), &kernels::SORT)?
|
|
||||||
} else {
|
|
||||||
dev.get_or_load_func(&kernel_name::<T>("asort_desc"), &kernels::SORT)?
|
|
||||||
};
|
|
||||||
let ncols = self.last_dim;
|
|
||||||
let nrows = elem_count / ncols;
|
|
||||||
let ncols_pad = next_power_of_2(ncols);
|
|
||||||
let cfg = LaunchConfig {
|
|
||||||
grid_dim: (1, nrows as u32, 1),
|
|
||||||
block_dim: (ncols_pad as u32, 1, 1),
|
|
||||||
shared_mem_bytes: (ncols_pad * std::mem::size_of::<u32>()) as u32,
|
|
||||||
};
|
|
||||||
let stream = dev.cuda_stream();
|
|
||||||
let mut builder = stream.launch_builder(&func);
|
|
||||||
let ncols = ncols as i32;
|
|
||||||
let ncols_pad = ncols_pad as i32;
|
|
||||||
builder.arg(&slice).arg(&dst).arg(&ncols).arg(&ncols_pad);
|
|
||||||
unsafe { builder.launch(cfg) }.w()?;
|
|
||||||
Ok(S::U32(dst))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl crate::CustomOp1 for ArgSort {
|
|
||||||
fn name(&self) -> &'static str {
|
|
||||||
"argsort"
|
|
||||||
}
|
|
||||||
|
|
||||||
fn cpu_fwd(
|
|
||||||
&self,
|
|
||||||
storage: &crate::CpuStorage,
|
|
||||||
layout: &crate::Layout,
|
|
||||||
) -> Result<(crate::CpuStorage, crate::Shape)> {
|
|
||||||
let sort_indexes = match storage {
|
|
||||||
crate::CpuStorage::U8(vs) => self.asort(vs, layout),
|
|
||||||
crate::CpuStorage::U32(vs) => self.asort(vs, layout),
|
|
||||||
crate::CpuStorage::I64(vs) => self.asort(vs, layout),
|
|
||||||
crate::CpuStorage::BF16(vs) => self.asort(vs, layout),
|
|
||||||
crate::CpuStorage::F16(vs) => self.asort(vs, layout),
|
|
||||||
crate::CpuStorage::F32(vs) => self.asort(vs, layout),
|
|
||||||
crate::CpuStorage::F64(vs) => self.asort(vs, layout),
|
|
||||||
};
|
|
||||||
let sort_indexes = crate::CpuStorage::U32(sort_indexes);
|
|
||||||
Ok((sort_indexes, layout.shape().into()))
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(feature = "cuda")]
|
|
||||||
fn cuda_fwd(
|
|
||||||
&self,
|
|
||||||
storage: &crate::CudaStorage,
|
|
||||||
layout: &crate::Layout,
|
|
||||||
) -> Result<(crate::CudaStorage, crate::Shape)> {
|
|
||||||
use crate::backend::BackendStorage;
|
|
||||||
use crate::cuda_backend::Map1Any;
|
|
||||||
let dev = storage.device();
|
|
||||||
let slice = self.map(&storage.slice, dev, layout)?;
|
|
||||||
let dst = crate::cuda_backend::CudaStorage {
|
|
||||||
slice,
|
|
||||||
device: dev.clone(),
|
|
||||||
};
|
|
||||||
Ok((dst, layout.shape().clone()))
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(feature = "metal")]
|
|
||||||
fn metal_fwd(
|
|
||||||
&self,
|
|
||||||
storage: &crate::MetalStorage,
|
|
||||||
layout: &crate::Layout,
|
|
||||||
) -> Result<(crate::MetalStorage, crate::Shape)> {
|
|
||||||
use crate::backend::BackendStorage;
|
|
||||||
use crate::DType;
|
|
||||||
|
|
||||||
let name = {
|
|
||||||
if self.asc {
|
|
||||||
match storage.dtype() {
|
|
||||||
DType::BF16 => "asort_asc_bf16",
|
|
||||||
DType::F16 => "asort_asc_f16",
|
|
||||||
DType::F32 => "asort_asc_f32",
|
|
||||||
DType::F64 => "asort_asc_f64",
|
|
||||||
DType::U8 => "asort_asc_u8",
|
|
||||||
DType::U32 => "asort_asc_u32",
|
|
||||||
DType::I64 => "asort_asc_i64",
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
match storage.dtype() {
|
|
||||||
DType::BF16 => "asort_desc_bf16",
|
|
||||||
DType::F16 => "asort_desc_f16",
|
|
||||||
DType::F32 => "asort_desc_f32",
|
|
||||||
DType::F64 => "asort_desc_f64",
|
|
||||||
DType::U8 => "asort_desc_u8",
|
|
||||||
DType::U32 => "asort_desc_u32",
|
|
||||||
DType::I64 => "asort_desc_i64",
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
let device = storage.device();
|
|
||||||
let kernels = device.kernels();
|
|
||||||
let command_buffer = device.command_buffer()?;
|
|
||||||
let el = layout.shape().elem_count();
|
|
||||||
let ncols = self.last_dim;
|
|
||||||
let nrows = el / ncols;
|
|
||||||
let src = crate::metal_backend::buffer_o(storage.buffer(), layout, storage.dtype());
|
|
||||||
let dst = device.new_buffer(el, DType::U32, "asort")?;
|
|
||||||
let mut ncols_pad = 1;
|
|
||||||
while ncols_pad < ncols {
|
|
||||||
ncols_pad *= 2;
|
|
||||||
}
|
|
||||||
candle_metal_kernels::call_arg_sort(
|
|
||||||
device.metal_device(),
|
|
||||||
&command_buffer,
|
|
||||||
kernels,
|
|
||||||
name,
|
|
||||||
nrows,
|
|
||||||
ncols,
|
|
||||||
ncols_pad,
|
|
||||||
src,
|
|
||||||
&dst,
|
|
||||||
)
|
|
||||||
.map_err(crate::Error::wrap)?;
|
|
||||||
let dst = crate::MetalStorage::new(dst, device.clone(), el, DType::U32);
|
|
||||||
Ok((dst, layout.shape().clone()))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[allow(unused)]
|
|
||||||
fn next_power_of_2(x: usize) -> usize {
|
|
||||||
let mut n = 1;
|
|
||||||
while n < x {
|
|
||||||
n *= 2
|
|
||||||
}
|
|
||||||
n
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Tensor {
|
|
||||||
/// Returns the indices that sort the tensor along the last dimension.
|
|
||||||
///
|
|
||||||
/// If `asc` is `true`, sorting is in ascending order. Otherwise sorting is performed in
|
|
||||||
/// descending order. The sort is unstable so there is no guarantees on the final order when it
|
|
||||||
/// comes to ties.
|
|
||||||
pub fn arg_sort_last_dim(&self, asc: bool) -> Result<Tensor> {
|
|
||||||
if !self.is_contiguous() {
|
|
||||||
return Err(crate::Error::RequiresContiguous {
|
|
||||||
op: "arg_sort_last_dim",
|
|
||||||
});
|
|
||||||
}
|
|
||||||
let last_dim = match self.dims().last() {
|
|
||||||
None => crate::bail!("empty last-dim in arg-sort"),
|
|
||||||
Some(last_dim) => *last_dim,
|
|
||||||
};
|
|
||||||
// No need for a backward pass for arg sort.
|
|
||||||
self.apply_op1_no_bwd(&ArgSort { asc, last_dim })
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Sorts the tensor along the last dimension, returns the sorted tensor together with the
|
|
||||||
/// sorted indexes.
|
|
||||||
///
|
|
||||||
/// If `asc` is `true`, sorting is in ascending order. Otherwise sorting is performed in
|
|
||||||
/// descending order. The sort is unstable so there is no guarantees on the final order when it
|
|
||||||
/// comes to ties.
|
|
||||||
pub fn sort_last_dim(&self, asc: bool) -> Result<(Tensor, Tensor)> {
|
|
||||||
if !self.is_contiguous() {
|
|
||||||
return Err(crate::Error::RequiresContiguous {
|
|
||||||
op: "sort_last_dim",
|
|
||||||
});
|
|
||||||
}
|
|
||||||
let asort = self.arg_sort_last_dim(asc)?;
|
|
||||||
let sorted = self.gather(&asort, crate::D::Minus1)?;
|
|
||||||
Ok((sorted, asort))
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,7 +1,6 @@
|
|||||||
use crate::backend::BackendStorage;
|
use crate::backend::BackendStorage;
|
||||||
use crate::op::{self, CmpOp, ReduceOp};
|
use crate::op::{self, CmpOp, CustomOp1, CustomOp2, CustomOp3, ReduceOp};
|
||||||
use crate::{CpuStorage, CudaStorage, DType, Device, Error, Layout, MetalStorage, Result, Shape};
|
use crate::{CpuStorage, CudaStorage, DType, Device, Error, Layout, Result, Shape};
|
||||||
use crate::{CustomOp1, CustomOp2, CustomOp3, InplaceOp1, InplaceOp2, InplaceOp3};
|
|
||||||
|
|
||||||
// We do not want to implement Clone on Storage as cloning may fail because of
|
// We do not want to implement Clone on Storage as cloning may fail because of
|
||||||
// out of memory. Instead try_clone should be used.
|
// out of memory. Instead try_clone should be used.
|
||||||
@ -9,7 +8,6 @@ use crate::{CustomOp1, CustomOp2, CustomOp3, InplaceOp1, InplaceOp2, InplaceOp3}
|
|||||||
pub enum Storage {
|
pub enum Storage {
|
||||||
Cpu(CpuStorage),
|
Cpu(CpuStorage),
|
||||||
Cuda(CudaStorage),
|
Cuda(CudaStorage),
|
||||||
Metal(MetalStorage),
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Storage {
|
impl Storage {
|
||||||
@ -20,10 +18,6 @@ impl Storage {
|
|||||||
let storage = storage.try_clone(layout)?;
|
let storage = storage.try_clone(layout)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
Self::Metal(storage) => {
|
|
||||||
let storage = storage.try_clone(layout)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -31,7 +25,6 @@ impl Storage {
|
|||||||
match self {
|
match self {
|
||||||
Self::Cpu(_) => Device::Cpu,
|
Self::Cpu(_) => Device::Cpu,
|
||||||
Self::Cuda(storage) => Device::Cuda(storage.device().clone()),
|
Self::Cuda(storage) => Device::Cuda(storage.device().clone()),
|
||||||
Self::Metal(storage) => Device::Metal(storage.device().clone()),
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -39,24 +32,13 @@ impl Storage {
|
|||||||
match self {
|
match self {
|
||||||
Self::Cpu(storage) => storage.dtype(),
|
Self::Cpu(storage) => storage.dtype(),
|
||||||
Self::Cuda(storage) => storage.dtype(),
|
Self::Cuda(storage) => storage.dtype(),
|
||||||
Self::Metal(storage) => storage.dtype(),
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub(crate) fn same_device(&self, rhs: &Self, op: &'static str) -> Result<()> {
|
pub(crate) fn same_device(&self, rhs: &Self, op: &'static str) -> Result<()> {
|
||||||
let lhs_device = self.device();
|
let lhs = self.device().location();
|
||||||
let rhs_device = rhs.device();
|
let rhs = rhs.device().location();
|
||||||
let lhs = lhs_device.location();
|
if lhs != rhs {
|
||||||
let rhs = rhs_device.location();
|
|
||||||
let same_device = if self.device().is_metal() {
|
|
||||||
// On metal, we require the device to be exactly the same rather than
|
|
||||||
// having the same location. In cuda this is not necessary as all CudaDevice on the
|
|
||||||
// same GPU will use the same cuda stream.
|
|
||||||
lhs_device.same_device(&rhs_device)
|
|
||||||
} else {
|
|
||||||
lhs == rhs
|
|
||||||
};
|
|
||||||
if !same_device {
|
|
||||||
Err(Error::DeviceMismatchBinaryOp { lhs, rhs, op }.bt())
|
Err(Error::DeviceMismatchBinaryOp { lhs, rhs, op }.bt())
|
||||||
} else {
|
} else {
|
||||||
Ok(())
|
Ok(())
|
||||||
@ -83,10 +65,6 @@ impl Storage {
|
|||||||
let storage = storage.affine(layout, mul, add)?;
|
let storage = storage.affine(layout, mul, add)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
Self::Metal(storage) => {
|
|
||||||
let storage = storage.affine(layout, mul, add)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -100,10 +78,6 @@ impl Storage {
|
|||||||
let storage = storage.powf(layout, alpha)?;
|
let storage = storage.powf(layout, alpha)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
Self::Metal(storage) => {
|
|
||||||
let storage = storage.powf(layout, alpha)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -117,10 +91,6 @@ impl Storage {
|
|||||||
let storage = storage.elu(layout, alpha)?;
|
let storage = storage.elu(layout, alpha)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
Self::Metal(storage) => {
|
|
||||||
let storage = storage.elu(layout, alpha)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -142,10 +112,6 @@ impl Storage {
|
|||||||
let storage = lhs.cmp(op, rhs, lhs_layout, rhs_layout)?;
|
let storage = lhs.cmp(op, rhs, lhs_layout, rhs_layout)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
(Self::Metal(lhs), Self::Metal(rhs)) => {
|
|
||||||
let storage = lhs.cmp(op, rhs, lhs_layout, rhs_layout)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
(lhs, rhs) => {
|
(lhs, rhs) => {
|
||||||
// Should not happen because of the same device check above but we're defensive
|
// Should not happen because of the same device check above but we're defensive
|
||||||
// anyway.
|
// anyway.
|
||||||
@ -169,10 +135,6 @@ impl Storage {
|
|||||||
let storage = storage.reduce_op(op, layout, s)?;
|
let storage = storage.reduce_op(op, layout, s)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
Self::Metal(storage) => {
|
|
||||||
let storage = storage.reduce_op(op, layout, s)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -186,10 +148,6 @@ impl Storage {
|
|||||||
let storage = storage.to_dtype(layout, dtype)?;
|
let storage = storage.to_dtype(layout, dtype)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
Self::Metal(storage) => {
|
|
||||||
let storage = storage.to_dtype(layout, dtype)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -203,10 +161,6 @@ impl Storage {
|
|||||||
let (storage, shape) = c.cuda_fwd(storage, l)?;
|
let (storage, shape) = c.cuda_fwd(storage, l)?;
|
||||||
Ok((Self::Cuda(storage), shape))
|
Ok((Self::Cuda(storage), shape))
|
||||||
}
|
}
|
||||||
Self::Metal(storage) => {
|
|
||||||
let (storage, shape) = c.metal_fwd(storage, l)?;
|
|
||||||
Ok((Self::Metal(storage), shape))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -227,10 +181,6 @@ impl Storage {
|
|||||||
let (s, shape) = c.cuda_fwd(s1, l1, s2, l2)?;
|
let (s, shape) = c.cuda_fwd(s1, l1, s2, l2)?;
|
||||||
Ok((Self::Cuda(s), shape))
|
Ok((Self::Cuda(s), shape))
|
||||||
}
|
}
|
||||||
(Self::Metal(s1), Self::Metal(s2)) => {
|
|
||||||
let (s, shape) = c.metal_fwd(s1, l1, s2, l2)?;
|
|
||||||
Ok((Self::Metal(s), shape))
|
|
||||||
}
|
|
||||||
_ => unreachable!(),
|
_ => unreachable!(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -255,55 +205,6 @@ impl Storage {
|
|||||||
let (s, shape) = c.cuda_fwd(s1, l1, s2, l2, s3, l3)?;
|
let (s, shape) = c.cuda_fwd(s1, l1, s2, l2, s3, l3)?;
|
||||||
Ok((Self::Cuda(s), shape))
|
Ok((Self::Cuda(s), shape))
|
||||||
}
|
}
|
||||||
(Self::Metal(s1), Self::Metal(s2), Self::Metal(s3)) => {
|
|
||||||
let (s, shape) = c.metal_fwd(s1, l1, s2, l2, s3, l3)?;
|
|
||||||
Ok((Self::Metal(s), shape))
|
|
||||||
}
|
|
||||||
_ => unreachable!(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub(crate) fn inplace_op1(&mut self, l: &Layout, c: &dyn InplaceOp1) -> Result<()> {
|
|
||||||
match self {
|
|
||||||
Self::Cpu(storage) => c.cpu_fwd(storage, l),
|
|
||||||
Self::Cuda(storage) => c.cuda_fwd(storage, l),
|
|
||||||
Self::Metal(storage) => c.metal_fwd(storage, l),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub(crate) fn inplace_op2(
|
|
||||||
&mut self,
|
|
||||||
l1: &Layout,
|
|
||||||
t2: &Self,
|
|
||||||
l2: &Layout,
|
|
||||||
c: &dyn InplaceOp2,
|
|
||||||
) -> Result<()> {
|
|
||||||
self.same_device(t2, c.name())?;
|
|
||||||
match (self, t2) {
|
|
||||||
(Self::Cpu(s1), Self::Cpu(s2)) => c.cpu_fwd(s1, l1, s2, l2),
|
|
||||||
(Self::Cuda(s1), Self::Cuda(s2)) => c.cuda_fwd(s1, l1, s2, l2),
|
|
||||||
(Self::Metal(s1), Self::Metal(s2)) => c.metal_fwd(s1, l1, s2, l2),
|
|
||||||
_ => unreachable!(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub(crate) fn inplace_op3(
|
|
||||||
&mut self,
|
|
||||||
l1: &Layout,
|
|
||||||
t2: &Self,
|
|
||||||
l2: &Layout,
|
|
||||||
t3: &Self,
|
|
||||||
l3: &Layout,
|
|
||||||
c: &dyn InplaceOp3,
|
|
||||||
) -> Result<()> {
|
|
||||||
self.same_device(t2, c.name())?;
|
|
||||||
self.same_device(t3, c.name())?;
|
|
||||||
match (self, t2, t3) {
|
|
||||||
(Self::Cpu(s1), Self::Cpu(s2), Self::Cpu(s3)) => c.cpu_fwd(s1, l1, s2, l2, s3, l3),
|
|
||||||
(Self::Cuda(s1), Self::Cuda(s2), Self::Cuda(s3)) => c.cuda_fwd(s1, l1, s2, l2, s3, l3),
|
|
||||||
(Self::Metal(s1), Self::Metal(s2), Self::Metal(s3)) => {
|
|
||||||
c.metal_fwd(s1, l1, s2, l2, s3, l3)
|
|
||||||
}
|
|
||||||
_ => unreachable!(),
|
_ => unreachable!(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -318,10 +219,6 @@ impl Storage {
|
|||||||
let storage = storage.unary_impl::<B>(layout)?;
|
let storage = storage.unary_impl::<B>(layout)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
Self::Metal(storage) => {
|
|
||||||
let storage = storage.unary_impl::<B>(layout)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -342,10 +239,6 @@ impl Storage {
|
|||||||
let storage = lhs.binary_impl::<B>(rhs, lhs_layout, rhs_layout)?;
|
let storage = lhs.binary_impl::<B>(rhs, lhs_layout, rhs_layout)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
(Self::Metal(lhs), Self::Metal(rhs)) => {
|
|
||||||
let storage = lhs.binary_impl::<B>(rhs, lhs_layout, rhs_layout)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
(lhs, rhs) => {
|
(lhs, rhs) => {
|
||||||
// Should not happen because of the same device check above but we're defensive
|
// Should not happen because of the same device check above but we're defensive
|
||||||
// anyway.
|
// anyway.
|
||||||
@ -377,10 +270,6 @@ impl Storage {
|
|||||||
let s = inp.conv1d(l, kernel, kernel_l, params)?;
|
let s = inp.conv1d(l, kernel, kernel_l, params)?;
|
||||||
Ok(Self::Cuda(s))
|
Ok(Self::Cuda(s))
|
||||||
}
|
}
|
||||||
(Storage::Metal(inp), Storage::Metal(kernel)) => {
|
|
||||||
let s = inp.conv1d(l, kernel, kernel_l, params)?;
|
|
||||||
Ok(Self::Metal(s))
|
|
||||||
}
|
|
||||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||||
lhs: lhs.device().location(),
|
lhs: lhs.device().location(),
|
||||||
rhs: rhs.device().location(),
|
rhs: rhs.device().location(),
|
||||||
@ -390,37 +279,6 @@ impl Storage {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub(crate) fn conv_transpose1d(
|
|
||||||
&self,
|
|
||||||
l: &Layout,
|
|
||||||
kernel: &Self,
|
|
||||||
kernel_l: &Layout,
|
|
||||||
params: &crate::conv::ParamsConvTranspose1D,
|
|
||||||
) -> Result<Self> {
|
|
||||||
self.same_device(kernel, "conv-transpose1d")?;
|
|
||||||
self.same_dtype(kernel, "conv-transpose1d")?;
|
|
||||||
match (self, &kernel) {
|
|
||||||
(Storage::Cpu(inp), Storage::Cpu(kernel)) => {
|
|
||||||
let s = inp.conv_transpose1d(l, kernel, kernel_l, params)?;
|
|
||||||
Ok(Self::Cpu(s))
|
|
||||||
}
|
|
||||||
(Storage::Cuda(inp), Storage::Cuda(kernel)) => {
|
|
||||||
let s = inp.conv_transpose1d(l, kernel, kernel_l, params)?;
|
|
||||||
Ok(Self::Cuda(s))
|
|
||||||
}
|
|
||||||
(Storage::Metal(inp), Storage::Metal(kernel)) => {
|
|
||||||
let s = inp.conv_transpose1d(l, kernel, kernel_l, params)?;
|
|
||||||
Ok(Self::Metal(s))
|
|
||||||
}
|
|
||||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
|
||||||
lhs: lhs.device().location(),
|
|
||||||
rhs: rhs.device().location(),
|
|
||||||
op: "conv-transpose1d",
|
|
||||||
}
|
|
||||||
.bt()),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub(crate) fn conv2d(
|
pub(crate) fn conv2d(
|
||||||
&self,
|
&self,
|
||||||
l: &Layout,
|
l: &Layout,
|
||||||
@ -439,10 +297,6 @@ impl Storage {
|
|||||||
let s = inp.conv2d(l, kernel, kernel_l, params)?;
|
let s = inp.conv2d(l, kernel, kernel_l, params)?;
|
||||||
Ok(Self::Cuda(s))
|
Ok(Self::Cuda(s))
|
||||||
}
|
}
|
||||||
(Storage::Metal(inp), Storage::Metal(kernel)) => {
|
|
||||||
let s = inp.conv2d(l, kernel, kernel_l, params)?;
|
|
||||||
Ok(Self::Metal(s))
|
|
||||||
}
|
|
||||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||||
lhs: lhs.device().location(),
|
lhs: lhs.device().location(),
|
||||||
rhs: rhs.device().location(),
|
rhs: rhs.device().location(),
|
||||||
@ -470,10 +324,6 @@ impl Storage {
|
|||||||
let s = inp.conv_transpose2d(l, kernel, kernel_l, params)?;
|
let s = inp.conv_transpose2d(l, kernel, kernel_l, params)?;
|
||||||
Ok(Self::Cuda(s))
|
Ok(Self::Cuda(s))
|
||||||
}
|
}
|
||||||
(Storage::Metal(inp), Storage::Metal(kernel)) => {
|
|
||||||
let s = inp.conv_transpose2d(l, kernel, kernel_l, params)?;
|
|
||||||
Ok(Self::Metal(s))
|
|
||||||
}
|
|
||||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||||
lhs: lhs.device().location(),
|
lhs: lhs.device().location(),
|
||||||
rhs: rhs.device().location(),
|
rhs: rhs.device().location(),
|
||||||
@ -498,10 +348,6 @@ impl Storage {
|
|||||||
let storage = storage.avg_pool2d(layout, kernel_size, stride)?;
|
let storage = storage.avg_pool2d(layout, kernel_size, stride)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
Self::Metal(storage) => {
|
|
||||||
let storage = storage.avg_pool2d(layout, kernel_size, stride)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -520,27 +366,6 @@ impl Storage {
|
|||||||
let storage = storage.max_pool2d(layout, kernel_size, stride)?;
|
let storage = storage.max_pool2d(layout, kernel_size, stride)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
Self::Metal(storage) => {
|
|
||||||
let storage = storage.max_pool2d(layout, kernel_size, stride)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub(crate) fn upsample_nearest1d(&self, layout: &Layout, sz: usize) -> Result<Self> {
|
|
||||||
match self {
|
|
||||||
Storage::Cpu(storage) => {
|
|
||||||
let storage = storage.upsample_nearest1d(layout, sz)?;
|
|
||||||
Ok(Self::Cpu(storage))
|
|
||||||
}
|
|
||||||
Self::Cuda(storage) => {
|
|
||||||
let storage = storage.upsample_nearest1d(layout, sz)?;
|
|
||||||
Ok(Self::Cuda(storage))
|
|
||||||
}
|
|
||||||
Self::Metal(storage) => {
|
|
||||||
let storage = storage.upsample_nearest1d(layout, sz)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -554,10 +379,6 @@ impl Storage {
|
|||||||
let storage = storage.upsample_nearest2d(layout, h, w)?;
|
let storage = storage.upsample_nearest2d(layout, h, w)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
Self::Metal(storage) => {
|
|
||||||
let storage = storage.upsample_nearest2d(layout, h, w)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -581,10 +402,6 @@ impl Storage {
|
|||||||
let storage = cond.where_cond(layout, t, layout_t, f, layout_f)?;
|
let storage = cond.where_cond(layout, t, layout_t, f, layout_f)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
(Self::Metal(cond), Self::Metal(t), Self::Metal(f)) => {
|
|
||||||
let storage = cond.where_cond(layout, t, layout_t, f, layout_f)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
(_, lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
(_, lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||||
lhs: lhs.device().location(),
|
lhs: lhs.device().location(),
|
||||||
rhs: rhs.device().location(),
|
rhs: rhs.device().location(),
|
||||||
@ -611,10 +428,6 @@ impl Storage {
|
|||||||
let storage = s.gather(l, indexes, indexes_l, d)?;
|
let storage = s.gather(l, indexes, indexes_l, d)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
(Self::Metal(s), Self::Metal(indexes)) => {
|
|
||||||
let storage = s.gather(l, indexes, indexes_l, d)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
_ => unreachable!(),
|
_ => unreachable!(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -639,10 +452,6 @@ impl Storage {
|
|||||||
let storage = s.scatter_add(l, indexes, indexes_l, source, source_l, d)?;
|
let storage = s.scatter_add(l, indexes, indexes_l, source, source_l, d)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
(Self::Metal(s), Self::Metal(indexes), Self::Metal(source)) => {
|
|
||||||
let storage = s.scatter_add(l, indexes, indexes_l, source, source_l, d)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
_ => unreachable!(),
|
_ => unreachable!(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -667,10 +476,6 @@ impl Storage {
|
|||||||
let storage = s.index_add(l, indexes, indexes_l, source, source_l, d)?;
|
let storage = s.index_add(l, indexes, indexes_l, source, source_l, d)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
(Self::Metal(s), Self::Metal(indexes), Self::Metal(source)) => {
|
|
||||||
let storage = s.index_add(l, indexes, indexes_l, source, source_l, d)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
_ => unreachable!(),
|
_ => unreachable!(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -692,10 +497,6 @@ impl Storage {
|
|||||||
let storage = lhs.index_select(rhs, lhs_l, rhs_l, d)?;
|
let storage = lhs.index_select(rhs, lhs_l, rhs_l, d)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
(Self::Metal(lhs), Self::Metal(rhs)) => {
|
|
||||||
let storage = lhs.index_select(rhs, lhs_l, rhs_l, d)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||||
lhs: lhs.device().location(),
|
lhs: lhs.device().location(),
|
||||||
rhs: rhs.device().location(),
|
rhs: rhs.device().location(),
|
||||||
@ -723,10 +524,6 @@ impl Storage {
|
|||||||
let storage = lhs.matmul(rhs, bmnk, lhs_layout, rhs_layout)?;
|
let storage = lhs.matmul(rhs, bmnk, lhs_layout, rhs_layout)?;
|
||||||
Ok(Self::Cuda(storage))
|
Ok(Self::Cuda(storage))
|
||||||
}
|
}
|
||||||
(Self::Metal(lhs), Self::Metal(rhs)) => {
|
|
||||||
let storage = lhs.matmul(rhs, bmnk, lhs_layout, rhs_layout)?;
|
|
||||||
Ok(Self::Metal(storage))
|
|
||||||
}
|
|
||||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||||
lhs: lhs.device().location(),
|
lhs: lhs.device().location(),
|
||||||
rhs: rhs.device().location(),
|
rhs: rhs.device().location(),
|
||||||
@ -746,9 +543,6 @@ impl Storage {
|
|||||||
match (self, dst) {
|
match (self, dst) {
|
||||||
(Self::Cpu(src), Self::Cpu(dst)) => src.copy_strided_src(dst, dst_offset, src_l),
|
(Self::Cpu(src), Self::Cpu(dst)) => src.copy_strided_src(dst, dst_offset, src_l),
|
||||||
(Self::Cuda(src), Self::Cuda(dst)) => Ok(src.copy_strided_src(dst, dst_offset, src_l)?),
|
(Self::Cuda(src), Self::Cuda(dst)) => Ok(src.copy_strided_src(dst, dst_offset, src_l)?),
|
||||||
(Self::Metal(src), Self::Metal(dst)) => {
|
|
||||||
Ok(src.copy_strided_src(dst, dst_offset, src_l)?)
|
|
||||||
}
|
|
||||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
||||||
lhs: lhs.device().location(),
|
lhs: lhs.device().location(),
|
||||||
rhs: rhs.device().location(),
|
rhs: rhs.device().location(),
|
||||||
@ -757,32 +551,4 @@ impl Storage {
|
|||||||
.bt()),
|
.bt()),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[allow(clippy::too_many_arguments)]
|
|
||||||
pub(crate) fn copy2d(
|
|
||||||
&self,
|
|
||||||
dst: &mut Self,
|
|
||||||
d1: usize,
|
|
||||||
d2: usize,
|
|
||||||
src_s: usize,
|
|
||||||
dst_s: usize,
|
|
||||||
src_o: usize,
|
|
||||||
dst_o: usize,
|
|
||||||
) -> Result<()> {
|
|
||||||
match (self, dst) {
|
|
||||||
(Self::Cpu(src), Self::Cpu(dst)) => src.copy2d(dst, d1, d2, src_s, dst_s, src_o, dst_o),
|
|
||||||
(Self::Cuda(src), Self::Cuda(dst)) => {
|
|
||||||
Ok(src.copy2d(dst, d1, d2, src_s, dst_s, src_o, dst_o)?)
|
|
||||||
}
|
|
||||||
(Self::Metal(src), Self::Metal(dst)) => {
|
|
||||||
Ok(src.copy2d(dst, d1, d2, src_s, dst_s, src_o, dst_o)?)
|
|
||||||
}
|
|
||||||
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
|
|
||||||
lhs: lhs.device().location(),
|
|
||||||
rhs: rhs.device().location(),
|
|
||||||
op: "copy2d",
|
|
||||||
}
|
|
||||||
.bt()),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
@ -1,208 +0,0 @@
|
|||||||
//! StreamTensror useful for streaming ops.
|
|
||||||
//!
|
|
||||||
use crate::{Result, Shape, Tensor};
|
|
||||||
|
|
||||||
pub trait Dim: crate::shape::Dim + Copy {}
|
|
||||||
impl<T: crate::shape::Dim + Copy> Dim for T {}
|
|
||||||
|
|
||||||
/// A stream tensor is used in streaming module. It can either contain an actual tensor or be
|
|
||||||
/// empty.
|
|
||||||
#[derive(Clone)]
|
|
||||||
pub struct StreamTensor(Option<Tensor>);
|
|
||||||
|
|
||||||
impl std::fmt::Debug for StreamTensor {
|
|
||||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
||||||
match &self.0 {
|
|
||||||
Some(t) => write!(f, "{:?}", t.shape()),
|
|
||||||
None => write!(f, "Empty"),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl std::convert::From<Option<Tensor>> for StreamTensor {
|
|
||||||
fn from(value: Option<Tensor>) -> Self {
|
|
||||||
Self(value)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl std::convert::From<Tensor> for StreamTensor {
|
|
||||||
fn from(value: Tensor) -> Self {
|
|
||||||
Self(Some(value))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl std::convert::From<()> for StreamTensor {
|
|
||||||
fn from(_value: ()) -> Self {
|
|
||||||
Self(None)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl StreamTensor {
|
|
||||||
pub fn empty() -> Self {
|
|
||||||
Self(None)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn from_tensor(tensor: Tensor) -> Self {
|
|
||||||
Self(Some(tensor))
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn shape(&self) -> Option<&Shape> {
|
|
||||||
self.0.as_ref().map(|t| t.shape())
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn cat2<D: Dim>(&self, rhs: &Self, dim: D) -> Result<Self> {
|
|
||||||
let xs = match (&self.0, &rhs.0) {
|
|
||||||
(Some(lhs), Some(rhs)) => {
|
|
||||||
let xs = Tensor::cat(&[lhs, rhs], dim)?;
|
|
||||||
Some(xs)
|
|
||||||
}
|
|
||||||
(Some(xs), None) | (None, Some(xs)) => Some(xs.clone()),
|
|
||||||
(None, None) => None,
|
|
||||||
};
|
|
||||||
Ok(Self(xs))
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn seq_len<D: Dim>(&self, dim: D) -> Result<usize> {
|
|
||||||
match &self.0 {
|
|
||||||
None => Ok(0),
|
|
||||||
Some(v) => v.dim(dim),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn reset(&mut self) {
|
|
||||||
self.0 = None
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn narrow<D: Dim>(&self, dim: D, offset: usize, len: usize) -> Result<StreamTensor> {
|
|
||||||
let t = match &self.0 {
|
|
||||||
None => None,
|
|
||||||
Some(t) => {
|
|
||||||
let seq_len = t.dim(dim)?;
|
|
||||||
if seq_len <= offset {
|
|
||||||
None
|
|
||||||
} else {
|
|
||||||
let t = t.narrow(dim, offset, usize::min(len, seq_len - offset))?;
|
|
||||||
Some(t)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
Ok(Self(t))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Splits the Streaming Tensor on the time axis `dim` with the first `lhs_len` elements
|
|
||||||
/// returned in the first output and the remaining in the second output.
|
|
||||||
pub fn split<D: Dim>(&self, dim: D, lhs_len: usize) -> Result<(Self, Self)> {
|
|
||||||
match &self.0 {
|
|
||||||
None => Ok((Self::empty(), Self::empty())),
|
|
||||||
Some(t) => {
|
|
||||||
let seq_len = t.dim(dim)?;
|
|
||||||
let lhs_len = usize::min(seq_len, lhs_len);
|
|
||||||
if lhs_len == 0 {
|
|
||||||
Ok((Self::empty(), t.clone().into()))
|
|
||||||
} else {
|
|
||||||
let lhs = Self::from_tensor(t.narrow(dim, 0, lhs_len)?);
|
|
||||||
let rhs_len = seq_len - lhs_len;
|
|
||||||
let rhs = if rhs_len == 0 {
|
|
||||||
Self::empty()
|
|
||||||
} else {
|
|
||||||
Self::from_tensor(t.narrow(dim, lhs_len, rhs_len)?)
|
|
||||||
};
|
|
||||||
Ok((lhs, rhs))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn as_option(&self) -> Option<&Tensor> {
|
|
||||||
self.0.as_ref()
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn apply<M: crate::Module>(&self, m: &M) -> Result<Self> {
|
|
||||||
match &self.0 {
|
|
||||||
None => Ok(Self::empty()),
|
|
||||||
Some(t) => Ok(Self::from_tensor(t.apply(m)?)),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Streaming modules take as input a stream tensor and return a stream tensor. They may perform
|
|
||||||
/// some internal buffering so that enough data has been received for the module to be able to
|
|
||||||
/// perform some operations.
|
|
||||||
pub trait StreamingModule {
|
|
||||||
// TODO: Should we also have a flush method?
|
|
||||||
fn step(&mut self, xs: &StreamTensor) -> Result<StreamTensor>;
|
|
||||||
fn reset_state(&mut self);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
|
||||||
pub enum BinOp {
|
|
||||||
Add,
|
|
||||||
Mul,
|
|
||||||
Sub,
|
|
||||||
Div,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Clone)]
|
|
||||||
pub struct StreamingBinOp {
|
|
||||||
prev_lhs: StreamTensor,
|
|
||||||
prev_rhs: StreamTensor,
|
|
||||||
pub op: BinOp,
|
|
||||||
pub dim: crate::D,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl StreamingBinOp {
|
|
||||||
pub fn new(op: BinOp, dim: crate::D) -> Self {
|
|
||||||
Self {
|
|
||||||
prev_lhs: StreamTensor::empty(),
|
|
||||||
prev_rhs: StreamTensor::empty(),
|
|
||||||
op,
|
|
||||||
dim,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn reset_state(&mut self) {
|
|
||||||
self.prev_lhs.reset();
|
|
||||||
self.prev_rhs.reset();
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn forward(&self, lhs: &Tensor, rhs: &Tensor) -> Result<Tensor> {
|
|
||||||
match self.op {
|
|
||||||
BinOp::Add => Tensor::add(lhs, rhs),
|
|
||||||
BinOp::Mul => Tensor::mul(lhs, rhs),
|
|
||||||
BinOp::Sub => Tensor::sub(lhs, rhs),
|
|
||||||
BinOp::Div => Tensor::div(lhs, rhs),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn step(&mut self, lhs: &StreamTensor, rhs: &StreamTensor) -> Result<StreamTensor> {
|
|
||||||
let lhs = StreamTensor::cat2(&self.prev_lhs, lhs, self.dim)?;
|
|
||||||
let rhs = StreamTensor::cat2(&self.prev_rhs, rhs, self.dim)?;
|
|
||||||
let lhs_len = lhs.seq_len(self.dim)?;
|
|
||||||
let rhs_len = rhs.seq_len(self.dim)?;
|
|
||||||
let common_len = usize::min(lhs_len, rhs_len);
|
|
||||||
let (lhs, prev_lhs) = lhs.split(self.dim, common_len)?;
|
|
||||||
let (rhs, prev_rhs) = rhs.split(self.dim, common_len)?;
|
|
||||||
let ys = match (lhs.0, rhs.0) {
|
|
||||||
(Some(lhs), Some(rhs)) => {
|
|
||||||
let ys = self.forward(&lhs, &rhs)?;
|
|
||||||
StreamTensor::from_tensor(ys)
|
|
||||||
}
|
|
||||||
(None, None) => StreamTensor::empty(),
|
|
||||||
(lhs, rhs) => crate::bail!("INTERNAL ERROR inconsistent lhs and rhs {lhs:?} {rhs:?}"),
|
|
||||||
};
|
|
||||||
self.prev_lhs = prev_lhs;
|
|
||||||
self.prev_rhs = prev_rhs;
|
|
||||||
Ok(ys)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Simple wrapper that doesn't do any buffering.
|
|
||||||
pub struct Map<T: crate::Module>(T);
|
|
||||||
|
|
||||||
impl<T: crate::Module> StreamingModule for Map<T> {
|
|
||||||
fn reset_state(&mut self) {}
|
|
||||||
|
|
||||||
fn step(&mut self, xs: &StreamTensor) -> Result<StreamTensor> {
|
|
||||||
xs.apply(&self.0)
|
|
||||||
}
|
|
||||||
}
|
|
@ -32,11 +32,14 @@ impl<'a> StridedIndex<'a> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Iterator for StridedIndex<'_> {
|
impl<'a> Iterator for StridedIndex<'a> {
|
||||||
type Item = usize;
|
type Item = usize;
|
||||||
|
|
||||||
fn next(&mut self) -> Option<Self::Item> {
|
fn next(&mut self) -> Option<Self::Item> {
|
||||||
let storage_index = self.next_storage_index?;
|
let storage_index = match self.next_storage_index {
|
||||||
|
None => return None,
|
||||||
|
Some(storage_index) => storage_index,
|
||||||
|
};
|
||||||
let mut updated = false;
|
let mut updated = false;
|
||||||
let mut next_storage_index = storage_index;
|
let mut next_storage_index = storage_index;
|
||||||
for ((multi_i, max_i), stride_i) in self
|
for ((multi_i, max_i), stride_i) in self
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -1,303 +0,0 @@
|
|||||||
use crate::{shape::Dim, Context, Error, Result, Shape, Tensor};
|
|
||||||
|
|
||||||
impl Tensor {
|
|
||||||
/// Concatenates two or more tensors along a particular dimension.
|
|
||||||
///
|
|
||||||
/// All tensors must of the same rank, and the output will have
|
|
||||||
/// the same rank
|
|
||||||
///
|
|
||||||
/// ```rust
|
|
||||||
/// # use candle_core::{Tensor, DType, Device};
|
|
||||||
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
|
|
||||||
/// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
|
|
||||||
///
|
|
||||||
/// let c = Tensor::cat(&[&a, &b], 0)?;
|
|
||||||
/// assert_eq!(c.shape().dims(), &[4, 3]);
|
|
||||||
///
|
|
||||||
/// let c = Tensor::cat(&[&a, &b], 1)?;
|
|
||||||
/// assert_eq!(c.shape().dims(), &[2, 6]);
|
|
||||||
/// # Ok::<(), candle_core::Error>(())
|
|
||||||
/// ```
|
|
||||||
pub fn cat<A: AsRef<Tensor>, D: Dim>(args: &[A], dim: D) -> Result<Self> {
|
|
||||||
if args.is_empty() {
|
|
||||||
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
|
|
||||||
}
|
|
||||||
let arg0 = args[0].as_ref();
|
|
||||||
if args.len() == 1 {
|
|
||||||
return Ok(arg0.clone());
|
|
||||||
}
|
|
||||||
let dim = dim.to_index(arg0.shape(), "cat")?;
|
|
||||||
for arg in args {
|
|
||||||
arg.as_ref().check_dim(dim, "cat")?;
|
|
||||||
}
|
|
||||||
for (arg_idx, arg) in args.iter().enumerate() {
|
|
||||||
let arg = arg.as_ref();
|
|
||||||
if arg0.rank() != arg.rank() {
|
|
||||||
Err(Error::UnexpectedNumberOfDims {
|
|
||||||
expected: arg0.rank(),
|
|
||||||
got: arg.rank(),
|
|
||||||
shape: arg.shape().clone(),
|
|
||||||
}
|
|
||||||
.bt())?
|
|
||||||
}
|
|
||||||
for (dim_idx, (v1, v2)) in arg0
|
|
||||||
.shape()
|
|
||||||
.dims()
|
|
||||||
.iter()
|
|
||||||
.zip(arg.shape().dims().iter())
|
|
||||||
.enumerate()
|
|
||||||
{
|
|
||||||
if dim_idx != dim && v1 != v2 {
|
|
||||||
Err(Error::ShapeMismatchCat {
|
|
||||||
dim: dim_idx,
|
|
||||||
first_shape: arg0.shape().clone(),
|
|
||||||
n: arg_idx + 1,
|
|
||||||
nth_shape: arg.shape().clone(),
|
|
||||||
}
|
|
||||||
.bt())?
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
let all_contiguous = args.iter().all(|v| v.as_ref().is_contiguous());
|
|
||||||
if all_contiguous {
|
|
||||||
Self::cat_contiguous(args, dim)
|
|
||||||
} else if dim == 0 {
|
|
||||||
Self::cat0(args)
|
|
||||||
} else {
|
|
||||||
let args: Vec<Tensor> = args
|
|
||||||
.iter()
|
|
||||||
.map(|a| a.as_ref().transpose(0, dim))
|
|
||||||
.collect::<Result<Vec<_>>>()?;
|
|
||||||
let cat = Self::cat0(&args)?;
|
|
||||||
cat.transpose(0, dim)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn cat0<A: AsRef<Tensor>>(args: &[A]) -> Result<Self> {
|
|
||||||
if args.is_empty() {
|
|
||||||
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
|
|
||||||
}
|
|
||||||
let arg0 = args[0].as_ref();
|
|
||||||
if args.len() == 1 {
|
|
||||||
return Ok(arg0.clone());
|
|
||||||
}
|
|
||||||
let rank = arg0.rank();
|
|
||||||
let device = arg0.device();
|
|
||||||
let dtype = arg0.dtype();
|
|
||||||
let first_dims = arg0.shape().dims();
|
|
||||||
let mut cat_dims = first_dims.to_vec();
|
|
||||||
cat_dims[0] = 0;
|
|
||||||
let mut offsets = vec![0usize];
|
|
||||||
for (arg_idx, arg) in args.iter().enumerate() {
|
|
||||||
let arg = arg.as_ref();
|
|
||||||
if arg.dtype() != dtype {
|
|
||||||
Err(Error::DTypeMismatchBinaryOp {
|
|
||||||
lhs: dtype,
|
|
||||||
rhs: arg.dtype(),
|
|
||||||
op: "cat",
|
|
||||||
}
|
|
||||||
.bt())?
|
|
||||||
}
|
|
||||||
if arg.device().location() != device.location() {
|
|
||||||
Err(Error::DeviceMismatchBinaryOp {
|
|
||||||
lhs: device.location(),
|
|
||||||
rhs: arg.device().location(),
|
|
||||||
op: "cat",
|
|
||||||
}
|
|
||||||
.bt())?
|
|
||||||
}
|
|
||||||
if rank != arg.rank() {
|
|
||||||
Err(Error::UnexpectedNumberOfDims {
|
|
||||||
expected: rank,
|
|
||||||
got: arg.rank(),
|
|
||||||
shape: arg.shape().clone(),
|
|
||||||
}
|
|
||||||
.bt())?
|
|
||||||
}
|
|
||||||
for (dim_idx, (v1, v2)) in arg0
|
|
||||||
.shape()
|
|
||||||
.dims()
|
|
||||||
.iter()
|
|
||||||
.zip(arg.shape().dims().iter())
|
|
||||||
.enumerate()
|
|
||||||
{
|
|
||||||
if dim_idx == 0 {
|
|
||||||
cat_dims[0] += v2;
|
|
||||||
}
|
|
||||||
if dim_idx != 0 && v1 != v2 {
|
|
||||||
Err(Error::ShapeMismatchCat {
|
|
||||||
dim: dim_idx,
|
|
||||||
first_shape: arg0.shape().clone(),
|
|
||||||
n: arg_idx + 1,
|
|
||||||
nth_shape: arg.shape().clone(),
|
|
||||||
}
|
|
||||||
.bt())?
|
|
||||||
}
|
|
||||||
}
|
|
||||||
let next_offset = offsets.last().context("empty offsets")? + arg.elem_count();
|
|
||||||
offsets.push(next_offset);
|
|
||||||
}
|
|
||||||
let shape = Shape::from(cat_dims);
|
|
||||||
let op = crate::op::BackpropOp::new(args, |args| crate::op::Op::Cat(args, 0));
|
|
||||||
let mut storage = unsafe { device.alloc_uninit(&shape, dtype)? };
|
|
||||||
for (arg, &offset) in args.iter().zip(offsets.iter()) {
|
|
||||||
let arg = arg.as_ref();
|
|
||||||
arg.storage()
|
|
||||||
.copy_strided_src(&mut storage, offset, arg.layout())?;
|
|
||||||
}
|
|
||||||
Ok(crate::tensor::from_storage(storage, shape, op, false))
|
|
||||||
}
|
|
||||||
|
|
||||||
fn cat_contiguous<A: AsRef<Tensor>>(args: &[A], dim: usize) -> Result<Self> {
|
|
||||||
if args.is_empty() {
|
|
||||||
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
|
|
||||||
}
|
|
||||||
let arg0 = args[0].as_ref();
|
|
||||||
if args.len() == 1 {
|
|
||||||
return Ok(arg0.clone());
|
|
||||||
}
|
|
||||||
let rank = arg0.rank();
|
|
||||||
let device = arg0.device();
|
|
||||||
let dtype = arg0.dtype();
|
|
||||||
let first_dims = arg0.shape().dims();
|
|
||||||
let mut cat_dims = first_dims.to_vec();
|
|
||||||
cat_dims[dim] = 0;
|
|
||||||
for (arg_idx, arg) in args.iter().enumerate() {
|
|
||||||
let arg = arg.as_ref();
|
|
||||||
if arg.dtype() != dtype {
|
|
||||||
Err(Error::DTypeMismatchBinaryOp {
|
|
||||||
lhs: dtype,
|
|
||||||
rhs: arg.dtype(),
|
|
||||||
op: "cat",
|
|
||||||
}
|
|
||||||
.bt())?
|
|
||||||
}
|
|
||||||
if arg.device().location() != device.location() {
|
|
||||||
Err(Error::DeviceMismatchBinaryOp {
|
|
||||||
lhs: device.location(),
|
|
||||||
rhs: arg.device().location(),
|
|
||||||
op: "cat",
|
|
||||||
}
|
|
||||||
.bt())?
|
|
||||||
}
|
|
||||||
if rank != arg.rank() {
|
|
||||||
Err(Error::UnexpectedNumberOfDims {
|
|
||||||
expected: rank,
|
|
||||||
got: arg.rank(),
|
|
||||||
shape: arg.shape().clone(),
|
|
||||||
}
|
|
||||||
.bt())?
|
|
||||||
}
|
|
||||||
for (dim_idx, (v1, v2)) in arg0
|
|
||||||
.shape()
|
|
||||||
.dims()
|
|
||||||
.iter()
|
|
||||||
.zip(arg.shape().dims().iter())
|
|
||||||
.enumerate()
|
|
||||||
{
|
|
||||||
if dim_idx == dim {
|
|
||||||
cat_dims[dim] += v2;
|
|
||||||
}
|
|
||||||
if dim_idx != dim && v1 != v2 {
|
|
||||||
Err(Error::ShapeMismatchCat {
|
|
||||||
dim: dim_idx,
|
|
||||||
first_shape: arg0.shape().clone(),
|
|
||||||
n: arg_idx + 1,
|
|
||||||
nth_shape: arg.shape().clone(),
|
|
||||||
}
|
|
||||||
.bt())?
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
let cat_target_dim_len = cat_dims[dim];
|
|
||||||
let block_size: usize = cat_dims.iter().skip(1 + dim).product();
|
|
||||||
let shape = Shape::from(cat_dims);
|
|
||||||
let op = crate::op::BackpropOp::new(args, |args| crate::op::Op::Cat(args, dim));
|
|
||||||
let mut storage = unsafe { device.alloc_uninit(&shape, dtype)? };
|
|
||||||
let mut dst_o = 0;
|
|
||||||
for arg in args.iter() {
|
|
||||||
let arg = arg.as_ref();
|
|
||||||
let arg_dims = arg.shape().dims();
|
|
||||||
let d1: usize = arg_dims.iter().take(dim).product();
|
|
||||||
let d2 = block_size * arg_dims[dim];
|
|
||||||
let dst_s = block_size * cat_target_dim_len;
|
|
||||||
let src_o = arg.layout().start_offset();
|
|
||||||
arg.storage().copy2d(
|
|
||||||
&mut storage,
|
|
||||||
d1,
|
|
||||||
d2,
|
|
||||||
/* src_s */ d2,
|
|
||||||
dst_s,
|
|
||||||
src_o,
|
|
||||||
dst_o,
|
|
||||||
)?;
|
|
||||||
dst_o += d2;
|
|
||||||
}
|
|
||||||
Ok(crate::tensor::from_storage(storage, shape, op, false))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Set the values on `self` using values from `src`. The copy starts at the specified
|
|
||||||
/// `offset` for the target dimension `dim` on `self`.
|
|
||||||
/// `self` and `src` must have the same shape except on dimension `dim` where the `self` size
|
|
||||||
/// has to be greater than or equal to `offset` plus the `src` size.
|
|
||||||
///
|
|
||||||
/// Note that this modifies `self` in place and as such is not compatibel with
|
|
||||||
/// back-propagation.
|
|
||||||
pub fn slice_set<D: Dim>(&self, src: &Self, dim: D, offset: usize) -> Result<()> {
|
|
||||||
let dim = dim.to_index(self.shape(), "slice-set")?;
|
|
||||||
if !self.is_contiguous() || !src.is_contiguous() {
|
|
||||||
Err(Error::RequiresContiguous { op: "slice-set" }.bt())?
|
|
||||||
}
|
|
||||||
if self.same_storage(src) {
|
|
||||||
crate::bail!("cannot use slice_set when self and src share their storage")
|
|
||||||
}
|
|
||||||
if self.dtype() != src.dtype() {
|
|
||||||
Err(Error::DTypeMismatchBinaryOp {
|
|
||||||
lhs: self.dtype(),
|
|
||||||
rhs: src.dtype(),
|
|
||||||
op: "slice-set",
|
|
||||||
}
|
|
||||||
.bt())?
|
|
||||||
}
|
|
||||||
if self.device().location() != src.device().location() {
|
|
||||||
Err(Error::DeviceMismatchBinaryOp {
|
|
||||||
lhs: self.device().location(),
|
|
||||||
rhs: src.device().location(),
|
|
||||||
op: "slice-set",
|
|
||||||
}
|
|
||||||
.bt())?
|
|
||||||
}
|
|
||||||
if self.rank() != src.rank() {
|
|
||||||
Err(Error::UnexpectedNumberOfDims {
|
|
||||||
expected: self.rank(),
|
|
||||||
got: src.rank(),
|
|
||||||
shape: self.shape().clone(),
|
|
||||||
}
|
|
||||||
.bt())?
|
|
||||||
}
|
|
||||||
for (dim_idx, (v1, v2)) in self.dims().iter().zip(src.dims().iter()).enumerate() {
|
|
||||||
if dim_idx == dim && *v2 + offset > *v1 {
|
|
||||||
crate::bail!("shape mismatch on target dim, dst: {v1}, src: {v2} + {offset}")
|
|
||||||
}
|
|
||||||
if dim_idx != dim && v1 != v2 {
|
|
||||||
crate::bail!("shape mismatch on dim {dim_idx}, {v1} <> {v2}")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
let block_size: usize = src.dims().iter().skip(1 + dim).product();
|
|
||||||
let d1: usize = src.dims().iter().take(dim).product();
|
|
||||||
let d2 = block_size * src.dims()[dim];
|
|
||||||
let dst_o = self.layout().start_offset() + offset * block_size;
|
|
||||||
let src_o = src.layout().start_offset();
|
|
||||||
src.storage().copy2d(
|
|
||||||
&mut self.storage_mut(),
|
|
||||||
d1,
|
|
||||||
d2,
|
|
||||||
/* src_s */ d2,
|
|
||||||
/* dst_s */ block_size * self.dims()[dim],
|
|
||||||
src_o,
|
|
||||||
dst_o,
|
|
||||||
)?;
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
|
@ -4,7 +4,7 @@ use crate::{Result, Tensor};
|
|||||||
macro_rules! test_device {
|
macro_rules! test_device {
|
||||||
// TODO: Switch to generating the two last arguments automatically once concat_idents is
|
// TODO: Switch to generating the two last arguments automatically once concat_idents is
|
||||||
// stable. https://github.com/rust-lang/rust/issues/29599
|
// stable. https://github.com/rust-lang/rust/issues/29599
|
||||||
($fn_name: ident, $test_cpu: ident, $test_cuda: ident, $test_metal: ident) => {
|
($fn_name: ident, $test_cpu: ident, $test_cuda: ident) => {
|
||||||
#[test]
|
#[test]
|
||||||
fn $test_cpu() -> Result<()> {
|
fn $test_cpu() -> Result<()> {
|
||||||
$fn_name(&Device::Cpu)
|
$fn_name(&Device::Cpu)
|
||||||
@ -15,24 +15,9 @@ macro_rules! test_device {
|
|||||||
fn $test_cuda() -> Result<()> {
|
fn $test_cuda() -> Result<()> {
|
||||||
$fn_name(&Device::new_cuda(0)?)
|
$fn_name(&Device::new_cuda(0)?)
|
||||||
}
|
}
|
||||||
|
|
||||||
#[cfg(feature = "metal")]
|
|
||||||
#[test]
|
|
||||||
fn $test_metal() -> Result<()> {
|
|
||||||
$fn_name(&Device::new_metal(0)?)
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn assert_tensor_eq(t1: &Tensor, t2: &Tensor) -> Result<()> {
|
|
||||||
assert_eq!(t1.shape(), t2.shape());
|
|
||||||
// Default U8 may not be large enough to hold the sum (`t.sum_all` defaults to the dtype of `t`)
|
|
||||||
let eq_tensor = t1.eq(t2)?.to_dtype(crate::DType::U32)?;
|
|
||||||
let all_equal = eq_tensor.sum_all()?;
|
|
||||||
assert_eq!(all_equal.to_scalar::<u32>()?, eq_tensor.elem_count() as u32);
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn to_vec0_round(t: &Tensor, digits: i32) -> Result<f32> {
|
pub fn to_vec0_round(t: &Tensor, digits: i32) -> Result<f32> {
|
||||||
let b = 10f32.powi(digits);
|
let b = 10f32.powi(digits);
|
||||||
let t = t.to_vec0::<f32>()?;
|
let t = t.to_vec0::<f32>()?;
|
||||||
|
@ -1,4 +1,3 @@
|
|||||||
//! Useful functions for checking features.
|
|
||||||
use std::str::FromStr;
|
use std::str::FromStr;
|
||||||
|
|
||||||
pub fn get_num_threads() -> usize {
|
pub fn get_num_threads() -> usize {
|
||||||
@ -24,10 +23,6 @@ pub fn cuda_is_available() -> bool {
|
|||||||
cfg!(feature = "cuda")
|
cfg!(feature = "cuda")
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn metal_is_available() -> bool {
|
|
||||||
cfg!(feature = "metal")
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn with_avx() -> bool {
|
pub fn with_avx() -> bool {
|
||||||
cfg!(target_feature = "avx")
|
cfg!(target_feature = "avx")
|
||||||
}
|
}
|
||||||
|
@ -34,14 +34,9 @@ impl Var {
|
|||||||
Ok(Self(inner))
|
Ok(Self(inner))
|
||||||
}
|
}
|
||||||
|
|
||||||
// Convert a tensor to a variable, if the tensor is already a variable then it is returned as is.
|
|
||||||
pub fn from_tensor(t: &Tensor) -> Result<Self> {
|
pub fn from_tensor(t: &Tensor) -> Result<Self> {
|
||||||
if t.is_variable() {
|
let inner = t.make_var()?;
|
||||||
Ok(Self(t.clone()))
|
Ok(Self(inner))
|
||||||
} else {
|
|
||||||
let inner = t.make_var()?;
|
|
||||||
Ok(Self(inner))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn rand_f64<S: Into<Shape>>(
|
pub fn rand_f64<S: Into<Shape>>(
|
||||||
@ -112,10 +107,6 @@ impl Var {
|
|||||||
Ok(Self(inner))
|
Ok(Self(inner))
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn as_detached_tensor(&self) -> Tensor {
|
|
||||||
self.0.detach()
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn as_tensor(&self) -> &Tensor {
|
pub fn as_tensor(&self) -> &Tensor {
|
||||||
&self.0
|
&self.0
|
||||||
}
|
}
|
||||||
|
@ -13,14 +13,6 @@ res = torch.nn.functional.conv1d(t, w)
|
|||||||
print(res.flatten())
|
print(res.flatten())
|
||||||
res = torch.nn.functional.conv1d(t, w, padding=1)
|
res = torch.nn.functional.conv1d(t, w, padding=1)
|
||||||
print(res.flatten())
|
print(res.flatten())
|
||||||
|
|
||||||
w_t = w.transpose(0, 1)
|
|
||||||
res = torch.nn.functional.conv_transpose1d(t, w_t)
|
|
||||||
print(res.shape)
|
|
||||||
print(res)
|
|
||||||
res = torch.nn.functional.conv_transpose1d(t, w_t, groups=2)
|
|
||||||
print(res.shape)
|
|
||||||
print(res)
|
|
||||||
*/
|
*/
|
||||||
fn conv1d(dev: &Device) -> Result<()> {
|
fn conv1d(dev: &Device) -> Result<()> {
|
||||||
let t = Tensor::new(
|
let t = Tensor::new(
|
||||||
@ -53,45 +45,6 @@ fn conv1d(dev: &Device) -> Result<()> {
|
|||||||
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
|
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
|
||||||
[2.4509, 2.6357, -1.3336, 4.1393, 0.5657, 1.8091, -1.1784, 3.5675, 0.5069, 3.3352]
|
[2.4509, 2.6357, -1.3336, 4.1393, 0.5657, 1.8091, -1.1784, 3.5675, 0.5069, 3.3352]
|
||||||
);
|
);
|
||||||
let res = {
|
|
||||||
let t = Tensor::cat(&[&t.zeros_like()?, &t, &t.zeros_like()?], 0)?;
|
|
||||||
t.conv1d(&w, /*padding*/ 1, 1, 1, 1)?
|
|
||||||
};
|
|
||||||
assert_eq!(res.dims(), [3, 2, 5]);
|
|
||||||
// Same as pytorch default padding: use zeros.
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(&res.i(0)?.flatten_all()?, 4)?,
|
|
||||||
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(&res.i(1)?.flatten_all()?, 4)?,
|
|
||||||
[2.4509, 2.6357, -1.3336, 4.1393, 0.5657, 1.8091, -1.1784, 3.5675, 0.5069, 3.3352]
|
|
||||||
);
|
|
||||||
|
|
||||||
let w = w.transpose(0, 1)?;
|
|
||||||
// The CPU kernels applied in the contiguous and non contiguous cases are different.
|
|
||||||
for w in [w.clone(), w.contiguous()?] {
|
|
||||||
let res = t.conv_transpose1d(&w, 0, 0, 1, 1, 1)?;
|
|
||||||
assert_eq!(res.dims(), [1, 2, 7]);
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
|
|
||||||
[
|
|
||||||
0.0699, -1.2899, 8.3018, 5.5873, 2.4572, -2.6143, -0.0706, 1.8765, 4.8318, 1.1538,
|
|
||||||
4.7076, -5.9745, -0.8276, 1.621
|
|
||||||
],
|
|
||||||
);
|
|
||||||
let res = t.conv_transpose1d(&w, 0, 0, 1, 1, 2)?;
|
|
||||||
assert_eq!(res.dims(), [1, 4, 7]);
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec2_round(&res.squeeze(0)?, 4)?,
|
|
||||||
[
|
|
||||||
[-1.5596, -1.8099, 2.0407, 4.8764, -0.1743, -0.735, -0.7819],
|
|
||||||
[0.7816, 3.8152, -0.5926, 2.2515, -5.1844, -0.3157, 1.4721],
|
|
||||||
[1.6295, 0.52, 6.2611, 0.7109, 2.6315, -1.8793, 0.7113],
|
|
||||||
[1.0949, 1.0166, 1.7464, 2.4561, -0.79, -0.5119, 0.1488]
|
|
||||||
]
|
|
||||||
);
|
|
||||||
}
|
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -149,7 +102,7 @@ fn conv2d(dev: &Device) -> Result<()> {
|
|||||||
0.6466, -0.5042, -0.0603, -1.6538, -1.2429, 1.8357, 1.6052, -1.3844, 0.3323, -1.3712,
|
0.6466, -0.5042, -0.0603, -1.6538, -1.2429, 1.8357, 1.6052, -1.3844, 0.3323, -1.3712,
|
||||||
0.9634, -0.4799, -0.6451, -0.0840, -1.4247, 0.5512, -0.1747, -0.5509, -0.3742, 0.3790,
|
0.9634, -0.4799, -0.6451, -0.0840, -1.4247, 0.5512, -0.1747, -0.5509, -0.3742, 0.3790,
|
||||||
-0.4431, -0.4720, -0.7890, 0.2620, 0.7875, 0.5377, -0.6779, -0.8088, 1.9098, 1.2006,
|
-0.4431, -0.4720, -0.7890, 0.2620, 0.7875, 0.5377, -0.6779, -0.8088, 1.9098, 1.2006,
|
||||||
-0.8, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
|
-0.8000, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
|
||||||
],
|
],
|
||||||
dev,
|
dev,
|
||||||
)?;
|
)?;
|
||||||
@ -177,25 +130,7 @@ fn conv2d(dev: &Device) -> Result<()> {
|
|||||||
10.389, 3.6023, -4.2808, 0.2672, 5.3646, -5.2023, -2.1955, -9.4075
|
10.389, 3.6023, -4.2808, 0.2672, 5.3646, -5.2023, -2.1955, -9.4075
|
||||||
]
|
]
|
||||||
);
|
);
|
||||||
let res = {
|
|
||||||
let t = Tensor::cat(&[&t.zeros_like()?, &t, &t.zeros_like()?], 0)?;
|
|
||||||
t.conv2d(&w, 0, 1, 1, 1)?
|
|
||||||
};
|
|
||||||
assert_eq!(res.dims(), [3, 2, 3, 3]);
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(&res.i(0)?.flatten_all()?, 4)?,
|
|
||||||
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(&res.i(1)?.flatten_all()?, 4)?,
|
|
||||||
[
|
|
||||||
-4.2812, 2.0923, 5.2187, 7.5184, 0.752, -14.9426, 10.0087, 4.391, 0.2918, 1.6715,
|
|
||||||
10.389, 3.6023, -4.2808, 0.2672, 5.3646, -5.2023, -2.1955, -9.4075
|
|
||||||
]
|
|
||||||
);
|
|
||||||
|
|
||||||
let res = t.conv_transpose2d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
|
let res = t.conv_transpose2d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
|
||||||
|
|
||||||
assert_eq!(res.dims(), [1, 2, 7, 7]);
|
assert_eq!(res.dims(), [1, 2, 7, 7]);
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
test_utils::to_vec3_round(&res.i(0)?, 4)?,
|
test_utils::to_vec3_round(&res.i(0)?, 4)?,
|
||||||
@ -220,7 +155,6 @@ fn conv2d(dev: &Device) -> Result<()> {
|
|||||||
]
|
]
|
||||||
]
|
]
|
||||||
);
|
);
|
||||||
|
|
||||||
// Dilations.
|
// Dilations.
|
||||||
let res = t.conv2d(&w, 0, 1, 2, 1)?;
|
let res = t.conv2d(&w, 0, 1, 2, 1)?;
|
||||||
assert_eq!(res.dims(), [1, 2, 1, 1]);
|
assert_eq!(res.dims(), [1, 2, 1, 1]);
|
||||||
@ -259,7 +193,6 @@ fn conv2d(dev: &Device) -> Result<()> {
|
|||||||
]
|
]
|
||||||
]
|
]
|
||||||
);
|
);
|
||||||
|
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -306,13 +239,13 @@ fn conv2d_small(dev: &Device) -> Result<()> {
|
|||||||
assert_eq!(
|
assert_eq!(
|
||||||
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
|
test_utils::to_vec1_round(&res.flatten_all()?, 4)?,
|
||||||
[
|
[
|
||||||
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1640,
|
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
|
||||||
-0.0111, -0.1742, 0.0, 0.0, 0.0, 0.0, 2.6437, -2.0268, 1.1823, 0.0, 0.0, 0.0, 0.0,
|
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.1640, -0.0111, -0.1742, 0.0000, 0.0000,
|
||||||
3.2855, -1.0324, 0.2539, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
0.0000, 0.0000, 2.6437, -2.0268, 1.1823, 0.0000, 0.0000, 0.0000, 0.0000, 3.2855,
|
||||||
0.0, 0.0, 0.0, 0.0
|
-1.0324, 0.2539, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
|
||||||
|
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000
|
||||||
]
|
]
|
||||||
);
|
);
|
||||||
|
|
||||||
let res = t.conv_transpose2d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
|
let res = t.conv_transpose2d(&w.transpose(0, 1)?, 0, 0, 1, 1)?;
|
||||||
assert_eq!(res.dims(), [1, 1, 3, 3]);
|
assert_eq!(res.dims(), [1, 1, 3, 3]);
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
@ -414,7 +347,6 @@ print(w.grad.shape)
|
|||||||
print(w.grad[0])
|
print(w.grad[0])
|
||||||
*/
|
*/
|
||||||
fn conv2d_grad(dev: &Device) -> Result<()> {
|
fn conv2d_grad(dev: &Device) -> Result<()> {
|
||||||
// conv-transposes are not implemented for metal
|
|
||||||
use candle_core::Var;
|
use candle_core::Var;
|
||||||
let t = Var::from_slice(
|
let t = Var::from_slice(
|
||||||
&[
|
&[
|
||||||
@ -427,7 +359,7 @@ fn conv2d_grad(dev: &Device) -> Result<()> {
|
|||||||
0.6466, -0.5042, -0.0603, -1.6538, -1.2429, 1.8357, 1.6052, -1.3844, 0.3323, -1.3712,
|
0.6466, -0.5042, -0.0603, -1.6538, -1.2429, 1.8357, 1.6052, -1.3844, 0.3323, -1.3712,
|
||||||
0.9634, -0.4799, -0.6451, -0.0840, -1.4247, 0.5512, -0.1747, -0.5509, -0.3742, 0.3790,
|
0.9634, -0.4799, -0.6451, -0.0840, -1.4247, 0.5512, -0.1747, -0.5509, -0.3742, 0.3790,
|
||||||
-0.4431, -0.4720, -0.7890, 0.2620, 0.7875, 0.5377, -0.6779, -0.8088, 1.9098, 1.2006,
|
-0.4431, -0.4720, -0.7890, 0.2620, 0.7875, 0.5377, -0.6779, -0.8088, 1.9098, 1.2006,
|
||||||
-0.8, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
|
-0.8000, -0.4983, 1.5480, 0.8265, -0.1025, 0.5138, 0.5748, 0.3821, -0.4607, 0.0085,
|
||||||
],
|
],
|
||||||
(1, 4, 5, 5),
|
(1, 4, 5, 5),
|
||||||
dev,
|
dev,
|
||||||
@ -547,348 +479,17 @@ fn conv2d_grad(dev: &Device) -> Result<()> {
|
|||||||
]
|
]
|
||||||
]
|
]
|
||||||
);
|
);
|
||||||
|
|
||||||
// Replicate the issue from https://github.com/huggingface/candle/issues/1212
|
|
||||||
let res = t.i((.., .., 0..4, 0..4))?.conv2d(&w, 0, 2, 1, 1)?;
|
|
||||||
let loss = res.sqr()?.sum_all()?;
|
|
||||||
assert_eq!(test_utils::to_vec0_round(&loss, 2)?, 21.12f32);
|
|
||||||
let grads = loss.backward()?;
|
|
||||||
let grad_t = grads.get(&t).unwrap();
|
|
||||||
let grad_w = grads.get(&w).unwrap();
|
|
||||||
assert_eq!(grad_t.dims(), [1, 4, 5, 5]);
|
|
||||||
assert_eq!(grad_w.dims(), [2, 4, 3, 3]);
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec3_round(&grad_t.i(0)?, 2)?,
|
|
||||||
[
|
|
||||||
[
|
|
||||||
[9.29, -7.03, 7.87, 0.0, 0.0],
|
|
||||||
[-1.8, -7.82, 5.9, 0.0, 0.0],
|
|
||||||
[-3.12, 4.49, 5.52, 0.0, 0.0],
|
|
||||||
[0.0, 0.0, 0.0, 0.0, 0.0],
|
|
||||||
[0.0, 0.0, 0.0, 0.0, 0.0]
|
|
||||||
],
|
|
||||||
[
|
|
||||||
[21.73, 3.39, 4.77, 0.0, 0.0],
|
|
||||||
[8.25, 3.73, 27.61, 0.0, 0.0],
|
|
||||||
[-20.55, -5.61, -2.77, 0.0, 0.0],
|
|
||||||
[0.0, 0.0, 0.0, 0.0, 0.0],
|
|
||||||
[0.0, 0.0, 0.0, 0.0, 0.0]
|
|
||||||
],
|
|
||||||
[
|
|
||||||
[-8.98, 9.91, -7.15, 0.0, 0.0],
|
|
||||||
[4.93, -0.33, 4.56, 0.0, 0.0],
|
|
||||||
[-6.7, -5.76, -8.05, 0.0, 0.0],
|
|
||||||
[0.0, 0.0, 0.0, 0.0, 0.0],
|
|
||||||
[0.0, 0.0, 0.0, 0.0, 0.0]
|
|
||||||
],
|
|
||||||
[
|
|
||||||
[23.54, 6.98, -10.0, 0.0, 0.0],
|
|
||||||
[9.65, 6.18, 18.72, 0.0, 0.0],
|
|
||||||
[3.29, -5.27, 0.79, 0.0, 0.0],
|
|
||||||
[0.0, 0.0, 0.0, 0.0, 0.0],
|
|
||||||
[0.0, 0.0, 0.0, 0.0, 0.0]
|
|
||||||
]
|
|
||||||
]
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec3_round(&grad_w.i(0)?, 2)?,
|
|
||||||
[
|
|
||||||
[
|
|
||||||
[-3.47, 7.44, 0.66],
|
|
||||||
[12.89, -3.4, -9.29],
|
|
||||||
[-14.16, -0.83, 7.14]
|
|
||||||
],
|
|
||||||
[
|
|
||||||
[-3.23, 5.37, -3.02],
|
|
||||||
[-2.12, -11.24, 1.94],
|
|
||||||
[6.97, 7.2, 2.99]
|
|
||||||
],
|
|
||||||
[
|
|
||||||
[-4.04, -3.31, 4.87],
|
|
||||||
[-6.68, -5.68, 1.73],
|
|
||||||
[-5.54, 4.32, 0.52]
|
|
||||||
],
|
|
||||||
[[-4.72, 1.5, 4.72], [3.79, 4.04, 6.76], [-4.6, 5.8, 6.93]]
|
|
||||||
]
|
|
||||||
);
|
|
||||||
|
|
||||||
// Conv Transpose 2d Test
|
|
||||||
//tested against following python
|
|
||||||
|
|
||||||
// import torch
|
|
||||||
// torch.manual_seed(4242)
|
|
||||||
// padding = 4
|
|
||||||
// outpadding = 2
|
|
||||||
// dilation = 3
|
|
||||||
// stride = 3
|
|
||||||
// input = torch.randn((1, 4, 7, 5), requires_grad=True)
|
|
||||||
// kernel = torch.randn((4, 2, 3, 5), requires_grad=True)
|
|
||||||
// print("input", input.flatten())
|
|
||||||
// print("kernel", kernel.flatten())
|
|
||||||
// res = torch.nn.functional.conv_transpose2d(
|
|
||||||
// input,
|
|
||||||
// kernel,
|
|
||||||
// stride=stride,
|
|
||||||
// padding=padding,
|
|
||||||
// dilation=dilation,
|
|
||||||
// output_padding=outpadding,
|
|
||||||
// )
|
|
||||||
// res.retain_grad()
|
|
||||||
// print(res.shape)
|
|
||||||
// loss = (res**2).sum()
|
|
||||||
// print(loss)
|
|
||||||
// loss.backward()
|
|
||||||
// print(input.grad.shape)
|
|
||||||
// print("input grad", torch.round(input.grad, decimals=1))
|
|
||||||
// print(kernel.grad.shape)
|
|
||||||
// print("kernel grad", torch.round(kernel.grad.flatten(), decimals=1))
|
|
||||||
|
|
||||||
let padding = 4;
|
|
||||||
let outpadding = 2;
|
|
||||||
let dilation = 3;
|
|
||||||
let stride = 3;
|
|
||||||
|
|
||||||
let t = Var::from_slice(
|
|
||||||
&[
|
|
||||||
0.4056_f32, -0.8689, -0.0773, -1.5630, -2.8012, -1.5059, 0.3972, 1.0852, 0.4997,
|
|
||||||
3.0616, 1.6541, 0.0964, -0.8338, -1.6523, -0.8323, -0.1699, 0.0823, 0.3526, 0.6843,
|
|
||||||
0.2395, 1.2279, -0.9287, -1.7030, 0.1370, 0.6047, 0.3770, -0.6266, 0.3529, 2.2013,
|
|
||||||
-0.6836, 0.2477, 1.3127, -0.2260, 0.2622, -1.2974, -0.8140, -0.8404, -0.3490, 0.0130,
|
|
||||||
1.3123, 1.7569, -0.3956, -1.8255, 0.1727, -0.3538, 2.6941, 1.0529, 0.4219, -0.2071,
|
|
||||||
1.1586, 0.4717, 0.3865, -0.5690, -0.5010, -0.1310, 0.7796, 0.6630, -0.2021, 2.6090,
|
|
||||||
0.2049, 0.6466, -0.5042, -0.0603, -1.6538, -1.2429, 1.8357, 1.6052, -1.3844, 0.3323,
|
|
||||||
-1.3712, 0.9634, -0.4799, -0.6451, -0.0840, -1.4247, 0.5512, -0.1747, -0.5509, -0.3742,
|
|
||||||
0.3790, -0.4431, -0.4720, -0.7890, 0.2620, 0.5411, -1.1715, -2.4997, 2.3249, -0.8912,
|
|
||||||
-0.4733, -0.5701, -2.8888, -1.4112, -0.5471, -0.9234, -1.1660, 0.4189, -0.7465,
|
|
||||||
-0.6473, 0.1402, 0.7875, 0.5377, -0.6779, -0.8088, -0.4864, -0.2312, 0.9279, 0.1264,
|
|
||||||
1.5480, 0.8265, -0.1025, 0.5138, -0.2512, 0.1576, 1.2705, 0.3641, -0.9325, 0.6451,
|
|
||||||
-0.8537, 0.2378, 0.1794, 0.2752, -0.3687, -1.1149, -0.1410, -0.5829, -0.0892, 1.4258,
|
|
||||||
-2.2789, 0.5270, 0.1825, 1.7007, -0.5263, -0.2954, 0.4440, 0.5537, 0.3492, 0.6186,
|
|
||||||
1.6475, 0.2219,
|
|
||||||
],
|
|
||||||
(1, 4, 7, 5),
|
|
||||||
dev,
|
|
||||||
)?;
|
|
||||||
|
|
||||||
#[rustfmt::skip]
|
|
||||||
let w = Var::from_slice(
|
|
||||||
&[
|
|
||||||
-1.1744_f32, 0.3266, 2.5893, 1.0142, 0.1763, 0.7752, 0.6604, 0.2029, -0.2145, 0.7234,
|
|
||||||
-0.3441, -1.5400, -0.6333, 0.6613, 0.2083, 0.6230, -1.7002, 0.3393, 0.4049, 1.0762,
|
|
||||||
0.2723, 1.4181, 0.0029, -0.2122, 1.7668, 1.4168, 0.3320, -0.2719, 0.7932, -0.7204,
|
|
||||||
0.4447, 0.1211, 0.5908, 1.0089, -0.1646, 1.8033, -0.6286, 0.2016, -0.3370, 1.2555,
|
|
||||||
0.8009, -0.6488, -0.4652, -1.5685, 1.5860, 0.5583, 0.4623, 0.6026, 0.8828, 2.4990,
|
|
||||||
0.6811, -0.3369, 1.3320, 1.7669, -1.1067, 1.2958, -0.9415, -0.9655, -0.4462, 0.7181,
|
|
||||||
0.5181, -1.1658, -1.8467, -0.7763, 1.2769, 0.8651, 0.9890, 1.5092, 0.7207, -0.8481,
|
|
||||||
0.7417, 0.3375, -1.2685, 1.4572, 1.0915, 0.1093, -0.8550, -0.5831, -0.6309, -0.2509,
|
|
||||||
0.5220, -0.0914, 0.7900, 0.1096, 0.3258, 0.2723, -1.0942, -0.3393, -0.1653, 0.5732,
|
|
||||||
-0.8014, 1.8194, -1.9023, 0.2127, 1.8636, -0.8979, 0.1927, -0.2778, 0.3105, 0.0071,
|
|
||||||
-1.1823, 0.2476, -0.7178, -1.3821, 1.0769, -0.4376, -0.9967, -0.1227, 1.6197, -1.0604,
|
|
||||||
0.1372, 0.8141, -0.6163, 0.7304, -0.8285, 2.0636, -0.7176, 0.2495, -0.2581, -0.4478,
|
|
||||||
],
|
|
||||||
(4, 2, 3, 5),
|
|
||||||
dev,
|
|
||||||
)?;
|
|
||||||
let res = t.conv_transpose2d(&w, padding, outpadding, stride, dilation)?;
|
|
||||||
let loss = res.sqr()?.sum_all()?;
|
|
||||||
assert_eq!(test_utils::to_vec0_round(&loss, 0)?, 2904.0);
|
|
||||||
let grads = loss.backward()?;
|
|
||||||
|
|
||||||
let grad_t = grads.get(&t).unwrap();
|
|
||||||
let grad_w = grads.get(&w).unwrap();
|
|
||||||
assert_eq!(grad_t.dims(), [1, 4, 7, 5]);
|
|
||||||
assert_eq!(grad_w.dims(), [4, 2, 3, 5]);
|
|
||||||
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(&grad_w.flatten_all()?, 1)?,
|
|
||||||
[
|
|
||||||
// torch gets 89.1
|
|
||||||
-89.0, -135.3, 136.7, 102.0, -53.4, 117.9, 118.6, -43.9, -218.0, -58.5, -114.3, -150.0,
|
|
||||||
-15.6, 172.1, 66.3, -64.3, -27.9, -19.8, 31.7, 62.1, 5.5, 92.6, 28.2, -29.6, 55.9,
|
|
||||||
52.7, -72.7, -119.8, 53.8, -25.5, 128.8, 19.3, 68.0, 190.9, -64.1, -86.2, -111.2,
|
|
||||||
106.6, -67.7, 37.8, 115.9, 50.4, -77.7, -54.9, 22.3, -4.6, 89.8, 61.7, 122.4, 192.6,
|
|
||||||
-27.8, -104.6, 57.0, 166.4, 27.1, 6.1, 18.7, -93.2, 31.5, 168.2, -3.7, -99.5, -55.5,
|
|
||||||
-10.8, 17.5, 20.8, 16.9, 43.8, 42.0, -89.2, 18.8, -9.6, -84.1, 212.6, 19.7, -50.0,
|
|
||||||
-52.0, -40.0, -166.6, -73.2, -10.8, -73.3, 31.5, -23.4, -79.3, -27.0, -84.4, -42.9,
|
|
||||||
-20.3, 51.8, -16.7, 76.3, -120.5, -65.8, 96.5, -10.7, -45.9, -88.1, 65.4, -7.0, -1.5,
|
|
||||||
92.8, -25.1, -114.2, -5.8, -14.8, -51.2, -20.7, 54.2, -79.8, 47.7, -29.2, -8.8, 53.5,
|
|
||||||
-28.4, 85.0, -18.3, 107.0, 28.3, -71.8
|
|
||||||
]
|
|
||||||
);
|
|
||||||
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec3_round(&grad_t.i(0)?, 1)?,
|
|
||||||
[
|
|
||||||
[
|
|
||||||
[32.3, -41.6, -24.0, 14.1, 17.6],
|
|
||||||
[-11.8, 72.5, 87.6, 46.4, 61.5],
|
|
||||||
[115.0, 108.5, -48.6, -63.4, -50.0],
|
|
||||||
[51.3, 5.4, 31.3, 91.1, -30.9],
|
|
||||||
[52.7, 92.8, -68.0, -47.0, 83.0],
|
|
||||||
// pytorch gets -107.1
|
|
||||||
[-10.2, -107.0, -5.4, 213.1, -31.4],
|
|
||||||
[-2.4, 65.1, 9.2, -146.2, -24.2]
|
|
||||||
],
|
|
||||||
[
|
|
||||||
[-72.6, -63.9, -61.9, 45.3, 33.0],
|
|
||||||
[79.3, -0.5, -26.2, 78.2, 42.7],
|
|
||||||
[90.9, 141.6, 40.1, -62.7, 37.0],
|
|
||||||
[32.8, 198.2, -0.8, -31.1, 27.3],
|
|
||||||
// torch gets 48.0
|
|
||||||
[34.5, 34.9, -47.9, 127.6, -12.3],
|
|
||||||
[-61.4, -3.2, -2.9, -10.9, -16.6],
|
|
||||||
[74.6, 60.1, -68.9, 34.5, -50.4]
|
|
||||||
],
|
|
||||||
[
|
|
||||||
[37.5, -56.9, -43.6, -13.5, -9.9],
|
|
||||||
[40.0, 97.3, 28.6, 14.2, -30.1],
|
|
||||||
[-22.3, -126.3, -68.8, -8.2, 26.1],
|
|
||||||
[-32.9, 37.3, 108.5, -54.8, 29.6],
|
|
||||||
[34.9, -176.9, -125.0, -28.3, -13.9],
|
|
||||||
[-54.9, 142.6, 62.1, -80.4, -65.6],
|
|
||||||
[7.4, -91.1, -67.6, 35.0, 39.7]
|
|
||||||
],
|
|
||||||
[
|
|
||||||
[-57.2, -40.9, -10.1, 32.6, 29.4],
|
|
||||||
[18.7, -18.0, 29.5, -1.2, 59.2],
|
|
||||||
[-14.0, -74.4, 19.8, -117.0, 58.2],
|
|
||||||
[-21.8, 163.5, -71.1, -99.0, 80.9],
|
|
||||||
[-58.9, -10.9, 93.8, -139.6, 98.0],
|
|
||||||
// torch gets 54.5
|
|
||||||
[-54.4, 135.3, 6.0, -79.1, 134.6],
|
|
||||||
[27.5, -76.0, 43.4, -2.8, -7.8]
|
|
||||||
]
|
|
||||||
]
|
|
||||||
);
|
|
||||||
|
|
||||||
// Test the same, but then with the following properties, t & w are unmodified.
|
|
||||||
let padding = 1;
|
|
||||||
let outpadding = 1;
|
|
||||||
let dilation = 1;
|
|
||||||
let stride = 2;
|
|
||||||
|
|
||||||
let res = t.conv_transpose2d(&w, padding, outpadding, stride, dilation)?;
|
|
||||||
let loss = res.sqr()?.sum_all()?;
|
|
||||||
assert_eq!(test_utils::to_vec0_round(&loss, 0)?, 3627.0); // torch gives 3626.8560
|
|
||||||
|
|
||||||
let grads = loss.backward()?;
|
|
||||||
|
|
||||||
let grad_t = grads.get(&t).unwrap();
|
|
||||||
let grad_w = grads.get(&w).unwrap();
|
|
||||||
assert_eq!(grad_t.dims(), [1, 4, 7, 5]);
|
|
||||||
assert_eq!(grad_w.dims(), [4, 2, 3, 5]);
|
|
||||||
|
|
||||||
#[rustfmt::skip]
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec3_round(&grad_t.i(0)?, 1)?,
|
|
||||||
[
|
|
||||||
[
|
|
||||||
[ 13.2, -40.7, -9.7, -47.3, -82.7],
|
|
||||||
[ -98.2, 9.7, 57.7, -6.2, 180.7],
|
|
||||||
[ 100.2, 24.1, 3.7, -100.5, -48.1],
|
|
||||||
[ -0.3, 13.5, -2.9, 80.0, -49.8],
|
|
||||||
[ 47.2, -25.6, -74.4, 61.2, -18.4],
|
|
||||||
[ 4.6, -69.5, 27.9, 66.5, -88.1],
|
|
||||||
// 4th column on next row; torch is 4.2
|
|
||||||
[ -12.0, 79.2, -40.0, 4.1, -97.1],
|
|
||||||
],
|
|
||||||
[
|
|
||||||
[ -42.2, -36.5, -51.1, 7.5, 32.3],
|
|
||||||
[ 74.1, -44.6, -68.8, 19.5, 7.7],
|
|
||||||
[ 137.1, 54.2, 153.8, -58.0, 45.5],
|
|
||||||
[ 24.4, -56.8, 9.7, -41.0, -14.5],
|
|
||||||
[ -3.7, 72.6, 8.3, 134.8, 40.5],
|
|
||||||
[ 43.2, -56.9, -47.5, -89.4, -95.4],
|
|
||||||
[ 68.2, 108.1, -80.0, 57.0, -121.1]
|
|
||||||
],
|
|
||||||
[
|
|
||||||
[ 31.1, -11.4, -34.8, 33.1, -44.2],
|
|
||||||
[ 29.4, -31.6, -40.2, 13.7, 13.1],
|
|
||||||
[ -0.8, -83.8, -7.8, -17.3, 78.2],
|
|
||||||
[ 12.0, -118.7, 137.5, -76.7, 50.8],
|
|
||||||
[ -28.7, -114.2, -3.7, -96.3, -13.8],
|
|
||||||
[ -31.8, 28.5, -14.3, 4.6, 13.4],
|
|
||||||
[ 28.0, -0.2, -38.9, -29.7, -59.0]
|
|
||||||
],
|
|
||||||
[
|
|
||||||
[ -16.8, 38.5, 15.5, 26.6, 48.9],
|
|
||||||
[ 14.5, 49.6, -24.8, 65.6, 61.7],
|
|
||||||
[ 22.1, -64.7, -4.3, -51.0, 36.3],
|
|
||||||
[ 31.0, -88.9, 47.1, -123.5, -3.8],
|
|
||||||
[ -14.8, -39.8, 128.2, -110.3, 42.6],
|
|
||||||
// 1st column on next row; torch is -7.2
|
|
||||||
[ -7.1, 95.3, -21.3, -58.7, -13.9],
|
|
||||||
[ 26.9, 21.3, 16.1, 70.3, 32.1]
|
|
||||||
]
|
|
||||||
]
|
|
||||||
);
|
|
||||||
|
|
||||||
#[rustfmt::skip]
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(&grad_w.flatten_all()?, 1)?,
|
|
||||||
[
|
|
||||||
// 2nd value; torch gets -3.2, 3rd value; torch gets 221.8
|
|
||||||
-2.460e+01, -3.100e+00, 2.219e+02, 7.400e+00, 5.620e+01,
|
|
||||||
7.420e+01, 7.830e+01, 8.900e+00, 1.050e+01, 2.810e+01,
|
|
||||||
5.100e+00, -1.046e+02, -1.572e+02, 8.710e+01, -9.840e+01,
|
|
||||||
-4.230e+01, -1.898e+02, 1.860e+01, -3.570e+01, 9.810e+01,
|
|
||||||
4.680e+01, 1.182e+02, 4.020e+01, -1.900e+00, 1.508e+02,
|
|
||||||
1.094e+02, 1.018e+02, -4.620e+01, 1.591e+02, -2.320e+01,
|
|
||||||
// 5th value; torch gets 7.1
|
|
||||||
-8.450e+01, -4.600e+00, 6.330e+01, 1.123e+02, -7.000e+00,
|
|
||||||
1.101e+02, -6.620e+01, 2.090e+01, -5.120e+01, 8.990e+01,
|
|
||||||
9.050e+01, -6.990e+01, 6.800e+01, -9.250e+01, 1.380e+02,
|
|
||||||
4.720e+01, 4.710e+01, 6.210e+01, 8.870e+01, 2.098e+02,
|
|
||||||
3.870e+01, -1.390e+01, 6.270e+01, 1.484e+02, -9.920e+01,
|
|
||||||
-4.200e+01, -1.505e+02, -1.480e+01, -2.620e+01, 8.220e+01,
|
|
||||||
-3.350e+01, -2.260e+01, -1.198e+02, -5.080e+01, 1.259e+02,
|
|
||||||
5.600e+01, 9.270e+01, 1.209e+02, 6.590e+01, -8.330e+01,
|
|
||||||
7.000e+00, -2.600e+01, -1.133e+02, 3.870e+01, 4.020e+01,
|
|
||||||
-6.300e+00, -8.710e+01, -5.150e+01, -8.510e+01, 2.000e-01,
|
|
||||||
3.640e+01, -6.100e+00, 6.590e+01, -2.700e+00, 6.550e+01,
|
|
||||||
// 4th value; torch gets 3.8
|
|
||||||
5.300e+00, -6.760e+01, -4.270e+01, -3.900e+00, 2.880e+01,
|
|
||||||
5.260e+01, 6.170e+01, -1.203e+02, -1.610e+01, 7.740e+01,
|
|
||||||
-1.008e+02, -1.070e+01, -9.900e+00, 3.300e+00, -2.620e+01,
|
|
||||||
-4.440e+01, 2.580e+01, -6.920e+01, -4.220e+01, 1.108e+02,
|
|
||||||
1.240e+01, -3.440e+01, -2.800e+00, 7.880e+01, -6.690e+01,
|
|
||||||
1.480e+01, 2.310e+01, -4.260e+01, -1.500e+00, -4.760e+01,
|
|
||||||
5.350e+01, -2.260e+01, 8.000e-01, -3.840e+01, -2.500e+00
|
|
||||||
]
|
|
||||||
);
|
|
||||||
|
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
test_device!(conv1d, conv1d_cpu, conv1d_gpu, conv1d_metal);
|
test_device!(conv1d, conv1d_cpu, conv1d_gpu);
|
||||||
test_device!(
|
test_device!(conv1d_small, conv1d_small_cpu, conv1d_small_gpu);
|
||||||
conv1d_small,
|
test_device!(conv2d, conv2d_cpu, conv2d_gpu);
|
||||||
conv1d_small_cpu,
|
|
||||||
conv1d_small_gpu,
|
|
||||||
conv1d_small_metal
|
|
||||||
);
|
|
||||||
test_device!(conv2d, conv2d_cpu, conv2d_gpu, conv2d_metal);
|
|
||||||
test_device!(
|
test_device!(
|
||||||
conv2d_non_square,
|
conv2d_non_square,
|
||||||
conv2d_non_square_cpu,
|
conv2d_non_square_cpu,
|
||||||
conv2d_non_square_gpu,
|
conv2d_non_square_gpu
|
||||||
conv2d_non_square_metal
|
|
||||||
);
|
|
||||||
test_device!(
|
|
||||||
conv2d_small,
|
|
||||||
conv2d_small_cpu,
|
|
||||||
conv2d_small_gpu,
|
|
||||||
conv2d_small_metal
|
|
||||||
);
|
|
||||||
test_device!(
|
|
||||||
conv2d_smaller,
|
|
||||||
conv2d_smaller_cpu,
|
|
||||||
conv2d_smaller_gpu,
|
|
||||||
conv2d_smaller_metal
|
|
||||||
);
|
|
||||||
test_device!(
|
|
||||||
conv2d_grad,
|
|
||||||
conv2d_grad_cpu,
|
|
||||||
conv2d_grad_gpu,
|
|
||||||
conv2_grad_metal
|
|
||||||
);
|
);
|
||||||
|
test_device!(conv2d_small, conv2d_small_cpu, conv2d_small_gpu);
|
||||||
|
test_device!(conv2d_smaller, conv2d_smaller_cpu, conv2d_smaller_gpu);
|
||||||
|
test_device!(conv2d_grad, conv2d_grad_cpu, conv2d_grad_gpu);
|
||||||
|
@ -112,70 +112,3 @@ fn custom_op1_with_backward() -> Result<()> {
|
|||||||
|
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
impl candle_core::InplaceOp1 for Elu {
|
|
||||||
fn name(&self) -> &'static str {
|
|
||||||
"elu"
|
|
||||||
}
|
|
||||||
|
|
||||||
fn cpu_fwd(&self, s: &mut CpuStorage, _l: &Layout) -> Result<()> {
|
|
||||||
let alpha = self.alpha;
|
|
||||||
match s {
|
|
||||||
CpuStorage::BF16(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
|
|
||||||
CpuStorage::F16(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
|
|
||||||
CpuStorage::F32(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
|
|
||||||
CpuStorage::F64(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
|
|
||||||
_ => candle_core::bail!("unsupported dtype for inplace elu"),
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn inplace_op1() -> Result<()> {
|
|
||||||
let cpu = &Device::Cpu;
|
|
||||||
let t = Tensor::arange(0u32, 12u32, cpu)?.to_dtype(DType::F32)?;
|
|
||||||
let t = (t - 5.)?;
|
|
||||||
t.inplace_op1(&Elu { alpha: 1. })?;
|
|
||||||
assert_eq!(
|
|
||||||
to_vec1_round(&t, 4)?,
|
|
||||||
&[-0.9933, -0.9817, -0.9502, -0.8647, -0.6321, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
|
|
||||||
);
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(any(feature = "cuda", feature = "metal"))]
|
|
||||||
#[allow(clippy::approx_constant)]
|
|
||||||
#[test]
|
|
||||||
fn ug_op() -> Result<()> {
|
|
||||||
let kernel = {
|
|
||||||
use ug::lang::op;
|
|
||||||
|
|
||||||
let layout = ug::Layout::from_shape(&[12]);
|
|
||||||
let ptr = op::Arg::ptr(ug::DType::F32);
|
|
||||||
let src = op::load(ptr.id(), layout.clone(), ug::DType::F32)?;
|
|
||||||
let src = op::unary(op::UnaryOp::Exp, src)?;
|
|
||||||
let st = op::store(ptr.id(), layout, src)?;
|
|
||||||
let kernel = op::Kernel::new("exp".to_string(), vec![ptr], vec![st]);
|
|
||||||
let opts: ug::lower_op::Opts = Default::default();
|
|
||||||
kernel.lower(&opts)?
|
|
||||||
};
|
|
||||||
let device = if candle_core::utils::cuda_is_available() {
|
|
||||||
Device::new_cuda(0)?
|
|
||||||
} else if candle_core::utils::metal_is_available() {
|
|
||||||
Device::new_metal(0)?
|
|
||||||
} else {
|
|
||||||
candle_core::bail!("metal/cuda is mandatory for this test")
|
|
||||||
};
|
|
||||||
let op = candle_core::UgIOp1::new("test", kernel, &device)?;
|
|
||||||
let t = Tensor::arange(0u32, 12u32, &device)?.to_dtype(DType::F32)?;
|
|
||||||
t.inplace_op1(&op)?;
|
|
||||||
assert_eq!(
|
|
||||||
to_vec1_round(&t, 2)?,
|
|
||||||
&[
|
|
||||||
1.0, 2.72, 7.39, 20.09, 54.6, 148.41, 403.43, 1096.63, 2980.96, 8103.08, 22026.47,
|
|
||||||
59874.13
|
|
||||||
]
|
|
||||||
);
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
Binary file not shown.
@ -1,6 +1,5 @@
|
|||||||
#![allow(clippy::approx_constant)]
|
|
||||||
use anyhow::{Context, Result};
|
use anyhow::{Context, Result};
|
||||||
use candle_core::{test_device, test_utils, DType, Device, Shape, Tensor, Var};
|
use candle_core::{test_device, test_utils, Device, Shape, Tensor, Var};
|
||||||
|
|
||||||
fn simple_grad(device: &Device) -> Result<()> {
|
fn simple_grad(device: &Device) -> Result<()> {
|
||||||
let x = Var::new(&[3f32, 1., 4.], device)?;
|
let x = Var::new(&[3f32, 1., 4.], device)?;
|
||||||
@ -97,24 +96,24 @@ fn unary_grad(device: &Device) -> Result<()> {
|
|||||||
let grads = y.backward()?;
|
let grads = y.backward()?;
|
||||||
let grad_x = grads.get(x).context("no grad for x")?;
|
let grad_x = grads.get(x).context("no grad for x")?;
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
test_utils::to_vec1_round(&y, 4)?,
|
y.to_vec1::<f32>()?,
|
||||||
[20.0855, 2.7183, 54.5982, 1.1618]
|
[20.085537, 2.7182817, 54.59815, 1.1618342]
|
||||||
);
|
);
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
test_utils::to_vec1_round(grad_x, 4)?,
|
grad_x.to_vec1::<f32>()?,
|
||||||
[20.0855, 2.7183, 54.5982, 1.1618]
|
[20.085537, 2.7182817, 54.59815, 1.1618342]
|
||||||
);
|
);
|
||||||
let y = x.exp()?.sqr()?;
|
let y = x.exp()?.sqr()?;
|
||||||
let grads = y.backward()?;
|
let grads = y.backward()?;
|
||||||
let grad_x = grads.get(x).context("no grad for x")?;
|
let grad_x = grads.get(x).context("no grad for x")?;
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
test_utils::to_vec1_round(&y, 3)?,
|
y.to_vec1::<f32>()?,
|
||||||
[403.429, 7.389, 2980.958, 1.35]
|
[403.4288, 7.3890557, 2980.9578, 1.3498588]
|
||||||
);
|
);
|
||||||
// exp(x)^2 = exp(2*x)
|
// exp(x)^2 = exp(2*x)
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
test_utils::to_vec1_round(grad_x, 2)?,
|
grad_x.to_vec1::<f32>()?,
|
||||||
[806.86, 14.78, 5961.92, 2.7]
|
[806.8576, 14.778111, 5961.9155, 2.6997175]
|
||||||
);
|
);
|
||||||
let y = x.sin()?;
|
let y = x.sin()?;
|
||||||
let grads = y.backward()?;
|
let grads = y.backward()?;
|
||||||
@ -193,273 +192,6 @@ fn unary_grad(device: &Device) -> Result<()> {
|
|||||||
test_utils::to_vec1_round(grad_x, 2)?,
|
test_utils::to_vec1_round(grad_x, 2)?,
|
||||||
[0.01, 0.42, 0.0, 0.98],
|
[0.01, 0.42, 0.0, 0.98],
|
||||||
);
|
);
|
||||||
|
|
||||||
// testing compared to pytorch nn.GELU(approximate = 'tanh')
|
|
||||||
let y = x.gelu()?;
|
|
||||||
let grads = y.backward()?;
|
|
||||||
let grad_x = grads.get(&x).context("no grad for x")?;
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(&y, 4)?,
|
|
||||||
[2.9964, 0.8412, 3.9999, 0.0839]
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(grad_x, 4)?,
|
|
||||||
[1.0116, 1.0830, 1.0003, 0.6188],
|
|
||||||
);
|
|
||||||
|
|
||||||
// Testing compared to pytorch torch.erf
|
|
||||||
//
|
|
||||||
// import torch
|
|
||||||
// x = torch.tensor([3.0, 1.0, 4.0, 0.15], requires_grad=True)
|
|
||||||
// y = x.erf()
|
|
||||||
// print(y)
|
|
||||||
// loss = y.sum()
|
|
||||||
// loss.backward()
|
|
||||||
// print(x.grad)
|
|
||||||
let y = x.erf()?;
|
|
||||||
let grads = y.backward()?;
|
|
||||||
let grad_x = grads.get(&x).context("no grad for x")?;
|
|
||||||
assert_eq!(test_utils::to_vec1_round(&y, 4)?, [1.0, 0.8427, 1.0, 0.168]);
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(grad_x, 4)?,
|
|
||||||
[0.0001, 0.4151, 0.0, 1.1033],
|
|
||||||
);
|
|
||||||
|
|
||||||
// Testing compared to pytorch nn.GELU(approximate = 'none')
|
|
||||||
//
|
|
||||||
// import torch
|
|
||||||
// import torch.nn.functional as F
|
|
||||||
// x = torch.tensor([3.0, 1.0, 4.0, 0.15], requires_grad=True)
|
|
||||||
// y = F.gelu(x, approximate='none')
|
|
||||||
// print(y)
|
|
||||||
// loss = y.sum()
|
|
||||||
// loss.backward()
|
|
||||||
// print(x.grad)
|
|
||||||
let y = x.gelu_erf()?;
|
|
||||||
let grads = y.backward()?;
|
|
||||||
let grad_x = grads.get(&x).context("no grad for x")?;
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(&y, 4)?,
|
|
||||||
[2.9960, 0.8413, 3.9999, 0.0839]
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(grad_x, 4)?,
|
|
||||||
[1.0119, 1.0833, 1.0005, 0.6188],
|
|
||||||
);
|
|
||||||
|
|
||||||
// Testing compared to pytorch elu
|
|
||||||
//
|
|
||||||
// import torch
|
|
||||||
// import torch.nn.functional as F
|
|
||||||
// x = torch.tensor([-1.0, 0.0, -2.0, 3.0], requires_grad=True)
|
|
||||||
// y = F.elu(x, alpha=2.0)
|
|
||||||
// print(y)
|
|
||||||
// loss = y.min
|
|
||||||
// loss = y.sum()
|
|
||||||
// loss.backward()
|
|
||||||
// print(x.grad)
|
|
||||||
let elu_x = Var::new(&[-1.0f32, 0., -2., 3.], device)?;
|
|
||||||
let y = elu_x.elu(2.)?;
|
|
||||||
let grads = y.backward()?;
|
|
||||||
let grad_x = grads.get(&elu_x).context("no grad for x")?;
|
|
||||||
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(&y, 4)?,
|
|
||||||
[-1.2642, 0.0000, -1.7293, 3.0000]
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(grad_x, 4)?,
|
|
||||||
[0.7358, 2.0000, 0.2707, 1.0000]
|
|
||||||
);
|
|
||||||
|
|
||||||
// testing compared to pytorch nn.Silu()
|
|
||||||
let y = x.silu()?;
|
|
||||||
let grads = y.backward()?;
|
|
||||||
let grad_x = grads.get(&x).context("no grad for x")?;
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(&y, 4)?,
|
|
||||||
[2.8577, 0.7311, 3.9281, 0.0806]
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec1_round(grad_x, 4)?,
|
|
||||||
[1.0881, 0.9277, 1.0527, 0.5747],
|
|
||||||
);
|
|
||||||
|
|
||||||
if device.is_cpu() {
|
|
||||||
let x = Var::new(&[[[1f32, 2., 3.], [4., 5., 6.], [7., 8., 9.]]], device)?;
|
|
||||||
let y = x.interpolate1d(12)?.reshape(36)?;
|
|
||||||
|
|
||||||
let z = Tensor::new(
|
|
||||||
&[
|
|
||||||
1_f32, 02., 03., 04., 05., 06., 07., 08., 09., 10., 11., 12., 13., 14., 15., 16.,
|
|
||||||
17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32.,
|
|
||||||
33., 34., 35., 36.,
|
|
||||||
],
|
|
||||||
device,
|
|
||||||
)?;
|
|
||||||
|
|
||||||
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
|
|
||||||
let grads = loss.backward()?;
|
|
||||||
let grad_x = grads.get(&x).context("no grad for x")?;
|
|
||||||
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec3_round(grad_x, 4)?,
|
|
||||||
[[[10_f32, 26., 42.], [58., 74., 90.], [106., 122., 138.]]]
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
// manually checked: see comments
|
|
||||||
let x = Var::new(&[[[[1f32, 2., 3.], [4., 5., 6.], [7., 8., 9.]]]], device)?;
|
|
||||||
let y = x.interpolate2d(6, 6)?.reshape(36)?;
|
|
||||||
|
|
||||||
let z = Tensor::new(
|
|
||||||
&[
|
|
||||||
1_f32, 02., 03., 04., 05., 06., 07., 08., 09., 10., 11., 12., 13., 14., 15., 16., 17.,
|
|
||||||
18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34.,
|
|
||||||
35., 36.,
|
|
||||||
],
|
|
||||||
device,
|
|
||||||
)?;
|
|
||||||
// gradient should be
|
|
||||||
// row 1
|
|
||||||
// 1+2+7+8 = 18
|
|
||||||
// 3+4+9+10 = 26
|
|
||||||
// 5+6+11+12 = 34
|
|
||||||
// row 2
|
|
||||||
// 13+14+19+20 = 66
|
|
||||||
// 15+16+21+22 = 74
|
|
||||||
// 17+18+23+24 = 82
|
|
||||||
// row 3
|
|
||||||
// 25+26+31+32 = 114
|
|
||||||
// 27+28+33+34 = 122
|
|
||||||
// 29+30+35+36 = 130
|
|
||||||
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
|
|
||||||
|
|
||||||
let grads = loss.backward()?;
|
|
||||||
|
|
||||||
let grad_x = grads.get(&x).context("no grad for x")?;
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec2_round(&grad_x.flatten(0, 2)?, 4)?,
|
|
||||||
[[18_f32, 26., 34.], [66., 74., 82.], [114., 122., 130.]]
|
|
||||||
);
|
|
||||||
|
|
||||||
// manually checked: see comments
|
|
||||||
let x = Var::new(&[[[[1f32, 2.], [4., 5.]]]], device)?;
|
|
||||||
let y = x.interpolate2d(6, 6)?.reshape(36)?;
|
|
||||||
|
|
||||||
let z = Tensor::new(
|
|
||||||
&[
|
|
||||||
1_f32, 02., 03., 04., 05., 06., 07., 08., 09., 10., 11., 12., 13., 14., 15., 16., 17.,
|
|
||||||
18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34.,
|
|
||||||
35., 36.,
|
|
||||||
],
|
|
||||||
device,
|
|
||||||
)?;
|
|
||||||
// gradient should be
|
|
||||||
// row 1
|
|
||||||
// 1+2+3+7+8+9+13+14+15 = 72
|
|
||||||
// 4+5+6+10+11+12+16+17+18 = 99
|
|
||||||
// row 2
|
|
||||||
// 19+20+21+25+26+27+31+32+33 = 234
|
|
||||||
// 22+23+24+28+29+30+34+35+36 = 243
|
|
||||||
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
|
|
||||||
|
|
||||||
let grads = loss.backward()?;
|
|
||||||
|
|
||||||
let grad_x = grads.get(&x).context("no grad for x")?;
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec2_round(&grad_x.flatten(0, 2)?, 4)?,
|
|
||||||
[[72_f32, 99.], [234., 261.]]
|
|
||||||
);
|
|
||||||
|
|
||||||
// manually checked: see comments
|
|
||||||
let x = Var::new(&[[[[1f32, 2.], [4., 5.]], [[6f32, 7.], [8., 9.]]]], device)?;
|
|
||||||
|
|
||||||
let y = x.interpolate2d(4, 4)?.reshape(32)?;
|
|
||||||
|
|
||||||
#[rustfmt::skip]
|
|
||||||
let z = Tensor::new(
|
|
||||||
&[
|
|
||||||
1_f32, 02., 03., 04.,
|
|
||||||
05., 06., 07., 08.,
|
|
||||||
09., 10., 11., 12.,
|
|
||||||
13., 14., 15., 16.,
|
|
||||||
17., 18., 19., 20.,
|
|
||||||
21., 22., 23., 24.,
|
|
||||||
25., 26., 27., 28.,
|
|
||||||
29., 30., 31., 32.
|
|
||||||
],
|
|
||||||
device,
|
|
||||||
)?;
|
|
||||||
// gradient should be
|
|
||||||
// m1r1
|
|
||||||
// 1+2+5+6=14
|
|
||||||
// 3+4+7+8=22
|
|
||||||
// m1r2
|
|
||||||
// 9+10+13+14=46
|
|
||||||
// 11+12+15+16=54
|
|
||||||
// m2r1
|
|
||||||
// 17+18+21+22=78
|
|
||||||
// 19+20+23+24=86
|
|
||||||
// m2r2
|
|
||||||
// 25+26+29+30=110
|
|
||||||
// 27+28+31+32=118
|
|
||||||
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
|
|
||||||
|
|
||||||
let grads = loss.backward()?;
|
|
||||||
|
|
||||||
let grad_x = grads.get(&x).context("no grad for x")?;
|
|
||||||
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec3_round(&grad_x.flatten(0, 1)?, 4)?,
|
|
||||||
[[[14_f32, 22.], [46., 54.]], [[78., 86.], [110., 118.]]]
|
|
||||||
);
|
|
||||||
|
|
||||||
// manually checked: see comments
|
|
||||||
let x = Var::new(
|
|
||||||
&[[[[1f32, 2.], [4., 5.]]], [[[6f32, 7.], [8., 9.]]]],
|
|
||||||
device,
|
|
||||||
)?;
|
|
||||||
|
|
||||||
let y = x.interpolate2d(4, 4)?.reshape(32)?;
|
|
||||||
|
|
||||||
#[rustfmt::skip]
|
|
||||||
let z = Tensor::new(
|
|
||||||
&[
|
|
||||||
1_f32, 02., 03., 04.,
|
|
||||||
05., 06., 07., 08.,
|
|
||||||
09., 10., 11., 12.,
|
|
||||||
13., 14., 15., 16.,
|
|
||||||
17., 18., 19., 20.,
|
|
||||||
21., 22., 23., 24.,
|
|
||||||
25., 26., 27., 28.,
|
|
||||||
29., 30., 31., 32.
|
|
||||||
],
|
|
||||||
device,
|
|
||||||
)?;
|
|
||||||
// gradient should be
|
|
||||||
// m1r1
|
|
||||||
// 1+2+5+6=14
|
|
||||||
// 3+4+7+8=22
|
|
||||||
// m1r2
|
|
||||||
// 9+10+13+14=46
|
|
||||||
// 11+12+15+16=54
|
|
||||||
// m2r1
|
|
||||||
// 17+18+21+22=78
|
|
||||||
// 19+20+23+24=86
|
|
||||||
// m2r2
|
|
||||||
// 25+26+29+30=110
|
|
||||||
// 27+28+31+32=118
|
|
||||||
let loss = y.unsqueeze(1)?.transpose(0, 1)?.matmul(&z.unsqueeze(1)?)?;
|
|
||||||
|
|
||||||
let grads = loss.backward()?;
|
|
||||||
|
|
||||||
let grad_x = grads.get(&x).context("no grad for x")?;
|
|
||||||
|
|
||||||
assert_eq!(
|
|
||||||
test_utils::to_vec3_round(&grad_x.flatten(0, 1)?, 4)?,
|
|
||||||
[[[14_f32, 22.], [46., 54.]], [[78., 86.], [110., 118.]]]
|
|
||||||
);
|
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -486,78 +218,12 @@ fn binary_grad(device: &Device) -> Result<()> {
|
|||||||
let grad_x = grads.get(x).context("no grad for x")?;
|
let grad_x = grads.get(x).context("no grad for x")?;
|
||||||
assert_eq!(y.to_vec1::<f32>()?, [3., 1., -4., -1.]);
|
assert_eq!(y.to_vec1::<f32>()?, [3., 1., -4., -1.]);
|
||||||
assert_eq!(grad_x.to_vec1::<f32>()?, [1., 1., 1., 1.]);
|
assert_eq!(grad_x.to_vec1::<f32>()?, [1., 1., 1., 1.]);
|
||||||
|
|
||||||
let x_var = Var::new(&[3f32, 1., -4., -1., 5., 9.], device)?;
|
|
||||||
let x = x_var.as_tensor();
|
|
||||||
let y_var = Var::new(&[2f32, 7., 1.], device)?;
|
|
||||||
let y = y_var.as_tensor();
|
|
||||||
|
|
||||||
let ss = x
|
|
||||||
.reshape((2, 3))?
|
|
||||||
.slice_scatter0(&y.reshape((1, 3))?, 1)?
|
|
||||||
.sqr()?;
|
|
||||||
let grads = ss.backward()?;
|
|
||||||
let grad_x = grads.get(x).context("no grad for x")?;
|
|
||||||
let grad_y = grads.get(y).context("no grad for y")?;
|
|
||||||
assert_eq!(ss.to_vec2::<f32>()?, [[9., 1., 16.], [4., 49., 1.]]);
|
|
||||||
assert_eq!(grad_x.to_vec1::<f32>()?, [6.0, 2.0, -8.0, 0.0, 0.0, 0.0]);
|
|
||||||
assert_eq!(grad_y.to_vec1::<f32>()?, [4.0, 14.0, 2.0]);
|
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
test_device!(simple_grad, simple_grad_cpu, simple_grad_gpu);
|
||||||
fn test_flip_backprop() -> Result<()> {
|
test_device!(sum_grad, sum_grad_cpu, sum_grad_gpu);
|
||||||
let device = &Device::Cpu;
|
test_device!(matmul_grad, matmul_grad_cpu, matmul_grad_gpu);
|
||||||
|
test_device!(grad_descent, grad_descent_cpu, grad_descent_gpu);
|
||||||
// Create a tensor (leaf node) that requires gradients
|
test_device!(unary_grad, unary_grad_cpu, unary_grad_gpu);
|
||||||
let x = Var::ones((2, 2), DType::F64, device)?;
|
test_device!(binary_grad, binary_grad_cpu, binary_grad_gpu);
|
||||||
let weights = Tensor::arange(1.0, 5.0, device)?.reshape((2, 2))?;
|
|
||||||
|
|
||||||
let y = x.matmul(&weights)?;
|
|
||||||
let expected_y = Tensor::from_vec(vec![4.0, 6.0, 4.0, 6.0], (2, 2), device)?;
|
|
||||||
candle_core::test_utils::assert_tensor_eq(&y, &expected_y)?;
|
|
||||||
|
|
||||||
let z = y.flip(&[1])?;
|
|
||||||
let expected_z = Tensor::from_vec(vec![6.0, 4.0, 6.0, 4.0], (2, 2), device)?;
|
|
||||||
candle_core::test_utils::assert_tensor_eq(&z, &expected_z)?;
|
|
||||||
|
|
||||||
let loss = z.sum_all()?;
|
|
||||||
|
|
||||||
let grad_store = loss.backward()?;
|
|
||||||
let grad_x = grad_store.get_id(x.id()).unwrap();
|
|
||||||
|
|
||||||
let flipped_weights = weights.flip(&[1])?;
|
|
||||||
let dloss_dy = Tensor::ones((2, 2), DType::F64, device)?;
|
|
||||||
// dloss/dx = dloss/dy @ dy/dx = ones @ weight.flip.T
|
|
||||||
let expected_grad = dloss_dy.matmul(&flipped_weights.t()?)?;
|
|
||||||
candle_core::test_utils::assert_tensor_eq(grad_x, &expected_grad)?;
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
test_device!(
|
|
||||||
simple_grad,
|
|
||||||
simple_grad_cpu,
|
|
||||||
simple_grad_gpu,
|
|
||||||
simple_grad_metal
|
|
||||||
);
|
|
||||||
test_device!(sum_grad, sum_grad_cpu, sum_grad_gpu, sum_grad_metal);
|
|
||||||
test_device!(
|
|
||||||
matmul_grad,
|
|
||||||
matmul_grad_cpu,
|
|
||||||
matmul_grad_gpu,
|
|
||||||
matmul_grad_metal
|
|
||||||
);
|
|
||||||
test_device!(
|
|
||||||
grad_descent,
|
|
||||||
grad_descent_cpu,
|
|
||||||
grad_descent_gpu,
|
|
||||||
grad_descent_metal
|
|
||||||
);
|
|
||||||
test_device!(unary_grad, unary_grad_cpu, unary_grad_gpu, unary_grad_metal);
|
|
||||||
test_device!(
|
|
||||||
binary_grad,
|
|
||||||
binary_grad_cpu,
|
|
||||||
binary_grad_gpu,
|
|
||||||
binary_grad_metal
|
|
||||||
);
|
|
||||||
|
@ -91,32 +91,3 @@ fn index_3d() -> Result<()> {
|
|||||||
assert_eq!(tensor.i((1, .., 3))?.to_vec1::<u32>()?, &[15, 19, 23]);
|
assert_eq!(tensor.i((1, .., 3))?.to_vec1::<u32>()?, &[15, 19, 23]);
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn slice_assign() -> Result<()> {
|
|
||||||
let dev = Device::Cpu;
|
|
||||||
|
|
||||||
let tensor = Tensor::arange(0u32, 4 * 5, &dev)?.reshape((4, 5))?;
|
|
||||||
let src = Tensor::arange(0u32, 2 * 3, &dev)?.reshape((3, 2))?;
|
|
||||||
let out = tensor.slice_assign(&[1..4, 3..5], &src)?;
|
|
||||||
assert_eq!(
|
|
||||||
out.to_vec2::<u32>()?,
|
|
||||||
&[
|
|
||||||
[0, 1, 2, 3, 4],
|
|
||||||
[5, 6, 7, 0, 1],
|
|
||||||
[10, 11, 12, 2, 3],
|
|
||||||
[15, 16, 17, 4, 5]
|
|
||||||
]
|
|
||||||
);
|
|
||||||
let out = tensor.slice_assign(&[0..3, 0..2], &src)?;
|
|
||||||
assert_eq!(
|
|
||||||
out.to_vec2::<u32>()?,
|
|
||||||
&[
|
|
||||||
[0, 1, 2, 3, 4],
|
|
||||||
[2, 3, 7, 8, 9],
|
|
||||||
[4, 5, 12, 13, 14],
|
|
||||||
[15, 16, 17, 18, 19]
|
|
||||||
]
|
|
||||||
);
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
@ -49,7 +49,7 @@ fn contiguous(device: &Device) -> Result<()> {
|
|||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
test_device!(contiguous, contiguous_cpu, contiguous_gpu, contiguous_metal);
|
test_device!(contiguous, contiguous_cpu, contiguous_gpu);
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn strided_blocks() -> Result<()> {
|
fn strided_blocks() -> Result<()> {
|
||||||
@ -88,7 +88,7 @@ fn strided_blocks() -> Result<()> {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?;
|
let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?;
|
||||||
let tensor = tensor.i((.., 1))?.contiguous()?;
|
let tensor = tensor.i((.., 1))?;
|
||||||
match tensor.strided_blocks() {
|
match tensor.strided_blocks() {
|
||||||
candle::StridedBlocks::SingleBlock { start_offset, len } => {
|
candle::StridedBlocks::SingleBlock { start_offset, len } => {
|
||||||
assert_eq!(start_offset, 0);
|
assert_eq!(start_offset, 0);
|
||||||
@ -100,20 +100,6 @@ fn strided_blocks() -> Result<()> {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?;
|
let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?;
|
||||||
let tensor = tensor.i((.., 1))?;
|
|
||||||
match tensor.strided_blocks() {
|
|
||||||
candle::StridedBlocks::SingleBlock { .. } => {
|
|
||||||
panic!("unexpected block structure")
|
|
||||||
}
|
|
||||||
candle::StridedBlocks::MultipleBlocks {
|
|
||||||
block_len,
|
|
||||||
block_start_index,
|
|
||||||
} => {
|
|
||||||
assert_eq!(block_len, 4);
|
|
||||||
assert_eq!(block_start_index.collect::<Vec<_>>(), &[4, 16])
|
|
||||||
}
|
|
||||||
};
|
|
||||||
let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?;
|
|
||||||
match tensor.t()?.strided_blocks() {
|
match tensor.t()?.strided_blocks() {
|
||||||
candle::StridedBlocks::SingleBlock { .. } => {
|
candle::StridedBlocks::SingleBlock { .. } => {
|
||||||
panic!("unexpected block structure")
|
panic!("unexpected block structure")
|
||||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user