mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 19:58:35 +00:00
Compare commits
3 Commits
linear-tra
...
wasm-llama
Author | SHA1 | Date | |
---|---|---|---|
b2e4beb4f3 | |||
d48bddbe01 | |||
145706f8df |
@ -1,516 +0,0 @@
|
||||
//! Support for the GGML file format.
|
||||
|
||||
use crate::{DType, Device, Result, Tensor};
|
||||
use byteorder::{LittleEndian, ReadBytesExt};
|
||||
use half::f16;
|
||||
|
||||
// Default to QK_K 256 rather than 64.
|
||||
pub const QK_K: usize = 256;
|
||||
pub const K_SCALE_SIZE: usize = 12;
|
||||
|
||||
pub const QK4_0: usize = 32;
|
||||
pub const QK4_1: usize = 32;
|
||||
pub const QK5_0: usize = 32;
|
||||
pub const QK5_1: usize = 32;
|
||||
pub const QK8_0: usize = 32;
|
||||
pub const QK8_1: usize = 32;
|
||||
|
||||
#[repr(C)]
|
||||
struct BlockQ4_0 {
|
||||
d: f16,
|
||||
qs: [u8; QK4_0 / 2],
|
||||
}
|
||||
const _: () = assert!(std::mem::size_of::<BlockQ4_0>() == 18);
|
||||
|
||||
#[repr(C)]
|
||||
struct BlockQ4_1 {
|
||||
d: f16,
|
||||
m: f16,
|
||||
qs: [u8; QK4_1 / 2],
|
||||
}
|
||||
const _: () = assert!(std::mem::size_of::<BlockQ4_1>() == 20);
|
||||
|
||||
#[repr(C)]
|
||||
struct BlockQ5_0 {
|
||||
d: f16,
|
||||
qh: [u8; 4],
|
||||
qs: [u8; QK5_0 / 2],
|
||||
}
|
||||
const _: () = assert!(std::mem::size_of::<BlockQ5_0>() == 22);
|
||||
|
||||
#[repr(C)]
|
||||
struct BlockQ5_1 {
|
||||
d: f16,
|
||||
m: f16,
|
||||
qh: [u8; 4],
|
||||
qs: [u8; QK5_1 / 2],
|
||||
}
|
||||
const _: () = assert!(std::mem::size_of::<BlockQ5_1>() == 24);
|
||||
|
||||
#[repr(C)]
|
||||
struct BlockQ8_0 {
|
||||
d: f16,
|
||||
qs: [u8; QK8_0],
|
||||
}
|
||||
const _: () = assert!(std::mem::size_of::<BlockQ8_0>() == 34);
|
||||
|
||||
#[repr(C)]
|
||||
struct BlockQ8_1 {
|
||||
d: f16,
|
||||
s: f16,
|
||||
qs: [u8; QK8_1],
|
||||
}
|
||||
const _: () = assert!(std::mem::size_of::<BlockQ8_1>() == 36);
|
||||
|
||||
#[repr(C)]
|
||||
struct BlockQ2K {
|
||||
scales: [u8; QK_K / 16],
|
||||
qs: [u8; QK_K / 4],
|
||||
d: f16,
|
||||
dmin: f16,
|
||||
}
|
||||
const _: () = assert!(QK_K / 16 + QK_K / 4 + 2 * 2 == std::mem::size_of::<BlockQ2K>());
|
||||
|
||||
#[repr(C)]
|
||||
struct BlockQ3K {
|
||||
hmask: [u8; QK_K / 8],
|
||||
qs: [u8; QK_K / 4],
|
||||
scales: [u8; 12],
|
||||
d: f16,
|
||||
}
|
||||
const _: () = assert!(QK_K / 8 + QK_K / 4 + 12 + 2 == std::mem::size_of::<BlockQ3K>());
|
||||
|
||||
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/k_quants.h#L82
|
||||
#[repr(C)]
|
||||
struct BlockQ4K {
|
||||
d: f16,
|
||||
dmin: f16,
|
||||
scales: [u8; K_SCALE_SIZE],
|
||||
qs: [u8; QK_K / 2],
|
||||
}
|
||||
const _: () = assert!(QK_K / 2 + K_SCALE_SIZE + 2 * 2 == std::mem::size_of::<BlockQ4K>());
|
||||
|
||||
#[repr(C)]
|
||||
struct BlockQ5K {
|
||||
d: f16,
|
||||
dmin: f16,
|
||||
scales: [u8; K_SCALE_SIZE],
|
||||
qh: [u8; QK_K / 8],
|
||||
qs: [u8; QK_K / 2],
|
||||
}
|
||||
const _: () =
|
||||
assert!(QK_K / 8 + QK_K / 2 + 2 * 2 + K_SCALE_SIZE == std::mem::size_of::<BlockQ5K>());
|
||||
|
||||
#[repr(C)]
|
||||
struct BlockQ6K {
|
||||
ql: [u8; QK_K / 2],
|
||||
qh: [u8; QK_K / 4],
|
||||
scales: [i8; QK_K / 16],
|
||||
d: f16,
|
||||
}
|
||||
const _: () = assert!(3 * QK_K / 4 + QK_K / 16 + 2 == std::mem::size_of::<BlockQ6K>());
|
||||
|
||||
// https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L354
|
||||
fn dequantize_row_q2k(xs: &[BlockQ2K], ys: &mut [f32]) -> Result<()> {
|
||||
let k = ys.len();
|
||||
if k % QK_K != 0 {
|
||||
crate::bail!("dequantize_row_q2k: {k} is not divisible by {QK_K}")
|
||||
}
|
||||
let mut ys_index = 0;
|
||||
for x in xs {
|
||||
let d = x.d.to_f32();
|
||||
let min = x.dmin.to_f32();
|
||||
let q = &x.qs;
|
||||
|
||||
let mut is = 0;
|
||||
for n in (0..QK_K).step_by(128) {
|
||||
// Step by 32 over q.
|
||||
let q = &q[n / 4..];
|
||||
let mut shift = 0;
|
||||
for _j in 0..4 {
|
||||
let sc = x.scales[is];
|
||||
is += 1;
|
||||
let dl = d * (sc & 0xF) as f32;
|
||||
let ml = min * (sc >> 4) as f32;
|
||||
for q in &q[..16] {
|
||||
let y = dl * ((q >> shift) & 3) as i8 as f32 - ml;
|
||||
ys[ys_index] = y;
|
||||
ys_index += 1;
|
||||
}
|
||||
|
||||
let sc = x.scales[is];
|
||||
is += 1;
|
||||
let dl = d * (sc & 0xF) as f32;
|
||||
let ml = min * (sc >> 4) as f32;
|
||||
for q in &q[16..32] {
|
||||
let y = dl * ((q >> shift) & 3) as i8 as f32 - ml;
|
||||
ys[ys_index] = y;
|
||||
ys_index += 1;
|
||||
}
|
||||
|
||||
shift += 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn get_scale_min_k4(j: usize, q: &[u8]) -> (u8, u8) {
|
||||
if j < 4 {
|
||||
let d = q[j] & 63;
|
||||
let m = q[j + 4] & 63;
|
||||
(d, m)
|
||||
} else {
|
||||
let d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4);
|
||||
let m = (q[j + 4] >> 4) | ((q[j] >> 6) << 4);
|
||||
(d, m)
|
||||
}
|
||||
}
|
||||
// https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L735
|
||||
fn dequantize_row_q4k(xs: &[BlockQ4K], ys: &mut [f32]) -> Result<()> {
|
||||
let k = ys.len();
|
||||
if k % QK_K != 0 {
|
||||
crate::bail!("dequantize_row_q4k: {k} is not divisible by {QK_K}")
|
||||
}
|
||||
let mut ys_index = 0;
|
||||
for x in xs.iter() {
|
||||
let d = x.d.to_f32();
|
||||
let min = x.dmin.to_f32();
|
||||
let q = &x.qs;
|
||||
let mut is = 0;
|
||||
for j in (0..QK_K).step_by(64) {
|
||||
let q = &q[j / 2..j / 2 + 32];
|
||||
let (sc, m) = get_scale_min_k4(is, &x.scales);
|
||||
let d1 = d * sc as f32;
|
||||
let m1 = min * m as f32;
|
||||
let (sc, m) = get_scale_min_k4(is + 1, &x.scales);
|
||||
let d2 = d * sc as f32;
|
||||
let m2 = min * m as f32;
|
||||
for q in q {
|
||||
let y = d1 * (q & 0xF) as f32 - m1;
|
||||
ys[ys_index] = y;
|
||||
ys_index += 1;
|
||||
}
|
||||
for q in q {
|
||||
let y = d2 * (q >> 4) as f32 - m2;
|
||||
ys[ys_index] = y;
|
||||
ys_index += 1;
|
||||
}
|
||||
is += 2;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L1067
|
||||
fn dequantize_row_q6k(xs: &[BlockQ6K], ys: &mut [f32]) -> Result<()> {
|
||||
let k = ys.len();
|
||||
if k % QK_K != 0 {
|
||||
crate::bail!("dequantize_row_q6k: {k} is not divisible by {QK_K}")
|
||||
}
|
||||
for x in xs.iter() {
|
||||
let d = x.d.to_f32();
|
||||
let ql = &x.ql;
|
||||
let qh = &x.qh;
|
||||
let sc = &x.scales;
|
||||
for n in (0..QK_K).step_by(128) {
|
||||
let idx = n / 128;
|
||||
let ys = &mut ys[n..];
|
||||
let sc = &sc[8 * idx..];
|
||||
let ql = &ql[64 * idx..];
|
||||
let qh = &qh[32 * idx..];
|
||||
for l in 0..32 {
|
||||
let is = l / 16;
|
||||
let q1 = ((ql[l] & 0xF) | ((qh[l] & 3) << 4)) as i8 - 32;
|
||||
let q2 = ((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) as i8 - 32;
|
||||
let q3 = ((ql[l] >> 4) | (((qh[l] >> 4) & 3) << 4)) as i8 - 32;
|
||||
let q4 = ((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) as i8 - 32;
|
||||
ys[l] = d * sc[is] as f32 * q1 as f32;
|
||||
ys[l + 32] = d * sc[is + 2] as f32 * q2 as f32;
|
||||
ys[l + 64] = d * sc[is + 4] as f32 * q3 as f32;
|
||||
ys[l + 96] = d * sc[is + 6] as f32 * q4 as f32;
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.h#L37
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
enum Magic {
|
||||
Ggjt,
|
||||
Ggla,
|
||||
Ggmf,
|
||||
Ggml,
|
||||
Ggsn,
|
||||
}
|
||||
|
||||
impl TryFrom<u32> for Magic {
|
||||
type Error = crate::Error;
|
||||
fn try_from(value: u32) -> Result<Self> {
|
||||
let magic = match value {
|
||||
0x67676a74 => Self::Ggjt,
|
||||
0x67676c61 => Self::Ggla,
|
||||
0x67676d66 => Self::Ggmf,
|
||||
0x67676d6c => Self::Ggml,
|
||||
0x6767736e => Self::Ggsn,
|
||||
_ => crate::bail!("unknown magic {value:08x}"),
|
||||
};
|
||||
Ok(magic)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub enum VersionedMagic {
|
||||
GgmlUnversioned,
|
||||
GgmfV1,
|
||||
GgjtV1,
|
||||
GgjtV2,
|
||||
GgjtV3,
|
||||
}
|
||||
|
||||
impl VersionedMagic {
|
||||
fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> {
|
||||
let magic = reader.read_u32::<LittleEndian>()?;
|
||||
let magic = Magic::try_from(magic)?;
|
||||
if magic == Magic::Ggml {
|
||||
return Ok(Self::GgmlUnversioned);
|
||||
}
|
||||
let version = reader.read_u32::<LittleEndian>()?;
|
||||
let versioned_magic = match (magic, version) {
|
||||
(Magic::Ggmf, 1) => Self::GgmfV1,
|
||||
(Magic::Ggjt, 1) => Self::GgjtV1,
|
||||
(Magic::Ggjt, 2) => Self::GgjtV2,
|
||||
(Magic::Ggjt, 3) => Self::GgjtV3,
|
||||
_ => crate::bail!("ggml: unsupported magic/version {magic:?}/{version}"),
|
||||
};
|
||||
Ok(versioned_magic)
|
||||
}
|
||||
|
||||
fn align32(&self) -> bool {
|
||||
match self {
|
||||
Self::GgmlUnversioned | Self::GgmfV1 => false,
|
||||
Self::GgjtV1 | Self::GgjtV2 | Self::GgjtV3 => true,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub struct HParams {
|
||||
pub n_vocab: u32,
|
||||
pub n_embd: u32,
|
||||
pub n_mult: u32,
|
||||
pub n_head: u32,
|
||||
pub n_layer: u32,
|
||||
pub n_rot: u32,
|
||||
pub ftype: u32,
|
||||
}
|
||||
|
||||
impl HParams {
|
||||
fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> {
|
||||
let n_vocab = reader.read_u32::<LittleEndian>()?;
|
||||
let n_embd = reader.read_u32::<LittleEndian>()?;
|
||||
let n_mult = reader.read_u32::<LittleEndian>()?;
|
||||
let n_head = reader.read_u32::<LittleEndian>()?;
|
||||
let n_layer = reader.read_u32::<LittleEndian>()?;
|
||||
let n_rot = reader.read_u32::<LittleEndian>()?;
|
||||
let ftype = reader.read_u32::<LittleEndian>()?;
|
||||
Ok(Self {
|
||||
n_vocab,
|
||||
n_embd,
|
||||
n_mult,
|
||||
n_head,
|
||||
n_layer,
|
||||
n_rot,
|
||||
ftype,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
pub struct Vocab {
|
||||
pub token_score_pairs: Vec<(Vec<u8>, f32)>,
|
||||
}
|
||||
|
||||
impl Vocab {
|
||||
fn read<R: std::io::Read>(reader: &mut R, n_vocab: usize) -> Result<Self> {
|
||||
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L556
|
||||
let mut token_score_pairs = Vec::with_capacity(n_vocab);
|
||||
for _index in 0..n_vocab {
|
||||
let len = reader.read_u32::<LittleEndian>()? as usize;
|
||||
let mut word = vec![0u8; len];
|
||||
reader.read_exact(&mut word)?;
|
||||
let score = reader.read_f32::<LittleEndian>()?;
|
||||
token_score_pairs.push((word, score))
|
||||
}
|
||||
Ok(Self { token_score_pairs })
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub enum GgmlDType {
|
||||
F32,
|
||||
F16,
|
||||
Q4_0,
|
||||
Q4_1,
|
||||
Q5_0,
|
||||
Q5_1,
|
||||
Q8_0,
|
||||
Q8_1,
|
||||
Q2K,
|
||||
Q3K,
|
||||
Q4K,
|
||||
Q5K,
|
||||
Q6K,
|
||||
}
|
||||
|
||||
impl GgmlDType {
|
||||
fn from_u32(u: u32) -> Result<Self> {
|
||||
let dtype = match u {
|
||||
0 => Self::F32,
|
||||
1 => Self::F16,
|
||||
2 => Self::Q4_0,
|
||||
3 => Self::Q4_1,
|
||||
6 => Self::Q5_0,
|
||||
7 => Self::Q5_1,
|
||||
8 => Self::Q8_0,
|
||||
9 => Self::Q8_1,
|
||||
10 => Self::Q2K,
|
||||
11 => Self::Q3K,
|
||||
12 => Self::Q4K,
|
||||
13 => Self::Q5K,
|
||||
14 => Self::Q6K,
|
||||
_ => crate::bail!("unknown dtype for tensor {u}"),
|
||||
};
|
||||
Ok(dtype)
|
||||
}
|
||||
|
||||
fn type_size(&self) -> usize {
|
||||
match self {
|
||||
Self::F32 => 4,
|
||||
Self::F16 => 2,
|
||||
Self::Q4_0 => std::mem::size_of::<BlockQ4_0>(),
|
||||
Self::Q4_1 => std::mem::size_of::<BlockQ4_1>(),
|
||||
Self::Q5_0 => std::mem::size_of::<BlockQ5_0>(),
|
||||
Self::Q5_1 => std::mem::size_of::<BlockQ5_1>(),
|
||||
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L932
|
||||
Self::Q8_0 => std::mem::size_of::<BlockQ8_0>(),
|
||||
Self::Q8_1 => std::mem::size_of::<BlockQ8_1>(),
|
||||
Self::Q2K => std::mem::size_of::<BlockQ2K>(),
|
||||
Self::Q3K => std::mem::size_of::<BlockQ3K>(),
|
||||
Self::Q4K => std::mem::size_of::<BlockQ4K>(),
|
||||
Self::Q5K => std::mem::size_of::<BlockQ5K>(),
|
||||
Self::Q6K => std::mem::size_of::<BlockQ6K>(),
|
||||
}
|
||||
}
|
||||
|
||||
fn blck_size(&self) -> usize {
|
||||
match self {
|
||||
Self::F32 => 1,
|
||||
Self::F16 => 1,
|
||||
Self::Q4_0 => QK4_0,
|
||||
Self::Q4_1 => QK4_1,
|
||||
Self::Q5_0 => QK5_0,
|
||||
Self::Q5_1 => QK5_1,
|
||||
Self::Q8_0 => QK8_0,
|
||||
Self::Q8_1 => QK8_1,
|
||||
Self::Q2K | Self::Q3K | Self::Q4K | Self::Q5K | Self::Q6K => QK_K,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Content {
|
||||
pub magic: VersionedMagic,
|
||||
pub hparams: HParams,
|
||||
pub vocab: Vocab,
|
||||
pub tensors: Vec<(String, Tensor)>,
|
||||
}
|
||||
|
||||
fn read_one_tensor<R: std::io::Seek + std::io::Read>(
|
||||
reader: &mut R,
|
||||
magic: VersionedMagic,
|
||||
device: &Device,
|
||||
) -> Result<(String, Tensor)> {
|
||||
let n_dims = reader.read_u32::<LittleEndian>()?;
|
||||
let name_len = reader.read_u32::<LittleEndian>()?;
|
||||
let dtype = reader.read_u32::<LittleEndian>()?;
|
||||
let dtype = GgmlDType::from_u32(dtype)?;
|
||||
let mut dims = vec![0u32; n_dims as usize];
|
||||
reader.read_u32_into::<LittleEndian>(&mut dims)?;
|
||||
let mut name = vec![0u8; name_len as usize];
|
||||
reader.read_exact(&mut name)?;
|
||||
let name = String::from_utf8_lossy(&name).into_owned();
|
||||
|
||||
if magic.align32() {
|
||||
let pos = reader.stream_position()?;
|
||||
reader.seek(std::io::SeekFrom::Current(((32 - pos % 32) % 32) as i64))?;
|
||||
}
|
||||
let dims = dims.iter().map(|&u| u as usize).collect::<Vec<_>>();
|
||||
let tensor_elems = dims.iter().product::<usize>();
|
||||
let size_in_bytes = tensor_elems * dtype.type_size() / dtype.blck_size();
|
||||
println!("{name} {dtype:?} {dims:?}");
|
||||
// TODO: Mmap version to avoid copying the data around?
|
||||
let mut raw_data = vec![0u8; size_in_bytes];
|
||||
reader.read_exact(&mut raw_data)?;
|
||||
let tensor = match dtype {
|
||||
GgmlDType::F32 => Tensor::from_raw_buffer(&raw_data, DType::F32, &dims, device)?,
|
||||
GgmlDType::F16 => Tensor::from_raw_buffer(&raw_data, DType::F16, &dims, device)?,
|
||||
GgmlDType::Q2K => {
|
||||
let mut f32_data = vec![0f32; tensor_elems];
|
||||
let raw_data_ptr = raw_data.as_ptr();
|
||||
let n_blocks = size_in_bytes / std::mem::size_of::<BlockQ2K>();
|
||||
let raw_data =
|
||||
unsafe { std::slice::from_raw_parts(raw_data_ptr as *const BlockQ2K, n_blocks) };
|
||||
dequantize_row_q2k(raw_data, &mut f32_data)?;
|
||||
// Maybe we should use bf16 instead?
|
||||
Tensor::from_vec(f32_data, dims, device)?
|
||||
}
|
||||
GgmlDType::Q4K => {
|
||||
let mut f32_data = vec![0f32; tensor_elems];
|
||||
let raw_data_ptr = raw_data.as_ptr();
|
||||
let n_blocks = size_in_bytes / std::mem::size_of::<BlockQ4K>();
|
||||
let raw_data =
|
||||
unsafe { std::slice::from_raw_parts(raw_data_ptr as *const BlockQ4K, n_blocks) };
|
||||
dequantize_row_q4k(raw_data, &mut f32_data)?;
|
||||
Tensor::from_vec(f32_data, dims, device)?
|
||||
}
|
||||
GgmlDType::Q6K => {
|
||||
let mut f32_data = vec![0f32; tensor_elems];
|
||||
let raw_data_ptr = raw_data.as_ptr();
|
||||
let n_blocks = size_in_bytes / std::mem::size_of::<BlockQ6K>();
|
||||
let raw_data =
|
||||
unsafe { std::slice::from_raw_parts(raw_data_ptr as *const BlockQ6K, n_blocks) };
|
||||
dequantize_row_q6k(raw_data, &mut f32_data)?;
|
||||
Tensor::from_vec(f32_data, dims, device)?
|
||||
}
|
||||
_ => crate::bail!("quantized type {dtype:?} used in {name} is not supported yet"),
|
||||
};
|
||||
Ok((name, tensor))
|
||||
}
|
||||
|
||||
impl Content {
|
||||
pub fn read<R: std::io::Seek + std::io::Read>(
|
||||
reader: &mut R,
|
||||
device: &Device,
|
||||
) -> Result<Content> {
|
||||
// https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L505
|
||||
let last_position = reader.seek(std::io::SeekFrom::End(0))?;
|
||||
reader.seek(std::io::SeekFrom::Start(0))?;
|
||||
let magic = VersionedMagic::read(reader)?;
|
||||
let hparams = HParams::read(reader)?;
|
||||
let vocab = Vocab::read(reader, hparams.n_vocab as usize)?;
|
||||
let mut tensors = vec![];
|
||||
|
||||
while reader.stream_position()? != last_position {
|
||||
let (name, tensor) = read_one_tensor(reader, magic, device)?;
|
||||
tensors.push((name, tensor))
|
||||
}
|
||||
Ok(Self {
|
||||
magic,
|
||||
hparams,
|
||||
vocab,
|
||||
tensors,
|
||||
})
|
||||
}
|
||||
}
|
@ -45,7 +45,6 @@ pub mod display;
|
||||
mod dtype;
|
||||
mod dummy_cuda_backend;
|
||||
pub mod error;
|
||||
pub mod ggml;
|
||||
mod indexer;
|
||||
pub mod layout;
|
||||
#[cfg(feature = "mkl")]
|
||||
|
@ -111,10 +111,6 @@ struct Args {
|
||||
#[arg(long)]
|
||||
use_f32: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
@ -127,18 +123,8 @@ struct Args {
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tokenizers::Tokenizer;
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
println!("tracing...");
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let config = if args.v1 {
|
||||
|
@ -1,5 +1,5 @@
|
||||
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{Embedding, VarBuilder};
|
||||
use candle_nn::{Embedding, Linear, VarBuilder};
|
||||
use std::collections::HashMap;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
@ -47,21 +47,6 @@ impl Config {
|
||||
}
|
||||
}
|
||||
|
||||
// We wrap the `Linear` layer here to add some tracing so that it's easier to profile the resulting
|
||||
// model.
|
||||
#[derive(Debug)]
|
||||
pub struct Linear {
|
||||
inner: candle_nn::Linear,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl Linear {
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
self.inner.forward(x)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Cache {
|
||||
masks: Arc<Mutex<HashMap<usize, Tensor>>>,
|
||||
@ -121,9 +106,8 @@ fn silu(xs: &Tensor) -> Result<Tensor> {
|
||||
}
|
||||
|
||||
fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "linear");
|
||||
let inner = candle_nn::linear_no_bias(size1, size2, vb)?;
|
||||
Ok(Linear { inner, span })
|
||||
let weight = vb.get((size2, size1), "weight")?;
|
||||
Ok(Linear::new(weight, None))
|
||||
}
|
||||
|
||||
fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
|
||||
@ -134,18 +118,15 @@ fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
|
||||
struct RmsNorm {
|
||||
scale: Tensor,
|
||||
eps: f64,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl RmsNorm {
|
||||
fn load(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
|
||||
let scale = vb.get(size, "weight")?;
|
||||
Ok(Self { scale, eps, span })
|
||||
Ok(Self { scale, eps })
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let in_dtype = x.dtype();
|
||||
// This is a no-op if x's dtype is already f32.
|
||||
let x = x.to_dtype(DType::F32)?;
|
||||
@ -174,8 +155,6 @@ struct CausalSelfAttention {
|
||||
head_dim: usize,
|
||||
cache: Cache,
|
||||
use_flash_attn: bool,
|
||||
span: tracing::Span,
|
||||
span_rot: tracing::Span,
|
||||
}
|
||||
|
||||
#[cfg(feature = "flash-attn")]
|
||||
@ -196,7 +175,6 @@ fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Ten
|
||||
|
||||
impl CausalSelfAttention {
|
||||
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||
let _enter = self.span_rot.enter();
|
||||
let (b_sz, _, seq_len, n_embd) = x.dims4()?;
|
||||
let cos = self.cache.cos.narrow(0, index_pos, seq_len)?;
|
||||
let sin = self.cache.sin.narrow(0, index_pos, seq_len)?;
|
||||
@ -210,7 +188,6 @@ impl CausalSelfAttention {
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let (b_sz, seq_len, n_embd) = x.dims3()?;
|
||||
let q = self.q_proj.forward(x)?;
|
||||
let k = self.k_proj.forward(x)?;
|
||||
@ -292,8 +269,6 @@ impl CausalSelfAttention {
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "attn");
|
||||
let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
|
||||
let size_in = cfg.hidden_size;
|
||||
let size_q = (cfg.hidden_size / cfg.n_head) * cfg.n_head;
|
||||
let size_kv = (cfg.hidden_size / cfg.n_head) * cfg.n_key_value_head;
|
||||
@ -311,8 +286,6 @@ impl CausalSelfAttention {
|
||||
head_dim: cfg.hidden_size / cfg.n_head,
|
||||
cache: cache.clone(),
|
||||
use_flash_attn: cfg.use_flash_attn,
|
||||
span,
|
||||
span_rot,
|
||||
})
|
||||
}
|
||||
}
|
||||
@ -328,18 +301,15 @@ struct Mlp {
|
||||
c_fc1: Linear,
|
||||
c_fc2: Linear,
|
||||
c_proj: Linear,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl Mlp {
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
|
||||
self.c_proj.forward(&x)
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "mlp");
|
||||
let h_size = cfg.hidden_size;
|
||||
let i_size = cfg.intermediate_size;
|
||||
let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?;
|
||||
@ -349,7 +319,6 @@ impl Mlp {
|
||||
c_fc1,
|
||||
c_fc2,
|
||||
c_proj,
|
||||
span,
|
||||
})
|
||||
}
|
||||
}
|
||||
@ -359,12 +328,10 @@ struct Block {
|
||||
attn: CausalSelfAttention,
|
||||
rms_2: RmsNorm,
|
||||
mlp: Mlp,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl Block {
|
||||
fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let residual = x;
|
||||
let x = self.rms_1.forward(x)?;
|
||||
let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?;
|
||||
@ -374,7 +341,6 @@ impl Block {
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "block");
|
||||
let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?;
|
||||
let mlp = Mlp::load(vb.pp("mlp"), cfg)?;
|
||||
let rms_1 = RmsNorm::load(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
|
||||
@ -388,7 +354,6 @@ impl Block {
|
||||
attn,
|
||||
rms_2,
|
||||
mlp,
|
||||
span,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
@ -27,7 +27,7 @@ struct InferenceCmd {
|
||||
#[arg(long, default_value = "")]
|
||||
prompt: String,
|
||||
|
||||
/// Config file in binary or safetensors format.
|
||||
/// Config file in binary format.
|
||||
#[arg(long)]
|
||||
config: Option<String>,
|
||||
|
||||
@ -225,22 +225,11 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
|
||||
|
||||
let device = candle_examples::device(common_args.cpu)?;
|
||||
|
||||
let is_safetensors = config_path
|
||||
.extension()
|
||||
.map_or(false, |v| v == "safetensors");
|
||||
let (vb, config) = if is_safetensors {
|
||||
let config = Config::tiny();
|
||||
let tensors = candle::safetensors::load(config_path, &device)?;
|
||||
let vb = candle_nn::VarBuilder::from_tensors(tensors, candle::DType::F32, &device);
|
||||
(vb, config)
|
||||
} else {
|
||||
let mut file = std::fs::File::open(config_path)?;
|
||||
let config = Config::from_reader(&mut file)?;
|
||||
println!("{config:?}");
|
||||
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
|
||||
let vb = weights.var_builder(&config, &device)?;
|
||||
(vb, config)
|
||||
};
|
||||
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
||||
let model = Llama::load(vb, &cache, config)?;
|
||||
|
||||
|
@ -104,7 +104,7 @@ impl TransformerWeights {
|
||||
})
|
||||
}
|
||||
|
||||
pub fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder<'static>> {
|
||||
pub fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder> {
|
||||
let mut ws = std::collections::HashMap::new();
|
||||
let mut insert = |name: &str, t: Tensor| {
|
||||
ws.insert(name.to_string(), t);
|
||||
|
@ -27,14 +27,13 @@ pub struct Linear {
|
||||
|
||||
impl Linear {
|
||||
pub fn new(weight: Tensor, bias: Option<Tensor>) -> Self {
|
||||
let weight = weight.t().unwrap().contiguous().unwrap();
|
||||
Self { weight, bias }
|
||||
}
|
||||
|
||||
pub fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
|
||||
let w = match x.dims() {
|
||||
&[bsize, _, _] => self.weight.broadcast_left(bsize)?,
|
||||
_ => self.weight.clone(),
|
||||
&[bsize, _, _] => self.weight.broadcast_left(bsize)?.t()?,
|
||||
_ => self.weight.t()?,
|
||||
};
|
||||
let x = x.matmul(&w)?;
|
||||
match &self.bias {
|
||||
|
@ -111,10 +111,7 @@ impl Model {
|
||||
.to_vec();
|
||||
link.respond(id, Ok(WorkerOutput::Generated(prompt)));
|
||||
|
||||
for index in 0.. {
|
||||
if tokens.len() >= self.config.seq_len {
|
||||
break;
|
||||
}
|
||||
for index in 0..self.config.seq_len - 10 {
|
||||
let context_size = if self.cache.use_kv_cache && index > 0 {
|
||||
1
|
||||
} else {
|
||||
|
Reference in New Issue
Block a user