mirror of
https://github.com/huggingface/candle.git
synced 2025-06-20 12:06:35 +00:00
Compare commits
3 Commits
Author | SHA1 | Date | |
---|---|---|---|
1f23cea90c | |||
ce33d6ad2a | |||
3d0ade406a |
@ -61,7 +61,7 @@ tracing-subscriber = "0.3.7"
|
|||||||
wav = "1.0.0"
|
wav = "1.0.0"
|
||||||
yoke = { version = "0.7.2", features = ["derive"] }
|
yoke = { version = "0.7.2", features = ["derive"] }
|
||||||
zip = { version = "0.6.6", default-features = false }
|
zip = { version = "0.6.6", default-features = false }
|
||||||
metal = { version = "0.27.0", features = ["mps"]}
|
metal = { version = "0.27.1", features = ["mps"], package="candle-metal" }
|
||||||
|
|
||||||
[profile.release-with-debug]
|
[profile.release-with-debug]
|
||||||
inherits = "release"
|
inherits = "release"
|
||||||
|
@ -201,9 +201,10 @@ impl Device {
|
|||||||
Ok(Storage::Cuda(storage))
|
Ok(Storage::Cuda(storage))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Device::Metal(device) => {
|
Device::Metal(_device) => {
|
||||||
let storage = device.rand_uniform(shape, dtype, lo, up)?;
|
// let storage = device.rand_uniform(shape, dtype, lo, up)?;
|
||||||
Ok(Storage::Metal(storage))
|
// Ok(Storage::Metal(storage))
|
||||||
|
crate::bail!("Metal rand_uniform not implemented")
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -1863,7 +1863,10 @@ impl Tensor {
|
|||||||
Storage::Metal(metal.storage_from_cpu_storage(storage)?)
|
Storage::Metal(metal.storage_from_cpu_storage(storage)?)
|
||||||
}
|
}
|
||||||
(Storage::Cuda(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
|
(Storage::Cuda(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
|
||||||
(Storage::Metal(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
|
(Storage::Metal(storage), Device::Cpu) => {
|
||||||
|
println!("{storage:?} - {:?}", storage.to_cpu_storage()?);
|
||||||
|
Storage::Cpu(storage.to_cpu_storage()?)
|
||||||
|
}
|
||||||
(Storage::Cuda(storage), Device::Cuda(cuda)) => {
|
(Storage::Cuda(storage), Device::Cuda(cuda)) => {
|
||||||
// TODO: Avoid passing through the cpu storage here, especially if the gpu ids
|
// TODO: Avoid passing through the cpu storage here, especially if the gpu ids
|
||||||
// are the same.
|
// are the same.
|
||||||
|
@ -10,7 +10,7 @@ categories = ["science"]
|
|||||||
license = "MIT OR Apache-2.0"
|
license = "MIT OR Apache-2.0"
|
||||||
|
|
||||||
[dependencies]
|
[dependencies]
|
||||||
metal = { version = "0.27.0", features = ["mps"]}
|
metal = { version = "0.27.1", features = ["mps"], package="candle-metal" }
|
||||||
once_cell = "1.18.0"
|
once_cell = "1.18.0"
|
||||||
thiserror = "1"
|
thiserror = "1"
|
||||||
tracing = "0.1.37"
|
tracing = "0.1.37"
|
||||||
|
@ -29,7 +29,9 @@ kernel void FN_NAME( \
|
|||||||
if (id >= dim) { \
|
if (id >= dim) { \
|
||||||
return; \
|
return; \
|
||||||
} \
|
} \
|
||||||
output[id] = TYPENAME(float(input[id]) * mul + add); \
|
const TYPENAME m = TYPENAME(mul); \
|
||||||
|
const TYPENAME a = TYPENAME(add); \
|
||||||
|
output[id] = input[id] * m + a; \
|
||||||
} \
|
} \
|
||||||
kernel void FN_NAME##_strided( \
|
kernel void FN_NAME##_strided( \
|
||||||
constant size_t &dim, \
|
constant size_t &dim, \
|
||||||
@ -45,80 +47,15 @@ kernel void FN_NAME##_strided( \
|
|||||||
if (id >= dim) { \
|
if (id >= dim) { \
|
||||||
return; \
|
return; \
|
||||||
} \
|
} \
|
||||||
output[id] = TYPENAME(float(input[get_strided_index(id, num_dims, dims, strides)]) * mul + add); \
|
const TYPENAME m = TYPENAME(mul); \
|
||||||
}
|
const TYPENAME a = TYPENAME(add); \
|
||||||
|
output[id] = input[get_strided_index(id, num_dims, dims, strides)] * m + a; \
|
||||||
#define POWF(FN_NAME, TYPENAME) \
|
|
||||||
kernel void FN_NAME( \
|
|
||||||
constant size_t &dim, \
|
|
||||||
constant float &mul, \
|
|
||||||
device const TYPENAME *input, \
|
|
||||||
device TYPENAME *output, \
|
|
||||||
uint id [[ thread_position_in_grid ]] \
|
|
||||||
) { \
|
|
||||||
if (id >= dim) { \
|
|
||||||
return; \
|
|
||||||
} \
|
|
||||||
output[id] = TYPENAME(pow(input[id], TYPENAME(mul))); \
|
|
||||||
} \
|
|
||||||
kernel void FN_NAME##_strided( \
|
|
||||||
constant size_t &dim, \
|
|
||||||
constant size_t &num_dims, \
|
|
||||||
constant size_t *dims, \
|
|
||||||
constant size_t *strides, \
|
|
||||||
constant float &mul, \
|
|
||||||
device const TYPENAME *input, \
|
|
||||||
device TYPENAME *output, \
|
|
||||||
uint id [[ thread_position_in_grid ]] \
|
|
||||||
) { \
|
|
||||||
if (id >= dim) { \
|
|
||||||
return; \
|
|
||||||
} \
|
|
||||||
output[id] = TYPENAME(pow(input[get_strided_index(id, num_dims, dims, strides)], TYPENAME(mul))); \
|
|
||||||
}
|
|
||||||
|
|
||||||
#define ELU(FN_NAME, TYPENAME) \
|
|
||||||
kernel void FN_NAME( \
|
|
||||||
constant size_t &dim, \
|
|
||||||
constant float &mul, \
|
|
||||||
device const TYPENAME *input, \
|
|
||||||
device TYPENAME *output, \
|
|
||||||
uint id [[ thread_position_in_grid ]] \
|
|
||||||
) { \
|
|
||||||
if (id >= dim) { \
|
|
||||||
return; \
|
|
||||||
} \
|
|
||||||
const TYPENAME x = input[id]; \
|
|
||||||
output[id] = TYPENAME((x > 0)?x: mul * exp(x - 1)); \
|
|
||||||
} \
|
|
||||||
kernel void FN_NAME##_strided( \
|
|
||||||
constant size_t &dim, \
|
|
||||||
constant size_t &num_dims, \
|
|
||||||
constant size_t *dims, \
|
|
||||||
constant size_t *strides, \
|
|
||||||
constant float &mul, \
|
|
||||||
device const TYPENAME *input, \
|
|
||||||
device TYPENAME *output, \
|
|
||||||
uint id [[ thread_position_in_grid ]] \
|
|
||||||
) { \
|
|
||||||
if (id >= dim) { \
|
|
||||||
return; \
|
|
||||||
} \
|
|
||||||
const TYPENAME x = input[get_strided_index(id, num_dims, dims, strides)]; \
|
|
||||||
output[id] = TYPENAME((x > 0)?x: mul * exp(x - 1)); \
|
|
||||||
} \
|
} \
|
||||||
|
|
||||||
|
AFFINE(affine_float, float)
|
||||||
AFFINE(affine_f32, float)
|
AFFINE(affine_half, half)
|
||||||
AFFINE(affine_f16, half)
|
|
||||||
POWF(powf_f32, float)
|
|
||||||
POWF(powf_f16, half)
|
|
||||||
ELU(elu_f32, float)
|
|
||||||
ELU(elu_f16, half)
|
|
||||||
|
|
||||||
|
|
||||||
#if __METAL_VERSION__ >= 310
|
#if __METAL_VERSION__ >= 310
|
||||||
AFFINE(affine_bf16, bfloat);
|
AFFINE(affine_bfloat, bfloat);
|
||||||
POWF(powf_bf16, bfloat);
|
|
||||||
ELU(elu_bf16, bfloat);
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -1,8 +1,5 @@
|
|||||||
#include <metal_stdlib>
|
#include <metal_stdlib>
|
||||||
|
|
||||||
#define MAX(x, y) ((x) > (y) ? (x) : (y))
|
|
||||||
#define MIN(x, y) ((x) < (y) ? (x) : (y))
|
|
||||||
|
|
||||||
METAL_FUNC uint get_strided_index(
|
METAL_FUNC uint get_strided_index(
|
||||||
uint idx,
|
uint idx,
|
||||||
constant size_t &num_dims,
|
constant size_t &num_dims,
|
||||||
@ -25,15 +22,15 @@ kernel void FN_NAME( \
|
|||||||
constant size_t &dim, \
|
constant size_t &dim, \
|
||||||
device const TYPENAME *left, \
|
device const TYPENAME *left, \
|
||||||
device const TYPENAME *right, \
|
device const TYPENAME *right, \
|
||||||
device OUT_TYPENAME *output, \
|
device TYPENAME *output, \
|
||||||
uint tid [[ thread_position_in_grid ]] \
|
uint thread_position_in_grid [[ thread_position_in_grid ]] \
|
||||||
) { \
|
) { \
|
||||||
if (tid >= dim) { \
|
if (thread_position_in_grid >= dim) { \
|
||||||
return; \
|
return; \
|
||||||
} \
|
} \
|
||||||
TYPENAME x = left[tid]; \
|
TYPENAME x = left[thread_position_in_grid]; \
|
||||||
TYPENAME y = right[tid]; \
|
TYPENAME y = right[thread_position_in_grid]; \
|
||||||
output[tid] = OUT_TYPENAME(FN); \
|
output[thread_position_in_grid] = OUT_TYPENAME(FN); \
|
||||||
}\
|
}\
|
||||||
kernel void FN_NAME_STRIDED( \
|
kernel void FN_NAME_STRIDED( \
|
||||||
constant size_t &dim, \
|
constant size_t &dim, \
|
||||||
@ -43,48 +40,33 @@ kernel void FN_NAME_STRIDED( \
|
|||||||
constant size_t *right_strides, \
|
constant size_t *right_strides, \
|
||||||
device const TYPENAME *left, \
|
device const TYPENAME *left, \
|
||||||
device const TYPENAME *right, \
|
device const TYPENAME *right, \
|
||||||
device OUT_TYPENAME *output, \
|
device TYPENAME *output, \
|
||||||
uint tid [[ thread_position_in_grid ]] \
|
uint thread_position_in_grid [[ thread_position_in_grid ]] \
|
||||||
) { \
|
) { \
|
||||||
if (tid >= dim) { \
|
if (thread_position_in_grid >= dim) { \
|
||||||
return; \
|
return; \
|
||||||
} \
|
} \
|
||||||
TYPENAME x = left[get_strided_index(tid, num_dims, dims, left_strides)]; \
|
TYPENAME x = left[get_strided_index(thread_position_in_grid, num_dims, dims, left_strides)]; \
|
||||||
TYPENAME y = right[get_strided_index(tid, num_dims, dims, right_strides)]; \
|
TYPENAME y = right[get_strided_index(thread_position_in_grid, num_dims, dims, right_strides)]; \
|
||||||
output[tid] = OUT_TYPENAME(FN); \
|
output[thread_position_in_grid] = OUT_TYPENAME(FN); \
|
||||||
}
|
}
|
||||||
|
|
||||||
#define BINARY_OP(FN, NAME) \
|
#define BINARY_OP(FN, NAME) \
|
||||||
BINARY(FN, float, float, NAME##_f32, NAME##_f32_strided); \
|
BINARY(FN, float, float, NAME##_float, NAME##_float_strided); \
|
||||||
BINARY(FN, half, half, NAME##_f16, NAME##_f16_strided);
|
BINARY(FN, half, half, NAME##_half, NAME##_half_strided);
|
||||||
|
|
||||||
#define BFLOAT_BINARY_OP(FN, NAME) \
|
#define BFLOAT_BINARY_OP(FN, NAME) \
|
||||||
BINARY(FN, bfloat, bfloat, NAME##_bf16, NAME##_bf16_strided);
|
BINARY(FN, bfloat, bfloat, NAME##_bfloat, NAME##_bfloat_strided);
|
||||||
|
|
||||||
#define BINARY_OP_OUT(NAME, FN) \
|
|
||||||
BINARY(FN, float, uint8_t, NAME##_f32, NAME##_f32_strided); \
|
|
||||||
BINARY(FN, half, uint8_t, NAME##_f16, NAME##_f16_strided);
|
|
||||||
|
|
||||||
|
|
||||||
BINARY_OP(x + y, add)
|
BINARY_OP(x + y, add)
|
||||||
BINARY_OP(x - y, sub)
|
BINARY_OP(x - y, sub)
|
||||||
BINARY_OP(x * y, mul)
|
BINARY_OP(x * y, mul)
|
||||||
BINARY_OP(x / y, div)
|
BINARY_OP(x / y, div)
|
||||||
BINARY_OP(MIN(x, y), min)
|
|
||||||
BINARY_OP(MAX(x, y), max)
|
|
||||||
|
|
||||||
BINARY_OP_OUT(eq, x == y)
|
|
||||||
BINARY_OP_OUT(ne, x != y)
|
|
||||||
BINARY_OP_OUT(le, x <= y)
|
|
||||||
BINARY_OP_OUT(lt, x < y)
|
|
||||||
BINARY_OP_OUT(ge, x >= y)
|
|
||||||
BINARY_OP_OUT(gt, x > y)
|
|
||||||
|
|
||||||
#if __METAL_VERSION__ >= 310
|
#if __METAL_VERSION__ >= 310
|
||||||
BFLOAT_BINARY_OP(x + y, add)
|
BFLOAT_BINARY_OP(x + y, add)
|
||||||
BFLOAT_BINARY_OP(x - y, sub)
|
BFLOAT_BINARY_OP(x - y, sub)
|
||||||
BFLOAT_BINARY_OP(x * y, mul)
|
BFLOAT_BINARY_OP(x * y, mul)
|
||||||
BFLOAT_BINARY_OP(x / y, div)
|
BFLOAT_BINARY_OP(x / y, div)
|
||||||
BFLOAT_BINARY_OP(MIN(x, y), min)
|
|
||||||
BFLOAT_BINARY_OP(MAX(x, y), max)
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -48,7 +48,6 @@ kernel void FN_NAME_STRIDED( \
|
|||||||
CAST(cast_u32_f32, cast_u32_f32_strided, uint32_t, float)
|
CAST(cast_u32_f32, cast_u32_f32_strided, uint32_t, float)
|
||||||
CAST(cast_u32_u8, cast_u32_u8_strided, uint32_t, uint8_t)
|
CAST(cast_u32_u8, cast_u32_u8_strided, uint32_t, uint8_t)
|
||||||
CAST(cast_u8_u32, cast_u8_u32_strided, uint8_t, uint32_t)
|
CAST(cast_u8_u32, cast_u8_u32_strided, uint8_t, uint32_t)
|
||||||
CAST(cast_u8_f32, cast_u8_f32_strided, uint8_t, float)
|
|
||||||
CAST(cast_f16_f32, cast_f16_f32_strided, half, float)
|
CAST(cast_f16_f32, cast_f16_f32_strided, half, float)
|
||||||
CAST(cast_f32_f16, cast_f32_f16_strided, float, half)
|
CAST(cast_f32_f16, cast_f32_f16_strided, float, half)
|
||||||
|
|
||||||
|
@ -1,34 +1,6 @@
|
|||||||
#include <metal_stdlib>
|
#include <metal_stdlib>
|
||||||
using namespace metal;
|
using namespace metal;
|
||||||
|
|
||||||
template<typename TYPENAME, typename INDEX_TYPENAME>
|
|
||||||
METAL_FUNC void index(
|
|
||||||
constant size_t &dst_size,
|
|
||||||
constant size_t &left_size,
|
|
||||||
constant size_t &src_dim_size,
|
|
||||||
constant size_t &right_size,
|
|
||||||
constant size_t &ids_size,
|
|
||||||
const device TYPENAME *input,
|
|
||||||
const device INDEX_TYPENAME *input_ids,
|
|
||||||
device TYPENAME *output,
|
|
||||||
uint tid [[ thread_position_in_grid ]]
|
|
||||||
) {
|
|
||||||
if (tid >= dst_size) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
const size_t id_i = (tid / right_size) % ids_size;
|
|
||||||
const INDEX_TYPENAME input_i = min(input_ids[id_i], (INDEX_TYPENAME)(src_dim_size - 1));
|
|
||||||
const size_t right_rank_i = tid % right_size;
|
|
||||||
const size_t left_rank_i = tid / right_size / ids_size;
|
|
||||||
/*
|
|
||||||
// Force prevent out of bounds indexing
|
|
||||||
// since there doesn't seem to be a good way to force crash
|
|
||||||
// No need to check for zero we're only allowing unsized.
|
|
||||||
*/
|
|
||||||
const size_t src_i = left_rank_i * src_dim_size * right_size + input_i * right_size + right_rank_i;
|
|
||||||
output[tid] = input[src_i];
|
|
||||||
}
|
|
||||||
|
|
||||||
# define INDEX_OP(NAME, INDEX_TYPENAME, TYPENAME) \
|
# define INDEX_OP(NAME, INDEX_TYPENAME, TYPENAME) \
|
||||||
kernel void NAME( \
|
kernel void NAME( \
|
||||||
constant size_t &dst_size, \
|
constant size_t &dst_size, \
|
||||||
@ -39,160 +11,93 @@ kernel void NAME( \
|
|||||||
const device TYPENAME *input, \
|
const device TYPENAME *input, \
|
||||||
const device INDEX_TYPENAME *input_ids, \
|
const device INDEX_TYPENAME *input_ids, \
|
||||||
device TYPENAME *output, \
|
device TYPENAME *output, \
|
||||||
uint tid [[ thread_position_in_grid ]] \
|
uint gid [[ thread_position_in_grid ]] \
|
||||||
) { \
|
) { \
|
||||||
index<TYPENAME, INDEX_TYPENAME>(dst_size, left_size, src_dim_size, right_size, ids_size, input, input_ids, output, tid); \
|
if (gid >= dst_size) { \
|
||||||
|
return; \
|
||||||
|
} \
|
||||||
|
const size_t id_i = (gid / right_size) % ids_size; \
|
||||||
|
const INDEX_TYPENAME input_i = min(input_ids[id_i], (INDEX_TYPENAME)(src_dim_size - 1)); \
|
||||||
|
const size_t right_rank_i = gid % right_size; \
|
||||||
|
const size_t left_rank_i = gid / right_size / ids_size; \
|
||||||
|
/* \
|
||||||
|
// Force prevent out of bounds indexing \
|
||||||
|
// since there doesn't seem to be a good way to force crash \
|
||||||
|
// No need to check for zero we're only allowing unsized. \
|
||||||
|
*/ \
|
||||||
|
const size_t src_i = left_rank_i * src_dim_size * right_size + input_i * right_size + right_rank_i; \
|
||||||
|
output[gid] = input[src_i]; \
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
template<typename TYPENAME, typename INDEX_TYPENAME>
|
|
||||||
METAL_FUNC void gather(
|
template <typename T, typename I>
|
||||||
constant size_t &dst_size,
|
void index_add(
|
||||||
constant size_t &left_size,
|
device I *ids [[buffer(0)]],
|
||||||
constant size_t &src_dim_size,
|
device T *inp [[buffer(1)]],
|
||||||
constant size_t &right_size,
|
device T *out [[buffer(2)]],
|
||||||
constant size_t &ids_size,
|
|
||||||
const device TYPENAME *input,
|
constant uint &ids_dim_size,
|
||||||
const device INDEX_TYPENAME *input_ids,
|
constant uint &left_size,
|
||||||
device TYPENAME *output,
|
constant uint &dst_dim_size,
|
||||||
uint tid [[ thread_position_in_grid ]]
|
constant uint &right_size,
|
||||||
|
|
||||||
|
uint gid [[ thread_position_in_grid ]] \
|
||||||
) {
|
) {
|
||||||
if (tid >= dst_size) {
|
|
||||||
|
if (gid >= left_size * right_size) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
const INDEX_TYPENAME input_i = input_ids[tid];
|
|
||||||
const size_t right_rank_i = tid % right_size;
|
|
||||||
const size_t left_rank_i = tid / right_size / ids_size;
|
|
||||||
const size_t src_i = (left_rank_i * src_dim_size + input_i) * right_size + right_rank_i;
|
|
||||||
output[tid] = input[src_i];
|
|
||||||
}
|
|
||||||
|
|
||||||
# define GATHER_OP(NAME, INDEX_TYPENAME, TYPENAME) \
|
const uint i = gid;
|
||||||
kernel void NAME( \
|
const uint pre = i / right_size;
|
||||||
constant size_t &dst_size, \
|
const uint post = i % right_size;
|
||||||
constant size_t &left_size, \
|
|
||||||
constant size_t &src_dim_size, \
|
|
||||||
constant size_t &right_size, \
|
|
||||||
constant size_t &ids_size, \
|
|
||||||
const device TYPENAME *input, \
|
|
||||||
const device INDEX_TYPENAME *input_ids, \
|
|
||||||
device TYPENAME *output, \
|
|
||||||
uint tid [[ thread_position_in_grid ]] \
|
|
||||||
) { \
|
|
||||||
gather<TYPENAME, INDEX_TYPENAME>(dst_size, left_size, src_dim_size, right_size, ids_size, input, input_ids, output, tid); \
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename TYPENAME, typename INDEX_TYPENAME>
|
for (uint j = 0; j < ids_dim_size; j++) {
|
||||||
METAL_FUNC void scatter_add(
|
const uint idx = ids[j];
|
||||||
constant size_t &dst_size,
|
const uint src_i = (pre * ids_dim_size + j) * right_size + post;
|
||||||
constant size_t &left_size,
|
const uint dst_i = (pre * dst_dim_size + idx) * right_size + post;
|
||||||
constant size_t &src_dim_size,
|
out[dst_i] += inp[src_i];
|
||||||
constant size_t &right_size,
|
|
||||||
constant size_t &dst_dim_size,
|
|
||||||
const device TYPENAME *input,
|
|
||||||
const device INDEX_TYPENAME *input_ids,
|
|
||||||
device TYPENAME *output,
|
|
||||||
uint tid [[ thread_position_in_grid ]]
|
|
||||||
) {
|
|
||||||
if (tid >= dst_size) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
const size_t right_rank_i = tid % right_size;
|
|
||||||
const size_t left_rank_i = tid / right_size;
|
|
||||||
for (unsigned int j = 0; j < src_dim_size; ++j) {
|
|
||||||
const size_t src_i = (left_rank_i * src_dim_size + j) * right_size + right_rank_i;
|
|
||||||
const INDEX_TYPENAME idx = input_ids[src_i];
|
|
||||||
const size_t dst_i = (left_rank_i * dst_dim_size + idx) * right_size + right_rank_i;
|
|
||||||
output[dst_i] += input[src_i];
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
# define SCATTER_ADD_OP(NAME, INDEX_TYPENAME, TYPENAME) \
|
#define IA_OP(TYPENAME, INDEX_TYPENAME, FN_NAME) \
|
||||||
kernel void NAME( \
|
kernel void FN_NAME( \
|
||||||
constant size_t &dst_size, \
|
device INDEX_TYPENAME *ids [[buffer(0)]], \
|
||||||
constant size_t &left_size, \
|
device TYPENAME *inp [[buffer(1)]], \
|
||||||
constant size_t &src_dim_size, \
|
device TYPENAME *out [[buffer(2)]], \
|
||||||
constant size_t &right_size, \
|
constant uint &ids_dim_size, \
|
||||||
constant size_t &dst_dim_size, \
|
constant uint &left_size, \
|
||||||
const device TYPENAME *input, \
|
constant uint &dst_dim_size, \
|
||||||
const device INDEX_TYPENAME *input_ids, \
|
constant uint &right_size, \
|
||||||
device TYPENAME *output, \
|
uint gid [[ thread_position_in_grid ]] \
|
||||||
uint tid [[ thread_position_in_grid ]] \
|
) { index_add<TYPENAME, INDEX_TYPENAME>(ids, inp, out, ids_dim_size, left_size, dst_dim_size, right_size, gid); } \
|
||||||
) { \
|
|
||||||
scatter_add<TYPENAME, INDEX_TYPENAME>(dst_size, left_size, src_dim_size, right_size, dst_dim_size, input, input_ids, output, tid); \
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename TYPENAME, typename INDEX_TYPENAME>
|
|
||||||
METAL_FUNC void index_add(
|
|
||||||
constant size_t &dst_size,
|
|
||||||
constant size_t &left_size,
|
|
||||||
constant size_t &src_dim_size,
|
|
||||||
constant size_t &right_size,
|
|
||||||
constant size_t &dst_dim_size,
|
|
||||||
constant size_t &ids_dim_size,
|
|
||||||
const device TYPENAME *input,
|
|
||||||
const device INDEX_TYPENAME *input_ids,
|
|
||||||
device TYPENAME *output,
|
|
||||||
uint tid [[ thread_position_in_grid ]]
|
|
||||||
) {
|
|
||||||
if (tid >= dst_size) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
const size_t right_rank_i = tid % right_size;
|
|
||||||
const size_t left_rank_i = tid / right_size;
|
|
||||||
for (unsigned int j = 0; j < ids_dim_size; ++j) {
|
|
||||||
const INDEX_TYPENAME idx = input_ids[j];
|
|
||||||
const size_t src_i = (left_rank_i * src_dim_size + j) * right_size + right_rank_i;
|
|
||||||
const size_t dst_i = (left_rank_i * dst_dim_size + idx) * right_size + right_rank_i;
|
|
||||||
output[dst_i] += input[src_i];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
# define INDEX_ADD_OP(NAME, INDEX_TYPENAME, TYPENAME) \
|
|
||||||
kernel void NAME( \
|
|
||||||
constant size_t &dst_size, \
|
|
||||||
constant size_t &left_size, \
|
|
||||||
constant size_t &src_dim_size, \
|
|
||||||
constant size_t &right_size, \
|
|
||||||
constant size_t &dst_dim_size, \
|
|
||||||
constant size_t &ids_dim_size, \
|
|
||||||
const device TYPENAME *input, \
|
|
||||||
const device INDEX_TYPENAME *input_ids, \
|
|
||||||
device TYPENAME *output, \
|
|
||||||
uint tid [[ thread_position_in_grid ]] \
|
|
||||||
) { \
|
|
||||||
index_add<TYPENAME, INDEX_TYPENAME>(dst_size, left_size, src_dim_size, right_size, dst_dim_size, ids_dim_size, input, input_ids, output, tid); \
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
INDEX_OP(is_u32_f32, uint, float)
|
INDEX_OP(is_u32_f32, uint, float)
|
||||||
INDEX_OP(is_u32_f16, uint, half)
|
INDEX_OP(is_u32_f16, uint, half)
|
||||||
GATHER_OP(gather_u32_f32, uint, float)
|
|
||||||
GATHER_OP(gather_u32_f16, uint, half)
|
|
||||||
SCATTER_ADD_OP(sa_u32_f32, uint, float)
|
|
||||||
SCATTER_ADD_OP(sa_u32_f16, uint, half)
|
|
||||||
|
|
||||||
|
|
||||||
#if __METAL_VERSION__ >= 310
|
#if __METAL_VERSION__ >= 310
|
||||||
INDEX_ADD_OP(ia_i64_bf16, int64_t, bfloat)
|
IA_OP(bfloat, int64_t, ia_i64_bf16)
|
||||||
INDEX_ADD_OP(ia_u32_bf16, uint32_t, bfloat)
|
IA_OP(bfloat, uint32_t, ia_u32_bf16)
|
||||||
INDEX_ADD_OP(ia_u8_bf16, uint8_t, bfloat)
|
IA_OP(bfloat, uint8_t, ia_u8_bf16)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
INDEX_ADD_OP(ia_u32_f16, uint32_t, half)
|
IA_OP(half, uint32_t, ia_u32_f16)
|
||||||
INDEX_ADD_OP(ia_u8_f16, uint8_t, half)
|
IA_OP(half, uint8_t, ia_u8_f16)
|
||||||
|
|
||||||
INDEX_ADD_OP(ia_i64_f32, int64_t, float)
|
IA_OP(float, int64_t, ia_i64_f32)
|
||||||
INDEX_ADD_OP(ia_i64_u8, int64_t, uint8_t)
|
IA_OP(uint8_t, int64_t, ia_i64_u8)
|
||||||
INDEX_ADD_OP(ia_i64_i64, int64_t, int64_t)
|
IA_OP(int64_t, int64_t, ia_i64_i64)
|
||||||
INDEX_ADD_OP(ia_i64_u32, int64_t, uint32_t)
|
IA_OP(uint32_t, int64_t, ia_i64_u32)
|
||||||
|
|
||||||
INDEX_ADD_OP(ia_u32_f32, uint32_t, float)
|
IA_OP(float, uint32_t, ia_u32_f32)
|
||||||
INDEX_ADD_OP(ia_u32_u8, uint32_t, uint8_t)
|
IA_OP(uint8_t, uint32_t, ia_u32_u8)
|
||||||
INDEX_ADD_OP(ia_u32_i64, uint32_t, int64_t)
|
IA_OP(int64_t, uint32_t, ia_u32_i64)
|
||||||
INDEX_ADD_OP(ia_u32_u32, uint32_t, uint32_t)
|
IA_OP(uint32_t, uint32_t, ia_u32_u32)
|
||||||
|
|
||||||
INDEX_ADD_OP(ia_u8_f32, uint8_t, float)
|
IA_OP(float, uint8_t, ia_u8_f32)
|
||||||
INDEX_ADD_OP(ia_u8_u8, uint8_t, uint8_t)
|
IA_OP(uint8_t, uint8_t, ia_u8_u8)
|
||||||
INDEX_ADD_OP(ia_u8_u32, uint8_t, uint32_t)
|
IA_OP(uint32_t, uint8_t, ia_u8_u32)
|
||||||
INDEX_ADD_OP(ia_u8_i64, uint8_t, int64_t)
|
IA_OP(int64_t, uint8_t, ia_u8_i64)
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -2,7 +2,6 @@
|
|||||||
using namespace metal;
|
using namespace metal;
|
||||||
|
|
||||||
#define MAX(x, y) ((x) > (y) ? (x) : (y))
|
#define MAX(x, y) ((x) > (y) ? (x) : (y))
|
||||||
#define MIN(x, y) ((x) < (y) ? (x) : (y))
|
|
||||||
|
|
||||||
METAL_FUNC uint get_strided_index(
|
METAL_FUNC uint get_strided_index(
|
||||||
uint idx,
|
uint idx,
|
||||||
@ -19,132 +18,11 @@ METAL_FUNC uint get_strided_index(
|
|||||||
return strided_i;
|
return strided_i;
|
||||||
}
|
}
|
||||||
|
|
||||||
constant int THREADGROUP_SIZE = 2048;
|
constant int THREADGROUP_SIZE = 1024;
|
||||||
|
|
||||||
|
# define REDUCE(FN, NAME, T) \
|
||||||
#define ARGMIN(NAME, T, MAXVALUE) \
|
|
||||||
kernel void NAME( \
|
kernel void NAME( \
|
||||||
constant size_t &num_dims, \
|
constant size_t &src_numel, \
|
||||||
constant size_t *dims, \
|
|
||||||
constant size_t *strides, \
|
|
||||||
constant size_t &el_to_sum_per_block, \
|
|
||||||
device const T *src, \
|
|
||||||
device uint *dst, \
|
|
||||||
uint id [[ thread_position_in_grid ]], \
|
|
||||||
uint tid [[ thread_index_in_threadgroup ]], \
|
|
||||||
uint dst_id [[ threadgroup_position_in_grid ]], \
|
|
||||||
uint block_dim [[ threads_per_threadgroup ]] \
|
|
||||||
) { \
|
|
||||||
\
|
|
||||||
threadgroup T shared_memory[THREADGROUP_SIZE]; \
|
|
||||||
threadgroup uint shared_indices[THREADGROUP_SIZE]; \
|
|
||||||
\
|
|
||||||
shared_memory[tid] = MAXVALUE; \
|
|
||||||
shared_indices[tid] = 0xFFFFFFFF; \
|
|
||||||
bool notset = true; \
|
|
||||||
/* \
|
|
||||||
// Elements summed in this block range from dst_id * el_to_sum_per_block \
|
|
||||||
// to (dst_id + 1) * el_to_sum_per_block. \
|
|
||||||
*/ \
|
|
||||||
size_t start_idx = dst_id * el_to_sum_per_block; \
|
|
||||||
size_t stop_idx = start_idx + el_to_sum_per_block; \
|
|
||||||
size_t idx = start_idx + tid; \
|
|
||||||
while (idx < stop_idx) { \
|
|
||||||
/* \
|
|
||||||
// TODO: Fast version for the contiguous case. \
|
|
||||||
*/ \
|
|
||||||
size_t strided_i = get_strided_index(idx, num_dims, dims, strides); \
|
|
||||||
if (notset || src[strided_i] < shared_memory[tid]) { \
|
|
||||||
shared_memory[tid] = src[strided_i]; \
|
|
||||||
/* Assume that the reduction takes place over the last dimension which is contiguous. */ \
|
|
||||||
shared_indices[tid] = idx % dims[num_dims - 1]; \
|
|
||||||
notset = false; \
|
|
||||||
} \
|
|
||||||
idx += block_dim; \
|
|
||||||
} \
|
|
||||||
\
|
|
||||||
threadgroup_barrier(mem_flags::mem_none); \
|
|
||||||
\
|
|
||||||
/* \
|
|
||||||
// reduction in shared memory \
|
|
||||||
*/ \
|
|
||||||
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
|
|
||||||
if (tid < s && shared_memory[tid + s] < shared_memory[tid]) { \
|
|
||||||
shared_indices[tid] = shared_indices[tid + s]; \
|
|
||||||
shared_memory[tid] = shared_memory[tid + s]; \
|
|
||||||
} \
|
|
||||||
threadgroup_barrier(mem_flags::mem_none); \
|
|
||||||
} \
|
|
||||||
\
|
|
||||||
if (tid == 0){ \
|
|
||||||
dst[dst_id] = shared_indices[0]; \
|
|
||||||
} \
|
|
||||||
} \
|
|
||||||
|
|
||||||
|
|
||||||
#define ARGMAX(NAME, T, MINVALUE) \
|
|
||||||
kernel void NAME( \
|
|
||||||
constant size_t &num_dims, \
|
|
||||||
constant size_t *dims, \
|
|
||||||
constant size_t *strides, \
|
|
||||||
constant size_t &el_to_sum_per_block, \
|
|
||||||
device const T *src, \
|
|
||||||
device uint *dst, \
|
|
||||||
uint id [[ thread_position_in_grid ]], \
|
|
||||||
uint tid [[ thread_index_in_threadgroup ]], \
|
|
||||||
uint dst_id [[ threadgroup_position_in_grid ]], \
|
|
||||||
uint block_dim [[ threads_per_threadgroup ]] \
|
|
||||||
) { \
|
|
||||||
\
|
|
||||||
threadgroup T shared_memory[THREADGROUP_SIZE]; \
|
|
||||||
threadgroup uint shared_indices[THREADGROUP_SIZE]; \
|
|
||||||
\
|
|
||||||
shared_memory[tid] = MINVALUE; \
|
|
||||||
shared_indices[tid] = 0xFFFFFFFF; \
|
|
||||||
/* \
|
|
||||||
// Elements summed in this block range from dst_id * el_to_sum_per_block \
|
|
||||||
// to (dst_id + 1) * el_to_sum_per_block. \
|
|
||||||
*/ \
|
|
||||||
size_t start_idx = dst_id * el_to_sum_per_block; \
|
|
||||||
size_t stop_idx = start_idx + el_to_sum_per_block; \
|
|
||||||
size_t idx = start_idx + tid; \
|
|
||||||
bool notset = true; \
|
|
||||||
while (idx < stop_idx) { \
|
|
||||||
/* \
|
|
||||||
// TODO: Fast version for the contiguous case. \
|
|
||||||
*/ \
|
|
||||||
size_t strided_i = get_strided_index(idx, num_dims, dims, strides); \
|
|
||||||
if (notset || shared_memory[tid] < src[strided_i]) { \
|
|
||||||
shared_memory[tid] = src[strided_i]; \
|
|
||||||
shared_indices[tid] = idx % dims[num_dims - 1]; \
|
|
||||||
notset = false; \
|
|
||||||
} \
|
|
||||||
idx += block_dim; \
|
|
||||||
} \
|
|
||||||
\
|
|
||||||
threadgroup_barrier(mem_flags::mem_none); \
|
|
||||||
\
|
|
||||||
/* \
|
|
||||||
// reduction in shared memory \
|
|
||||||
*/ \
|
|
||||||
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
|
|
||||||
if (tid < s && shared_memory[tid + s] > shared_memory[tid]) { \
|
|
||||||
shared_indices[tid] = shared_indices[tid + s]; \
|
|
||||||
shared_memory[tid] = shared_memory[tid + s]; \
|
|
||||||
} \
|
|
||||||
threadgroup_barrier(mem_flags::mem_none); \
|
|
||||||
} \
|
|
||||||
\
|
|
||||||
if (tid == 0){ \
|
|
||||||
dst[dst_id] = shared_indices[0]; \
|
|
||||||
} \
|
|
||||||
} \
|
|
||||||
|
|
||||||
#define REDUCE(FN, NAME, T, START) \
|
|
||||||
kernel void NAME( \
|
|
||||||
constant size_t &num_dims, \
|
|
||||||
constant size_t *dims, \
|
|
||||||
constant size_t *strides, \
|
|
||||||
constant size_t &el_to_sum_per_block, \
|
constant size_t &el_to_sum_per_block, \
|
||||||
device const T *src, \
|
device const T *src, \
|
||||||
device T *dst, \
|
device T *dst, \
|
||||||
@ -154,23 +32,23 @@ kernel void NAME( \
|
|||||||
uint block_dim [[ threads_per_threadgroup ]] \
|
uint block_dim [[ threads_per_threadgroup ]] \
|
||||||
) { \
|
) { \
|
||||||
\
|
\
|
||||||
threadgroup T shared_memory[THREADGROUP_SIZE]; \
|
threadgroup float shared_memory[THREADGROUP_SIZE]; \
|
||||||
\
|
\
|
||||||
shared_memory[tid] = START; \
|
shared_memory[tid] = 0; \
|
||||||
/* \
|
/* \
|
||||||
// Elements summed in this block range from dst_id * el_to_sum_per_block \
|
// Elements summed in this block range from dst_id * el_to_sum_per_block \
|
||||||
// to (dst_id + 1) * el_to_sum_per_block. \
|
// to (dst_id + 1) * el_to_sum_per_block. \
|
||||||
*/ \
|
*/ \
|
||||||
size_t start_idx = dst_id * el_to_sum_per_block; \
|
size_t start_idx = dst_id * el_to_sum_per_block; \
|
||||||
size_t stop_idx = start_idx + el_to_sum_per_block; \
|
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); \
|
||||||
size_t idx = start_idx + tid; \
|
size_t idx = start_idx + tid; \
|
||||||
while (idx < stop_idx) { \
|
while (idx < stop_idx) { \
|
||||||
/* \
|
/* \
|
||||||
// TODO: Fast version for the contiguous case. \
|
// TODO: Fast version for the contiguous case. \
|
||||||
|
// size_t strided_i = get_strided_index(idx, num_dims, dims, strides); \
|
||||||
*/ \
|
*/ \
|
||||||
size_t strided_i = get_strided_index(idx, num_dims, dims, strides); \
|
|
||||||
T x = shared_memory[tid]; \
|
T x = shared_memory[tid]; \
|
||||||
T y = src[strided_i]; \
|
T y = src[idx]; \
|
||||||
shared_memory[tid] = FN; \
|
shared_memory[tid] = FN; \
|
||||||
idx += block_dim; \
|
idx += block_dim; \
|
||||||
} \
|
} \
|
||||||
@ -193,6 +71,10 @@ kernel void NAME( \
|
|||||||
} \
|
} \
|
||||||
|
|
||||||
|
|
||||||
|
REDUCE(x + y, fast_sum_float, float)
|
||||||
|
REDUCE(x * y, fast_mul_float, float)
|
||||||
|
REDUCE(max(x, y), fast_max_float, float)
|
||||||
|
|
||||||
#define SOFTMAX(NAME, T) \
|
#define SOFTMAX(NAME, T) \
|
||||||
kernel void NAME( \
|
kernel void NAME( \
|
||||||
constant size_t &src_numel, \
|
constant size_t &src_numel, \
|
||||||
@ -211,13 +93,12 @@ kernel void NAME(
|
|||||||
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); \
|
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); \
|
||||||
size_t idx = start_idx + tid; \
|
size_t idx = start_idx + tid; \
|
||||||
\
|
\
|
||||||
|
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||||
\
|
\
|
||||||
float tmp = -INFINITY; \
|
|
||||||
while (idx < stop_idx) { \
|
while (idx < stop_idx) { \
|
||||||
tmp = MAX(tmp, float(src[idx])); \
|
shared_memory[tid] = MAX(shared_memory[tid], src[idx]); \
|
||||||
idx += block_dim; \
|
idx += block_dim; \
|
||||||
} \
|
} \
|
||||||
shared_memory[tid] = tmp; \
|
|
||||||
\
|
\
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||||
\
|
\
|
||||||
@ -225,34 +106,29 @@ kernel void NAME(
|
|||||||
if (tid < s) { \
|
if (tid < s) { \
|
||||||
shared_memory[tid] = MAX(shared_memory[tid], shared_memory[tid + s]); \
|
shared_memory[tid] = MAX(shared_memory[tid], shared_memory[tid + s]); \
|
||||||
} \
|
} \
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
|
||||||
} \
|
} \
|
||||||
\
|
\
|
||||||
/* wait for shared_memory[0] to be filled */ \
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||||
\
|
\
|
||||||
float _max = shared_memory[0]; \
|
float _max = shared_memory[0]; \
|
||||||
\
|
\
|
||||||
/* prevent tid=0 from overwriting _max before other threads have written it */ \
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
|
||||||
shared_memory[tid] = 0; \
|
shared_memory[tid] = 0; \
|
||||||
\
|
\
|
||||||
idx = start_idx + tid; \
|
idx = start_idx + tid; \
|
||||||
while (idx < stop_idx) { \
|
while (idx < stop_idx) { \
|
||||||
const float val = exp(float(src[idx]) - _max); \
|
const T val = T(exp(src[idx] - _max)); \
|
||||||
dst[idx] = T(val); \
|
dst[idx] = val; \
|
||||||
shared_memory[tid] += val; \
|
shared_memory[tid] += val; \
|
||||||
idx += block_dim; \
|
idx += block_dim; \
|
||||||
} \
|
} \
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
|
||||||
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
|
for (uint s = block_dim / 2; s > 0; s >>= 1) { \
|
||||||
if (tid < s) { \
|
if (tid < s) { \
|
||||||
shared_memory[tid] += shared_memory[tid + s]; \
|
shared_memory[tid] += shared_memory[tid + s]; \
|
||||||
} \
|
} \
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
threadgroup_barrier(mem_flags::mem_threadgroup); \
|
||||||
} \
|
} \
|
||||||
\
|
\
|
||||||
const T inv_acc = T(1.0/shared_memory[0]); \
|
const T inv_acc = T(1/shared_memory[0]); \
|
||||||
idx = start_idx + tid; \
|
idx = start_idx + tid; \
|
||||||
while (idx < stop_idx) { \
|
while (idx < stop_idx) { \
|
||||||
dst[idx] *= inv_acc; \
|
dst[idx] *= inv_acc; \
|
||||||
@ -260,33 +136,8 @@ kernel void NAME(
|
|||||||
} \
|
} \
|
||||||
} \
|
} \
|
||||||
|
|
||||||
REDUCE(x + y, fast_sum_f32_strided, float, 0)
|
SOFTMAX(softmax_float, float)
|
||||||
REDUCE(x + y, fast_sum_u32_strided, uint, 0)
|
SOFTMAX(softmax_half, half)
|
||||||
REDUCE(x + y, fast_sum_f16_strided, half, 0)
|
|
||||||
REDUCE(x * y, fast_mul_f32_strided, float, 1)
|
|
||||||
REDUCE(x * y, fast_mul_u32_strided, uint, 1)
|
|
||||||
REDUCE(x * y, fast_mul_f16_strided, half, 1)
|
|
||||||
REDUCE(MAX(x, y), fast_max_f32_strided, float, -HUGE_VALF)
|
|
||||||
REDUCE(MAX(x, y), fast_max_u32_strided, uint, 0)
|
|
||||||
REDUCE(MAX(x, y), fast_max_f16_strided, half, -HUGE_VALH)
|
|
||||||
REDUCE(MIN(x, y), fast_min_f32_strided, float, HUGE_VALF)
|
|
||||||
REDUCE(MIN(x, y), fast_min_u32_strided, uint, 0xFFFFFFFF)
|
|
||||||
REDUCE(MIN(x, y), fast_min_f16_strided, half, HUGE_VALH)
|
|
||||||
ARGMIN(fast_argmin_f32_strided, float, HUGE_VALF)
|
|
||||||
ARGMIN(fast_argmin_f16_strided, half, HUGE_VALH)
|
|
||||||
ARGMIN(fast_argmin_u32_strided, uint, 0xFFFFFFFF)
|
|
||||||
ARGMAX(fast_argmax_f32_strided, float, -HUGE_VALF)
|
|
||||||
ARGMAX(fast_argmax_f16_strided, half, -HUGE_VALH)
|
|
||||||
ARGMAX(fast_argmax_u32_strided, uint, 0)
|
|
||||||
|
|
||||||
SOFTMAX(softmax_f32, float)
|
|
||||||
SOFTMAX(softmax_f16, half)
|
|
||||||
#if __METAL_VERSION__ >= 310
|
#if __METAL_VERSION__ >= 310
|
||||||
REDUCE(x + y, fast_sum_bf16, bfloat, 0)
|
SOFTMAX(softmax_bfloat, bfloat)
|
||||||
REDUCE(x * y, fast_mul_bf16, bfloat, 1)
|
|
||||||
REDUCE(MAX(x, y), fast_max_bf16, bfloat, -HUGE_VALBF)
|
|
||||||
REDUCE(MIN(x, y), fast_min_bf16, bfloat, HUGE_VALBF)
|
|
||||||
ARGMIN(fast_argmin_bf16, bfloat, HUGE_VALBF)
|
|
||||||
ARGMAX(fast_argmax_bf16, bfloat, -HUGE_VALBF)
|
|
||||||
SOFTMAX(softmax_bf16, bfloat)
|
|
||||||
#endif
|
#endif
|
||||||
|
211
candle-metal-kernels/src/test.swift
Normal file
211
candle-metal-kernels/src/test.swift
Normal file
@ -0,0 +1,211 @@
|
|||||||
|
|
||||||
|
import Metal
|
||||||
|
import MetalPerformanceShadersGraph
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
let type = MTLDataType.float;
|
||||||
|
let dataType = type;
|
||||||
|
var B = 2;
|
||||||
|
var M = 2;
|
||||||
|
var N = 4;
|
||||||
|
var K = 3;
|
||||||
|
var A_trans = false;
|
||||||
|
var B_trans = false;
|
||||||
|
var D_trans = false;
|
||||||
|
var alpha = Float(1.0);
|
||||||
|
var beta = Float(0.0);
|
||||||
|
var batched = B > 1;
|
||||||
|
var fused_activation = false;
|
||||||
|
var fused_bias = false;
|
||||||
|
let constants = MTLFunctionConstantValues()
|
||||||
|
constants.setConstantValue(&M, type: .uint, index: 0)
|
||||||
|
constants.setConstantValue(&N, type: .uint, index: 1)
|
||||||
|
constants.setConstantValue(&K, type: .uint, index: 2)
|
||||||
|
constants.setConstantValue(&A_trans, type: .bool, index: 10)
|
||||||
|
constants.setConstantValue(&B_trans, type: .bool, index: 11)
|
||||||
|
constants.setConstantValue(&D_trans, type: .bool, index: 13)
|
||||||
|
constants.setConstantValue(&alpha, type: .float, index: 20)
|
||||||
|
constants.setConstantValue(&beta, type: .float, index: 21)
|
||||||
|
constants.setConstantValue(&batched, type: .bool, index: 100)
|
||||||
|
constants.setConstantValue(&fused_activation, type: .bool, index: 101)
|
||||||
|
constants.setConstantValue(&fused_bias, type: .bool, index: 50001)
|
||||||
|
|
||||||
|
|
||||||
|
var M_simd = UInt16(16)
|
||||||
|
var N_simd = UInt16(16)
|
||||||
|
var K_simd = UInt16(32)
|
||||||
|
var M_splits = UInt16(2)
|
||||||
|
var N_splits = UInt16(2)
|
||||||
|
constants.setConstantValue(&M_simd, type: .ushort, index: 200)
|
||||||
|
constants.setConstantValue(&N_simd, type: .ushort, index: 201)
|
||||||
|
constants.setConstantValue(&K_simd, type: .ushort, index: 202)
|
||||||
|
constants.setConstantValue(&M_splits, type: .ushort, index: 210)
|
||||||
|
constants.setConstantValue(&N_splits, type: .ushort, index: 211)
|
||||||
|
|
||||||
|
let M_group = M_simd * M_splits
|
||||||
|
let N_group = N_simd * N_splits
|
||||||
|
|
||||||
|
// Satisfy Metal API validation.
|
||||||
|
#if DEBUG
|
||||||
|
do {
|
||||||
|
var garbage: SIMD4<UInt64> = .zero
|
||||||
|
constants.setConstantValue(&garbage, type: .bool, index: 102)
|
||||||
|
constants.setConstantValue(&garbage, type: .bool, index: 103)
|
||||||
|
constants.setConstantValue(&garbage, type: .bool, index: 113)
|
||||||
|
constants.setConstantValue(&garbage, type: .bool, index: 50000)
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
print(constants)
|
||||||
|
|
||||||
|
let device = MTLCopyAllDevices().first!
|
||||||
|
device.shouldMaximizeConcurrentCompilation = true
|
||||||
|
|
||||||
|
var libraryURL = URL.init(string: "/Users/nicolas/src/candle/candle-metal-kernels/")!;
|
||||||
|
libraryURL.append(component: "src")
|
||||||
|
libraryURL.append(component: "libMetalFlashAttention.metallib")
|
||||||
|
let library = try! device.makeLibrary(URL: libraryURL)
|
||||||
|
|
||||||
|
var name: String
|
||||||
|
switch dataType {
|
||||||
|
case .half: name = "hgemm"
|
||||||
|
case .float: name = "sgemm"
|
||||||
|
default: fatalError()
|
||||||
|
}
|
||||||
|
let function = try! library.makeFunction(
|
||||||
|
name: name, constantValues: constants)
|
||||||
|
|
||||||
|
let A_block_length = M_group * K_simd
|
||||||
|
let B_block_length = K_simd * N_group
|
||||||
|
|
||||||
|
var blockElements = A_block_length + B_block_length;
|
||||||
|
if (M % 8 != 0) && (N % 8 != 0) {
|
||||||
|
let C_block_length = M_group * N_group;
|
||||||
|
blockElements = max(C_block_length, blockElements)
|
||||||
|
}
|
||||||
|
if fused_bias {
|
||||||
|
if D_trans {
|
||||||
|
blockElements = max(blockElements, M_group)
|
||||||
|
} else {
|
||||||
|
blockElements = max(blockElements, N_group)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// let blockBytes = blockElements * UInt16(dataType.size)
|
||||||
|
let elementSize = 4
|
||||||
|
let blockBytes = blockElements * UInt16(elementSize)
|
||||||
|
|
||||||
|
func ceilDivide(target: Int, granularity: UInt16) -> Int {
|
||||||
|
(target + Int(granularity) - 1) / Int(granularity)
|
||||||
|
}
|
||||||
|
var gridSize = MTLSize(
|
||||||
|
width: ceilDivide(target: N, granularity: N_group),
|
||||||
|
height: ceilDivide(target: M, granularity: M_group),
|
||||||
|
depth: 1)
|
||||||
|
let groupSize = MTLSize(
|
||||||
|
width: Int(32 * M_splits * N_splits),
|
||||||
|
height: 1,
|
||||||
|
depth: 1)
|
||||||
|
|
||||||
|
let commandQueue = device.makeCommandQueue()!
|
||||||
|
let commandBuffer = commandQueue.makeCommandBuffer()!
|
||||||
|
let encoder = commandBuffer.makeComputeCommandEncoder(dispatchType: MTLDispatchType.serial)!
|
||||||
|
let pipeline = try device.makeComputePipelineState(function: function)
|
||||||
|
|
||||||
|
let threadgroupMemoryLength = blockBytes;
|
||||||
|
print(threadgroupMemoryLength)
|
||||||
|
encoder.setComputePipelineState(pipeline)
|
||||||
|
encoder.setThreadgroupMemoryLength(Int(threadgroupMemoryLength), index: 0)
|
||||||
|
|
||||||
|
|
||||||
|
let rowsA = M;
|
||||||
|
let columnsA = K;
|
||||||
|
let rowsB = K;
|
||||||
|
let columnsB = N;
|
||||||
|
let rowsC = M;
|
||||||
|
let columnsC = N;
|
||||||
|
var arrayA = [Float](repeating: 0, count: B * rowsA * columnsA)
|
||||||
|
|
||||||
|
var arrayB = [Float](repeating: 0, count: B * rowsB * columnsB)
|
||||||
|
|
||||||
|
var arrayC = [Float](repeating: 0, count: B * rowsC * columnsC)
|
||||||
|
for i in 0..<arrayA.count {
|
||||||
|
arrayA[i] = Float(i)
|
||||||
|
}
|
||||||
|
|
||||||
|
for i in 0..<arrayB.count {
|
||||||
|
arrayB[i] = Float(i)
|
||||||
|
}
|
||||||
|
|
||||||
|
let bufferA = device.makeBuffer(bytes: arrayA, length: B * rowsA * columnsA * MemoryLayout<Float>.stride, options: [])
|
||||||
|
|
||||||
|
let bufferB = device.makeBuffer(bytes: arrayB, length: B * rowsB * columnsB * MemoryLayout<Float>.stride, options: [])
|
||||||
|
|
||||||
|
let bufferC = device.makeBuffer(length: B * rowsC * columnsC * MemoryLayout<Float>.stride, options: [])
|
||||||
|
|
||||||
|
print(arrayA)
|
||||||
|
print(arrayB)
|
||||||
|
|
||||||
|
|
||||||
|
encoder.setBuffer(bufferA, offset: 0, index: 0)
|
||||||
|
encoder.setBuffer(bufferB, offset: 0, index: 1)
|
||||||
|
encoder.setBuffer(bufferC, offset: 0, index: 2)
|
||||||
|
var gridZ: Int = B
|
||||||
|
if batched{
|
||||||
|
func byteStride(shape: [Int]) -> Int {
|
||||||
|
let rank = shape.count
|
||||||
|
var output = elementSize * shape[rank - 2] * shape[rank - 1]
|
||||||
|
if shape.dropLast(2).reduce(1, *) == 1 {
|
||||||
|
output = 0
|
||||||
|
}
|
||||||
|
return output
|
||||||
|
}
|
||||||
|
let byteStrideA = M*K*elementSize
|
||||||
|
let byteStrideB = N*K*elementSize
|
||||||
|
let byteStrideC = M*N*elementSize
|
||||||
|
|
||||||
|
let byteStrideD = 0
|
||||||
|
// if let shapeD = tensors.d?.shape {
|
||||||
|
// let rank = shapeD.count
|
||||||
|
// byteStrideD = elementSize * shapeD[rank - 1]
|
||||||
|
// if shapeD.dropLast(1).reduce(1, *) == 1 {
|
||||||
|
// byteStrideD = 0
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
withUnsafeTemporaryAllocation(
|
||||||
|
of: SIMD4<UInt64>.self, capacity: gridZ
|
||||||
|
) { buffer in
|
||||||
|
for i in 0..<buffer.count {
|
||||||
|
buffer[i] = SIMD4(
|
||||||
|
UInt64(truncatingIfNeeded: i * byteStrideA),
|
||||||
|
UInt64(truncatingIfNeeded: i * byteStrideB),
|
||||||
|
UInt64(truncatingIfNeeded: i * byteStrideC),
|
||||||
|
UInt64(truncatingIfNeeded: i * byteStrideD))
|
||||||
|
}
|
||||||
|
|
||||||
|
let bufferLength = buffer.count * MemoryLayout<SIMD4<UInt64>>.stride
|
||||||
|
assert(MemoryLayout<SIMD4<UInt64>>.stride == 8 * 4)
|
||||||
|
encoder.setBytes(buffer.baseAddress!, length: bufferLength, index: 10)
|
||||||
|
print("BATCHED")
|
||||||
|
print(buffer)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
gridSize.depth = gridZ
|
||||||
|
|
||||||
|
|
||||||
|
print(gridSize, groupSize)
|
||||||
|
encoder.dispatchThreadgroups(
|
||||||
|
gridSize, threadsPerThreadgroup: groupSize
|
||||||
|
)
|
||||||
|
encoder.endEncoding()
|
||||||
|
commandBuffer.commit()
|
||||||
|
|
||||||
|
commandBuffer.waitUntilCompleted()
|
||||||
|
var contents = bufferC!.contents();
|
||||||
|
|
||||||
|
var count = B * rowsA * columnsB;
|
||||||
|
|
||||||
|
var typedPointer = contents.bindMemory(to: Float.self, capacity: count)
|
||||||
|
|
||||||
|
var bufferedPointer = UnsafeBufferPointer(start: typedPointer, count: count)
|
||||||
|
|
||||||
|
print(Array(bufferedPointer))
|
@ -2,13 +2,6 @@ use super::*;
|
|||||||
use half::{bf16, f16};
|
use half::{bf16, f16};
|
||||||
use metal::{CompileOptions, Device, MTLResourceOptions, MTLSize, NSUInteger};
|
use metal::{CompileOptions, Device, MTLResourceOptions, MTLSize, NSUInteger};
|
||||||
|
|
||||||
fn read_to_vec<T: Clone>(buffer: &Buffer, n: usize) -> Vec<T> {
|
|
||||||
let ptr = buffer.contents() as *const T;
|
|
||||||
assert!(!ptr.is_null());
|
|
||||||
let slice = unsafe { std::slice::from_raw_parts(ptr, n) };
|
|
||||||
slice.to_vec()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn new_buffer<T>(device: &Device, data: &[T]) -> Buffer {
|
fn new_buffer<T>(device: &Device, data: &[T]) -> Buffer {
|
||||||
let options = MTLResourceOptions::StorageModeManaged;
|
let options = MTLResourceOptions::StorageModeManaged;
|
||||||
let ptr = data.as_ptr() as *const core::ffi::c_void;
|
let ptr = data.as_ptr() as *const core::ffi::c_void;
|
||||||
@ -37,8 +30,7 @@ fn approx_bf16(v: Vec<bf16>, digits: i32) -> Vec<f32> {
|
|||||||
|
|
||||||
fn run<T: Clone>(v: &[T], name: unary::contiguous::Kernel) -> Vec<T> {
|
fn run<T: Clone>(v: &[T], name: unary::contiguous::Kernel) -> Vec<T> {
|
||||||
let device = device();
|
let device = device();
|
||||||
let fence = device.new_fence();
|
let kernels = Kernels::new();
|
||||||
let kernels = Kernels::new(fence);
|
|
||||||
let command_queue = device.new_command_queue();
|
let command_queue = device.new_command_queue();
|
||||||
let command_buffer = command_queue.new_command_buffer();
|
let command_buffer = command_queue.new_command_buffer();
|
||||||
let input = new_buffer(&device, v);
|
let input = new_buffer(&device, v);
|
||||||
@ -55,13 +47,12 @@ fn run<T: Clone>(v: &[T], name: unary::contiguous::Kernel) -> Vec<T> {
|
|||||||
.unwrap();
|
.unwrap();
|
||||||
command_buffer.commit();
|
command_buffer.commit();
|
||||||
command_buffer.wait_until_completed();
|
command_buffer.wait_until_completed();
|
||||||
read_to_vec(&output, v.len())
|
output.read_to_vec::<T>(v.len())
|
||||||
}
|
}
|
||||||
|
|
||||||
fn run_binary<T: Clone>(x: &[T], y: &[T], name: binary::contiguous::Kernel) -> Vec<T> {
|
fn run_binary<T: Clone>(x: &[T], y: &[T], name: binary::contiguous::Kernel) -> Vec<T> {
|
||||||
let device = device();
|
let device = device();
|
||||||
let fence = device.new_fence();
|
let kernels = Kernels::new();
|
||||||
let kernels = Kernels::new(fence);
|
|
||||||
let command_queue = device.new_command_queue();
|
let command_queue = device.new_command_queue();
|
||||||
let command_buffer = command_queue.new_command_buffer();
|
let command_buffer = command_queue.new_command_buffer();
|
||||||
let options = MTLResourceOptions::StorageModeManaged;
|
let options = MTLResourceOptions::StorageModeManaged;
|
||||||
@ -81,7 +72,7 @@ fn run_binary<T: Clone>(x: &[T], y: &[T], name: binary::contiguous::Kernel) -> V
|
|||||||
.unwrap();
|
.unwrap();
|
||||||
command_buffer.commit();
|
command_buffer.commit();
|
||||||
command_buffer.wait_until_completed();
|
command_buffer.wait_until_completed();
|
||||||
read_to_vec(&output, x.len())
|
output.read_to_vec::<T>(x.len())
|
||||||
}
|
}
|
||||||
|
|
||||||
fn run_strided<T: Clone>(
|
fn run_strided<T: Clone>(
|
||||||
@ -96,8 +87,7 @@ fn run_strided<T: Clone>(
|
|||||||
let command_buffer = command_queue.new_command_buffer();
|
let command_buffer = command_queue.new_command_buffer();
|
||||||
let input = new_buffer(&device, v);
|
let input = new_buffer(&device, v);
|
||||||
let output = new_buffer(&device, v);
|
let output = new_buffer(&device, v);
|
||||||
let fence = device.new_fence();
|
let kernels = Kernels::new();
|
||||||
let kernels = Kernels::new(fence);
|
|
||||||
call_unary_strided(
|
call_unary_strided(
|
||||||
&device,
|
&device,
|
||||||
command_buffer,
|
command_buffer,
|
||||||
@ -113,7 +103,7 @@ fn run_strided<T: Clone>(
|
|||||||
.unwrap();
|
.unwrap();
|
||||||
command_buffer.commit();
|
command_buffer.commit();
|
||||||
command_buffer.wait_until_completed();
|
command_buffer.wait_until_completed();
|
||||||
read_to_vec(&output, v.len())
|
output.read_to_vec::<T>(v.len())
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
@ -215,25 +205,6 @@ fn cos_strided_random() {
|
|||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn gelu_f16() {
|
|
||||||
let v: Vec<f16> = [-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0]
|
|
||||||
.iter()
|
|
||||||
.map(|v| f16::from_f32(*v))
|
|
||||||
.collect();
|
|
||||||
let expected: Vec<f32> = vec![-0.0, -0.16, 0.0, 0.84, 1.96, 3.0, 10.0, 20.0];
|
|
||||||
let results = run(&v, unary::contiguous::gelu::HALF);
|
|
||||||
assert_eq!(approx_f16(results, 2), expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn gelu_f32() {
|
|
||||||
let v: Vec<f32> = vec![-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0];
|
|
||||||
let expected: Vec<f32> = vec![-0.0, -0.159, 0.0, 0.841, 1.955, 2.996, 10.0, 20.0];
|
|
||||||
let results = run(&v, unary::contiguous::gelu::FLOAT);
|
|
||||||
assert_eq!(approx(results, 3), expected);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn binary_add_f32() {
|
fn binary_add_f32() {
|
||||||
let left = vec![1.0f32, 2.0, 3.0];
|
let left = vec![1.0f32, 2.0, 3.0];
|
||||||
@ -250,8 +221,7 @@ fn binary_add_f32() {
|
|||||||
|
|
||||||
fn cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
|
fn cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
|
||||||
let device = device();
|
let device = device();
|
||||||
let fence = device.new_fence();
|
let kernels = Kernels::new();
|
||||||
let kernels = Kernels::new(fence);
|
|
||||||
let command_queue = device.new_command_queue();
|
let command_queue = device.new_command_queue();
|
||||||
let command_buffer = command_queue.new_command_buffer();
|
let command_buffer = command_queue.new_command_buffer();
|
||||||
let input = new_buffer(&device, v);
|
let input = new_buffer(&device, v);
|
||||||
@ -272,7 +242,7 @@ fn cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
|
|||||||
.unwrap();
|
.unwrap();
|
||||||
command_buffer.commit();
|
command_buffer.commit();
|
||||||
command_buffer.wait_until_completed();
|
command_buffer.wait_until_completed();
|
||||||
read_to_vec(&output, v.len())
|
output.read_to_vec::<U>(v.len())
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
@ -298,8 +268,7 @@ fn cast_u32_f32() {
|
|||||||
|
|
||||||
fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
|
fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
|
||||||
let device = device();
|
let device = device();
|
||||||
let fence = device.new_fence();
|
let kernels = Kernels::new();
|
||||||
let kernels = Kernels::new(fence);
|
|
||||||
let command_queue = device.new_command_queue();
|
let command_queue = device.new_command_queue();
|
||||||
let command_buffer = command_queue.new_command_buffer();
|
let command_buffer = command_queue.new_command_buffer();
|
||||||
|
|
||||||
@ -312,7 +281,7 @@ fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
|
|||||||
&device,
|
&device,
|
||||||
command_buffer,
|
command_buffer,
|
||||||
&kernels,
|
&kernels,
|
||||||
"affine_f32",
|
"affine_float",
|
||||||
size,
|
size,
|
||||||
&input,
|
&input,
|
||||||
&output,
|
&output,
|
||||||
@ -323,7 +292,7 @@ fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
|
|||||||
command_buffer.commit();
|
command_buffer.commit();
|
||||||
command_buffer.wait_until_completed();
|
command_buffer.wait_until_completed();
|
||||||
|
|
||||||
read_to_vec(&output, v.len())
|
output.read_to_vec::<T>(v.len())
|
||||||
}
|
}
|
||||||
|
|
||||||
fn run_affine_strided<T: Clone>(
|
fn run_affine_strided<T: Clone>(
|
||||||
@ -334,8 +303,7 @@ fn run_affine_strided<T: Clone>(
|
|||||||
add: f64,
|
add: f64,
|
||||||
) -> Vec<T> {
|
) -> Vec<T> {
|
||||||
let device = device();
|
let device = device();
|
||||||
let fence = device.new_fence();
|
let kernels = Kernels::new();
|
||||||
let kernels = Kernels::new(fence);
|
|
||||||
let command_queue = device.new_command_queue();
|
let command_queue = device.new_command_queue();
|
||||||
let command_buffer = command_queue.new_command_buffer();
|
let command_buffer = command_queue.new_command_buffer();
|
||||||
|
|
||||||
@ -346,7 +314,7 @@ fn run_affine_strided<T: Clone>(
|
|||||||
&device,
|
&device,
|
||||||
command_buffer,
|
command_buffer,
|
||||||
&kernels,
|
&kernels,
|
||||||
"affine_f32_strided",
|
"affine_float_strided",
|
||||||
shape,
|
shape,
|
||||||
&input,
|
&input,
|
||||||
strides,
|
strides,
|
||||||
@ -360,7 +328,7 @@ fn run_affine_strided<T: Clone>(
|
|||||||
command_buffer.wait_until_completed();
|
command_buffer.wait_until_completed();
|
||||||
|
|
||||||
let len: usize = shape.iter().product();
|
let len: usize = shape.iter().product();
|
||||||
read_to_vec(&output, len)
|
output.read_to_vec::<T>(len)
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
@ -463,8 +431,7 @@ fn run_index_select<T: Clone, I: Clone + std::fmt::Debug>(
|
|||||||
_ => unimplemented!(),
|
_ => unimplemented!(),
|
||||||
};
|
};
|
||||||
|
|
||||||
let fence = device.new_fence();
|
let kernels = Kernels::new();
|
||||||
let kernels = Kernels::new(fence);
|
|
||||||
call_index_select(
|
call_index_select(
|
||||||
&device,
|
&device,
|
||||||
&command_buffer,
|
&command_buffer,
|
||||||
@ -482,7 +449,7 @@ fn run_index_select<T: Clone, I: Clone + std::fmt::Debug>(
|
|||||||
command_buffer.commit();
|
command_buffer.commit();
|
||||||
command_buffer.wait_until_completed();
|
command_buffer.wait_until_completed();
|
||||||
|
|
||||||
read_to_vec(&dst_buffer, dst_el)
|
dst_buffer.read_to_vec::<T>(dst_el)
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
@ -548,7 +515,7 @@ fn index_add() {
|
|||||||
let expected = vec![
|
let expected = vec![
|
||||||
2.0, 3.0, 4.0, 1.0, 1.0, 1.0, 8.0, 9.0, 10.0, 1.0, 1.0, 1.0, 5.0, 6.0, 7.0,
|
2.0, 3.0, 4.0, 1.0, 1.0, 1.0, 8.0, 9.0, 10.0, 1.0, 1.0, 1.0, 5.0, 6.0, 7.0,
|
||||||
];
|
];
|
||||||
let result: Vec<f32> = read_to_vec(&outputs_buffer, right.len());
|
let result = outputs_buffer.read_to_vec::<f32>(right.len());
|
||||||
assert_eq!(result, expected);
|
assert_eq!(result, expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -560,29 +527,25 @@ fn cos_f16() {
|
|||||||
.collect();
|
.collect();
|
||||||
let results = run(&v, unary::contiguous::cos::HALF);
|
let results = run(&v, unary::contiguous::cos::HALF);
|
||||||
let expected: Vec<f16> = v.iter().map(|v| f16::from_f32(v.to_f32().cos())).collect();
|
let expected: Vec<f16> = v.iter().map(|v| f16::from_f32(v.to_f32().cos())).collect();
|
||||||
assert_eq!(approx_f16(results, 2), vec![0.54, -0.42, -0.99]);
|
assert_eq!(approx_f16(results, 4), vec![0.5405, -0.4163, -0.9902]);
|
||||||
assert_eq!(approx_f16(expected, 2), vec![0.54, -0.42, -0.99]);
|
assert_eq!(approx_f16(expected, 4), vec![0.5405, -0.4163, -0.9902]);
|
||||||
}
|
}
|
||||||
|
|
||||||
fn run_reduce<T: Clone>(v: &[T], out_length: usize, name: &'static str) -> Vec<T> {
|
fn run_reduce<T: Clone>(v: &[T], out_length: usize, name: &'static str) -> Vec<T> {
|
||||||
let device = device();
|
let device = device();
|
||||||
let fence = device.new_fence();
|
let kernels = Kernels::new();
|
||||||
let kernels = Kernels::new(fence);
|
|
||||||
let command_queue = device.new_command_queue();
|
let command_queue = device.new_command_queue();
|
||||||
let command_buffer = command_queue.new_command_buffer();
|
let command_buffer = command_queue.new_command_buffer();
|
||||||
let input = new_buffer(&device, v);
|
let input = new_buffer(&device, v);
|
||||||
|
|
||||||
let options = MTLResourceOptions::StorageModeManaged;
|
let options = MTLResourceOptions::StorageModeManaged;
|
||||||
let output = device.new_buffer((out_length * core::mem::size_of::<T>()) as u64, options);
|
let output = device.new_buffer((out_length * core::mem::size_of::<T>()) as u64, options);
|
||||||
let dims = vec![v.len()];
|
call_reduce_contiguous(
|
||||||
let strides = vec![1];
|
|
||||||
call_reduce_strided(
|
|
||||||
&device,
|
&device,
|
||||||
command_buffer,
|
command_buffer,
|
||||||
&kernels,
|
&kernels,
|
||||||
name,
|
name,
|
||||||
&dims,
|
v.len(),
|
||||||
&strides,
|
|
||||||
out_length,
|
out_length,
|
||||||
&input,
|
&input,
|
||||||
0,
|
0,
|
||||||
@ -592,13 +555,12 @@ fn run_reduce<T: Clone>(v: &[T], out_length: usize, name: &'static str) -> Vec<T
|
|||||||
command_buffer.commit();
|
command_buffer.commit();
|
||||||
command_buffer.wait_until_completed();
|
command_buffer.wait_until_completed();
|
||||||
|
|
||||||
read_to_vec(&output, out_length)
|
output.read_to_vec::<T>(out_length)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn run_softmax<T: Clone + std::fmt::Debug>(v: &[T], last_dim: usize, name: &'static str) -> Vec<T> {
|
fn run_softmax<T: Clone + std::fmt::Debug>(v: &[T], last_dim: usize, name: &'static str) -> Vec<T> {
|
||||||
let device = device();
|
let device = device();
|
||||||
let fence = device.new_fence();
|
let kernels = Kernels::new();
|
||||||
let kernels = Kernels::new(fence);
|
|
||||||
let command_queue = device.new_command_queue();
|
let command_queue = device.new_command_queue();
|
||||||
let command_buffer = command_queue.new_command_buffer();
|
let command_buffer = command_queue.new_command_buffer();
|
||||||
let input = new_buffer(&device, v);
|
let input = new_buffer(&device, v);
|
||||||
@ -611,14 +573,13 @@ fn run_softmax<T: Clone + std::fmt::Debug>(v: &[T], last_dim: usize, name: &'sta
|
|||||||
v.len(),
|
v.len(),
|
||||||
last_dim,
|
last_dim,
|
||||||
&input,
|
&input,
|
||||||
0,
|
|
||||||
&output,
|
&output,
|
||||||
)
|
)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
command_buffer.commit();
|
command_buffer.commit();
|
||||||
command_buffer.wait_until_completed();
|
command_buffer.wait_until_completed();
|
||||||
|
|
||||||
read_to_vec(&output, v.len())
|
output.read_to_vec::<T>(v.len())
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
@ -626,7 +587,7 @@ fn reduce_sum() {
|
|||||||
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
|
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
|
||||||
let out_length = 1;
|
let out_length = 1;
|
||||||
|
|
||||||
let results = run_reduce(&v, out_length, "fast_sum_f32_strided");
|
let results = run_reduce(&v, out_length, "fast_sum_float");
|
||||||
assert_eq!(approx(results, 4), vec![21.0]);
|
assert_eq!(approx(results, 4), vec![21.0]);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -635,7 +596,7 @@ fn reduce_sum2() {
|
|||||||
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
|
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
|
||||||
let out_length = 2;
|
let out_length = 2;
|
||||||
|
|
||||||
let results = run_reduce(&v, out_length, "fast_sum_f32_strided");
|
let results = run_reduce(&v, out_length, "fast_sum_float");
|
||||||
assert_eq!(approx(results, 4), vec![6.0, 15.0]);
|
assert_eq!(approx(results, 4), vec![6.0, 15.0]);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -643,33 +604,15 @@ fn reduce_sum2() {
|
|||||||
fn softmax() {
|
fn softmax() {
|
||||||
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
|
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
|
||||||
let last_dim = 6;
|
let last_dim = 6;
|
||||||
let results = run_softmax(&v, last_dim, "softmax_f32");
|
let results = run_softmax(&v, last_dim, "softmax_float");
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
approx(results, 4),
|
approx(results, 4),
|
||||||
vec![0.0043, 0.0116, 0.0315, 0.0858, 0.2331, 0.6337]
|
vec![0.0043, 0.0116, 0.0315, 0.0858, 0.2331, 0.6337]
|
||||||
);
|
);
|
||||||
|
|
||||||
let last_dim = 4096;
|
|
||||||
let n = 200;
|
|
||||||
let mut v = vec![0.0; n * last_dim];
|
|
||||||
for i in 0..n {
|
|
||||||
v[i * last_dim] = 20.0;
|
|
||||||
}
|
|
||||||
let results = run_softmax(&v, last_dim, "softmax_f32");
|
|
||||||
let results = approx(results, 4);
|
|
||||||
println!("{results:?}");
|
|
||||||
assert_eq!(
|
|
||||||
results.iter().map(|&s| s.round() as usize).sum::<usize>(),
|
|
||||||
n
|
|
||||||
);
|
|
||||||
assert_eq!(results[0], 1.0);
|
|
||||||
assert_eq!(results[1], 0.0);
|
|
||||||
assert_eq!(results[last_dim], 1.0);
|
|
||||||
assert_eq!(results[2 * last_dim], 1.0);
|
|
||||||
|
|
||||||
let v = vec![0.0f32, 1.0, 2.0, 3.0, 4.0, 5.0];
|
let v = vec![0.0f32, 1.0, 2.0, 3.0, 4.0, 5.0];
|
||||||
let last_dim = 6;
|
let last_dim = 6;
|
||||||
let results = run_softmax(&v, last_dim, "softmax_f32");
|
let results = run_softmax(&v, last_dim, "softmax_float");
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
approx(results, 4),
|
approx(results, 4),
|
||||||
vec![0.0043, 0.0116, 0.0315, 0.0858, 0.2331, 0.6337]
|
vec![0.0043, 0.0116, 0.0315, 0.0858, 0.2331, 0.6337]
|
||||||
@ -677,7 +620,7 @@ fn softmax() {
|
|||||||
|
|
||||||
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
|
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
|
||||||
let last_dim = 3;
|
let last_dim = 3;
|
||||||
let results = run_softmax(&v, last_dim, "softmax_f32");
|
let results = run_softmax(&v, last_dim, "softmax_float");
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
approx(results, 4),
|
approx(results, 4),
|
||||||
vec![0.0900, 0.2447, 0.6652, 0.0900, 0.2447, 0.6652]
|
vec![0.0900, 0.2447, 0.6652, 0.0900, 0.2447, 0.6652]
|
||||||
@ -688,7 +631,7 @@ fn softmax() {
|
|||||||
.map(|v| f16::from_f32(*v))
|
.map(|v| f16::from_f32(*v))
|
||||||
.collect::<Vec<_>>();
|
.collect::<Vec<_>>();
|
||||||
let last_dim = 6;
|
let last_dim = 6;
|
||||||
let results = run_softmax(&v, last_dim, "softmax_f16");
|
let results = run_softmax(&v, last_dim, "softmax_half");
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
approx_f16(results, 4),
|
approx_f16(results, 4),
|
||||||
vec![0.0043, 0.0116, 0.0316, 0.0858, 0.2332, 0.6338]
|
vec![0.0043, 0.0116, 0.0316, 0.0858, 0.2332, 0.6338]
|
||||||
@ -699,7 +642,7 @@ fn softmax() {
|
|||||||
.map(|v| bf16::from_f32(*v))
|
.map(|v| bf16::from_f32(*v))
|
||||||
.collect::<Vec<_>>();
|
.collect::<Vec<_>>();
|
||||||
let last_dim = 6;
|
let last_dim = 6;
|
||||||
let results = run_softmax(&v, last_dim, "softmax_bf16");
|
let results = run_softmax(&v, last_dim, "softmax_bfloat");
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
approx_bf16(results, 4),
|
approx_bf16(results, 4),
|
||||||
vec![0.0043, 0.0116, 0.0315, 0.0859, 0.2324, 0.6328]
|
vec![0.0043, 0.0116, 0.0315, 0.0859, 0.2324, 0.6328]
|
||||||
@ -717,8 +660,7 @@ fn run_where_cond<I: Clone, T: Clone>(
|
|||||||
name: &'static str,
|
name: &'static str,
|
||||||
) -> Vec<T> {
|
) -> Vec<T> {
|
||||||
let device = device();
|
let device = device();
|
||||||
let fence = device.new_fence();
|
let kernels = Kernels::new();
|
||||||
let kernels = Kernels::new(fence);
|
|
||||||
let command_queue = device.new_command_queue();
|
let command_queue = device.new_command_queue();
|
||||||
let command_buffer = command_queue.new_command_buffer();
|
let command_buffer = command_queue.new_command_buffer();
|
||||||
let options = MTLResourceOptions::StorageModeManaged;
|
let options = MTLResourceOptions::StorageModeManaged;
|
||||||
@ -759,7 +701,7 @@ fn run_where_cond<I: Clone, T: Clone>(
|
|||||||
command_buffer.commit();
|
command_buffer.commit();
|
||||||
command_buffer.wait_until_completed();
|
command_buffer.wait_until_completed();
|
||||||
|
|
||||||
read_to_vec(&output, length)
|
output.read_to_vec::<T>(length)
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
@ -788,14 +730,11 @@ fn run_gemm<T: Clone>(
|
|||||||
(b, m, n, k): (usize, usize, usize, usize),
|
(b, m, n, k): (usize, usize, usize, usize),
|
||||||
lhs: &[T],
|
lhs: &[T],
|
||||||
lhs_stride: Vec<usize>,
|
lhs_stride: Vec<usize>,
|
||||||
lhs_offset: usize,
|
|
||||||
rhs: &[T],
|
rhs: &[T],
|
||||||
rhs_stride: Vec<usize>,
|
rhs_stride: Vec<usize>,
|
||||||
rhs_offset: usize,
|
|
||||||
) -> Vec<T> {
|
) -> Vec<T> {
|
||||||
let device = device();
|
let device = device();
|
||||||
let fence = device.new_fence();
|
let kernels = Kernels::new();
|
||||||
let kernels = Kernels::new(fence);
|
|
||||||
let command_queue = device.new_command_queue();
|
let command_queue = device.new_command_queue();
|
||||||
let command_buffer = command_queue.new_command_buffer();
|
let command_buffer = command_queue.new_command_buffer();
|
||||||
let options = MTLResourceOptions::StorageModeManaged;
|
let options = MTLResourceOptions::StorageModeManaged;
|
||||||
@ -819,10 +758,10 @@ fn run_gemm<T: Clone>(
|
|||||||
"sgemm",
|
"sgemm",
|
||||||
(b, m, n, k),
|
(b, m, n, k),
|
||||||
&lhs_stride,
|
&lhs_stride,
|
||||||
lhs_offset,
|
0,
|
||||||
&lhs,
|
&lhs,
|
||||||
&rhs_stride,
|
&rhs_stride,
|
||||||
rhs_offset,
|
0,
|
||||||
&rhs,
|
&rhs,
|
||||||
&output,
|
&output,
|
||||||
)
|
)
|
||||||
@ -830,7 +769,7 @@ fn run_gemm<T: Clone>(
|
|||||||
command_buffer.commit();
|
command_buffer.commit();
|
||||||
command_buffer.wait_until_completed();
|
command_buffer.wait_until_completed();
|
||||||
|
|
||||||
read_to_vec(&output, length)
|
output.read_to_vec::<T>(length)
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
@ -840,18 +779,17 @@ fn gemm() {
|
|||||||
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
|
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
|
||||||
let rhs_stride = vec![n * k, n, 1];
|
let rhs_stride = vec![n * k, n, 1];
|
||||||
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
|
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
|
||||||
let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0);
|
let results = run_gemm((b, m, n, k), &lhs, lhs_stride, &rhs, rhs_stride);
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
approx(results, 4),
|
approx(results, 4),
|
||||||
vec![20.0, 23.0, 26.0, 29.0, 56.0, 68.0, 80.0, 92.0]
|
vec![20.0, 23.0, 26.0, 29.0, 56.0, 68.0, 80.0, 92.0]
|
||||||
);
|
);
|
||||||
|
|
||||||
let (b, m, n, k) = (2, 2, 4, 3);
|
let (b, m, n, k) = (2, 2, 4, 3);
|
||||||
let lhs_stride = vec![m * k, k, 1];
|
let lhs_stride = vec![m * k, k, 1];
|
||||||
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
|
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
|
||||||
let rhs_stride = vec![n * k, n, 1];
|
let rhs_stride = vec![n * k, n, 1];
|
||||||
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
|
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
|
||||||
let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0);
|
let results = run_gemm((b, m, n, k), &lhs, lhs_stride, &rhs, rhs_stride);
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
approx(results, 4),
|
approx(results, 4),
|
||||||
vec![
|
vec![
|
||||||
@ -859,17 +797,4 @@ fn gemm() {
|
|||||||
518.0, 548.0, 578.0
|
518.0, 548.0, 578.0
|
||||||
]
|
]
|
||||||
);
|
);
|
||||||
|
|
||||||
// OFFSET
|
|
||||||
let (b, m, n, k) = (2, 2, 4, 3);
|
|
||||||
let lhs_stride = vec![m * k, k, 1];
|
|
||||||
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
|
|
||||||
let rhs_stride = vec![n * k, n, 1];
|
|
||||||
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
|
|
||||||
// Manually set batch_size=1 and offset 12 elements * 4 the number of bytes for f32
|
|
||||||
let results = run_gemm((1, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 12 * 4);
|
|
||||||
assert_eq!(
|
|
||||||
approx(results, 4),
|
|
||||||
vec![56.0, 59.0, 62.0, 65.0, 200.0, 212.0, 224.0, 236.0]
|
|
||||||
);
|
|
||||||
}
|
}
|
||||||
|
@ -42,14 +42,9 @@ template <typename T> METAL_FUNC T erf(T in){
|
|||||||
|
|
||||||
return T(sign*y);
|
return T(sign*y);
|
||||||
}
|
}
|
||||||
template <typename T> METAL_FUNC T id(T in) { return in; }
|
template <typename T> METAL_FUNC T id(T in){ return in; }
|
||||||
template <typename T> METAL_FUNC T gelu_erf(T x) {
|
template <typename T> METAL_FUNC T gelu_erf(T x){ return T(x * (1 + erf(x * M_SQRT1_2_F)) / 2); }
|
||||||
return T(x * (1 + erf(x * M_SQRT1_2_F)) / 2);
|
template <typename T> METAL_FUNC T gelu(T x){
|
||||||
}
|
|
||||||
template <typename T> METAL_FUNC T gelu(T x) {
|
|
||||||
if (x > 5) {
|
|
||||||
return x;
|
|
||||||
}
|
|
||||||
T x_sq = x * x;
|
T x_sq = x * x;
|
||||||
T x_cube = x_sq * x;
|
T x_cube = x_sq * x;
|
||||||
T alpha = x + static_cast<T>(0.044715) * x_cube;
|
T alpha = x + static_cast<T>(0.044715) * x_cube;
|
||||||
@ -69,7 +64,7 @@ kernel void FN_NAME( \
|
|||||||
if (thread_position_in_grid >= dim) { \
|
if (thread_position_in_grid >= dim) { \
|
||||||
return; \
|
return; \
|
||||||
} \
|
} \
|
||||||
output[thread_position_in_grid] = TYPENAME(FN(float(input[thread_position_in_grid]))); \
|
output[thread_position_in_grid] = TYPENAME(FN(input[thread_position_in_grid])); \
|
||||||
}\
|
}\
|
||||||
kernel void FN_NAME_STRIDED( \
|
kernel void FN_NAME_STRIDED( \
|
||||||
constant size_t &dim, \
|
constant size_t &dim, \
|
||||||
@ -83,15 +78,15 @@ kernel void FN_NAME_STRIDED( \
|
|||||||
if (thread_position_in_grid >= dim) { \
|
if (thread_position_in_grid >= dim) { \
|
||||||
return; \
|
return; \
|
||||||
} \
|
} \
|
||||||
output[thread_position_in_grid] = TYPENAME(FN(float(input[get_strided_index(thread_position_in_grid, num_dims, dims, strides)]))); \
|
output[thread_position_in_grid] = TYPENAME(FN(input[get_strided_index(thread_position_in_grid, num_dims, dims, strides)])); \
|
||||||
}
|
}
|
||||||
|
|
||||||
#define UNARY_OP(NAME) \
|
#define UNARY_OP(NAME) \
|
||||||
UNARY(NAME, float, NAME##_f32, NAME##_f32_strided); \
|
UNARY(NAME, float, NAME##_float, NAME##_float_strided); \
|
||||||
UNARY(NAME, half, NAME##_f16, NAME##_f16_strided);
|
UNARY(NAME, half, NAME##_half, NAME##_half_strided);
|
||||||
|
|
||||||
#define BFLOAT_UNARY_OP(NAME) \
|
#define BFLOAT_UNARY_OP(NAME) \
|
||||||
UNARY(NAME, bfloat, NAME##_bf16, NAME##_bf16_strided);
|
UNARY(NAME, bfloat, NAME##_bfloat, NAME##_bfloat_strided);
|
||||||
|
|
||||||
|
|
||||||
UNARY_OP(cos)
|
UNARY_OP(cos)
|
||||||
@ -107,9 +102,8 @@ UNARY_OP(floor)
|
|||||||
UNARY_OP(round)
|
UNARY_OP(round)
|
||||||
UNARY_OP(gelu_erf)
|
UNARY_OP(gelu_erf)
|
||||||
UNARY_OP(erf)
|
UNARY_OP(erf)
|
||||||
UNARY_OP(tanh)
|
UNARY(id, float, copy_float, copy_float_strided)
|
||||||
UNARY(id, float, copy_f32, copy_f32_strided)
|
UNARY(id, half, copy_half, copy_half_strided)
|
||||||
UNARY(id, half, copy_f16, copy_f16_strided)
|
|
||||||
UNARY(id, uint8_t, copy_u8, copy_u8_strided)
|
UNARY(id, uint8_t, copy_u8, copy_u8_strided)
|
||||||
UNARY(id, uint32_t, copy_u32, copy_u32_strided)
|
UNARY(id, uint32_t, copy_u32, copy_u32_strided)
|
||||||
|
|
||||||
@ -127,7 +121,6 @@ BFLOAT_UNARY_OP(floor)
|
|||||||
BFLOAT_UNARY_OP(round)
|
BFLOAT_UNARY_OP(round)
|
||||||
BFLOAT_UNARY_OP(gelu_erf)
|
BFLOAT_UNARY_OP(gelu_erf)
|
||||||
BFLOAT_UNARY_OP(erf)
|
BFLOAT_UNARY_OP(erf)
|
||||||
BFLOAT_UNARY_OP(tanh)
|
|
||||||
|
|
||||||
UNARY(id, bfloat, copy_bf16, copy_bf16_strided)
|
UNARY(id, bfloat, copy_bfloat, copy_bfloat_strided)
|
||||||
#endif
|
#endif
|
||||||
|
@ -19,7 +19,6 @@ num-traits = { workspace = true }
|
|||||||
rayon = { workspace = true }
|
rayon = { workspace = true }
|
||||||
safetensors = { workspace = true }
|
safetensors = { workspace = true }
|
||||||
serde = { workspace = true }
|
serde = { workspace = true }
|
||||||
metal = { workspace = true, optional = true }
|
|
||||||
candle-metal-kernels = { path = "../candle-metal-kernels", version = "0.3.0", optional = true }
|
candle-metal-kernels = { path = "../candle-metal-kernels", version = "0.3.0", optional = true }
|
||||||
|
|
||||||
[dev-dependencies]
|
[dev-dependencies]
|
||||||
@ -31,4 +30,4 @@ default = []
|
|||||||
accelerate = ["dep:accelerate-src", "candle/accelerate"]
|
accelerate = ["dep:accelerate-src", "candle/accelerate"]
|
||||||
cuda = ["candle/cuda"]
|
cuda = ["candle/cuda"]
|
||||||
mkl = ["dep:intel-mkl-src", "candle/mkl"]
|
mkl = ["dep:intel-mkl-src", "candle/mkl"]
|
||||||
metal = ["candle/metal", "dep:candle-metal-kernels", "dep:metal"]
|
metal = ["candle/metal", "dep:candle-metal-kernels"]
|
||||||
|
@ -210,33 +210,32 @@ impl candle::CustomOp1 for SoftmaxLastDim {
|
|||||||
) -> Result<(candle::MetalStorage, Shape)> {
|
) -> Result<(candle::MetalStorage, Shape)> {
|
||||||
use candle::{backend::BackendStorage, DType};
|
use candle::{backend::BackendStorage, DType};
|
||||||
let device = storage.device();
|
let device = storage.device();
|
||||||
let command_buffer = device.command_buffer()?;
|
let command_buffer = device.command_buffer();
|
||||||
let kernels = device.kernels();
|
let kernels = device.kernels();
|
||||||
let name = match storage.dtype() {
|
let name = match storage.dtype() {
|
||||||
DType::F32 => "softmax_f32",
|
DType::F32 => "softmax_float",
|
||||||
DType::F16 => "softmax_f16",
|
DType::F16 => "softmax_half",
|
||||||
DType::BF16 => "softmax_bf16",
|
DType::BF16 => "softmax_bfloat",
|
||||||
dtype => candle::bail!("softmax-last-dim is not implemented for {dtype:?}"),
|
dtype => candle::bail!("softmax-last-dim is not implemented for {dtype:?}"),
|
||||||
};
|
};
|
||||||
|
|
||||||
let n = layout.stride().len();
|
let n = layout.stride().len();
|
||||||
if !(layout.is_contiguous() && layout.stride()[n - 1] == 1) {
|
if !(layout.stride()[n - 1] == 1 && layout.start_offset() == 0) {
|
||||||
candle::bail!("Non contiguous softmax-last-dim is not implemented");
|
candle::bail!("Non contiguous softmax-last-dim is not implemented");
|
||||||
}
|
}
|
||||||
|
|
||||||
let last_dim = layout.dims()[layout.shape().rank() - 1];
|
let last_dim = layout.dims()[layout.shape().rank() - 1];
|
||||||
let elem_count = layout.shape().elem_count();
|
let elem_count = layout.shape().elem_count();
|
||||||
let output = device.new_buffer(elem_count, storage.dtype(), "softmax")?;
|
let mut output = device.new_buffer(elem_count, storage.dtype());
|
||||||
candle_metal_kernels::call_last_softmax(
|
candle_metal_kernels::call_last_softmax(
|
||||||
device.metal_device(),
|
device.metal_device(),
|
||||||
&command_buffer,
|
&command_buffer,
|
||||||
kernels,
|
&kernels,
|
||||||
name,
|
name,
|
||||||
elem_count,
|
elem_count,
|
||||||
last_dim,
|
last_dim,
|
||||||
storage.buffer(),
|
storage.buffer(),
|
||||||
layout.start_offset() * storage.dtype().size_in_bytes(),
|
&mut output,
|
||||||
&output,
|
|
||||||
)
|
)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
let newstorage = candle::MetalStorage::new(output, device.clone(), storage.dtype());
|
let newstorage = candle::MetalStorage::new(output, device.clone(), storage.dtype());
|
||||||
|
@ -31,4 +31,3 @@ accelerate = ["dep:accelerate-src", "candle/accelerate", "candle-nn/accelerate"]
|
|||||||
cuda = ["candle/cuda", "candle-nn/cuda"]
|
cuda = ["candle/cuda", "candle-nn/cuda"]
|
||||||
flash-attn = ["cuda", "dep:candle-flash-attn"]
|
flash-attn = ["cuda", "dep:candle-flash-attn"]
|
||||||
mkl = ["dep:intel-mkl-src", "candle/mkl", "candle-nn/mkl"]
|
mkl = ["dep:intel-mkl-src", "candle/mkl", "candle-nn/mkl"]
|
||||||
metal = ["candle/metal", "candle-nn/metal"]
|
|
||||||
|
Reference in New Issue
Block a user