Compare commits

..

3 Commits

Author SHA1 Message Date
1f23cea90c MFA 2023-12-13 16:09:20 +01:00
ce33d6ad2a Tmp. 2023-12-11 11:10:48 +01:00
3d0ade406a Tmp. 2023-12-11 09:38:25 +01:00
13 changed files with 727 additions and 711 deletions

View File

@ -38,8 +38,7 @@ impl From<String> for MetalError {
pub struct MetalDevice {
device: metal::Device,
command_queue: metal::CommandQueue,
command_buffers: Arc<RwLock<Vec<metal::CommandBuffer>>>,
command_buffer_index: Arc<RwLock<usize>>,
command_buffer: Arc<RwLock<metal::CommandBuffer>>,
kernels: Arc<candle_metal_kernels::Kernels>,
buffers: Arc<RwLock<HashMap<(NSUInteger, MTLResourceOptions), Vec<Arc<Buffer>>>>>,
}
@ -71,70 +70,38 @@ impl MetalDevice {
&self.command_queue
}
pub fn command_buffer(&self) -> CommandBuffer {
let mut command_buffers = self.command_buffers.try_write().unwrap();
let mut index = self.command_buffer_index.try_write().unwrap();
let n = command_buffers.len();
if *index == n {
// todo!("Cycle buffers");
for i in 0..n {
let command_buffer = &command_buffers[i];
match command_buffer.status() {
metal::MTLCommandBufferStatus::Committed
| metal::MTLCommandBufferStatus::Scheduled => {
// println!("Wait during cycling {i}");
// println!("Command {i} / {n}: {:?}", command_buffer.status());
command_buffer.wait_until_completed();
pub fn command_buffer(&self) -> std::sync::RwLockReadGuard<CommandBuffer> {
self.command_buffer.try_read().unwrap()
}
metal::MTLCommandBufferStatus::Completed => {}
_ => {
panic!("Command buffer {i} not committed during cycling");
}
}
}
let new_buffers = (0..n)
.map(|i| {
// println!("Creating command buffer {i}");
pub fn commit(&self) {
let mut old = self.command_buffer.try_write().unwrap();
match old.status() {
metal::MTLCommandBufferStatus::NotEnqueued
| metal::MTLCommandBufferStatus::Enqueued => {
old.commit();
let command_buffer = self.command_queue.new_command_buffer().to_owned();
command_buffer.set_label(&format!("num {i}"));
command_buffer.enqueue();
command_buffer
})
.collect();
*command_buffers = new_buffers;
*index = 0;
// println!("Reset");
*old = command_buffer;
}
_ => {}
}
// println!("Giving buffer {} / {n}", *index);
let out = &command_buffers[*index];
assert_eq!(out.status(), metal::MTLCommandBufferStatus::Enqueued);
*index += 1;
out.to_owned()
}
pub fn wait_until_completed(&self) {
let command_buffers = self.command_buffers.try_write().unwrap();
let index = self.command_buffer_index.try_write().unwrap();
let n = command_buffers.len();
// for i in 0..*index {
// let command_buffer = &command_buffers[i];
// println!("Command {i} / {n}: {:?}", command_buffer.status());
// }
for i in 0..*index {
let command_buffer = &command_buffers[i];
match command_buffer.status() {
metal::MTLCommandBufferStatus::Committed
| metal::MTLCommandBufferStatus::Scheduled => {}
metal::MTLCommandBufferStatus::Completed => {}
_ => {
panic!("Command buffer not committed");
let mut old = self.command_buffer.try_write().unwrap();
match old.status() {
metal::MTLCommandBufferStatus::NotEnqueued
| metal::MTLCommandBufferStatus::Enqueued => {
old.commit();
old.wait_until_completed();
}
metal::MTLCommandBufferStatus::Committed | metal::MTLCommandBufferStatus::Scheduled => {
old.wait_until_completed();
}
// println!("Wait {i}");
command_buffer.wait_until_completed();
// println!("Ok {i}");
// command_buffer.wait_until_completed();
_ => {}
}
let command_buffer = self.command_queue.new_command_buffer().to_owned();
*old = command_buffer;
}
pub fn kernels(&self) -> &Kernels {
@ -145,40 +112,28 @@ impl MetalDevice {
&self.device
}
pub fn new_buffer(&self, element_count: usize, dtype: DType, name: &str) -> Arc<Buffer> {
pub fn new_buffer(&self, element_count: usize, dtype: DType) -> Arc<Buffer> {
let size = (element_count * dtype.size_in_bytes()) as NSUInteger;
self._new_buffer(size, MTLResourceOptions::StorageModePrivate, name)
self._new_buffer(size, MTLResourceOptions::StorageModePrivate)
}
fn _new_buffer(&self, size: NSUInteger, option: MTLResourceOptions, name: &str) -> Arc<Buffer> {
// println!("Creating new buffer {name}");
fn _new_buffer(&self, size: NSUInteger, option: MTLResourceOptions) -> Arc<Buffer> {
let mut buffers = self.buffers.try_write().unwrap();
let subbuffers = buffers.entry((size, option)).or_insert(vec![]);
for sub in &mut *subbuffers {
if Arc::strong_count(sub) == 1 {
// println!("Reusing tensor {size} {name}");
return sub.clone();
}
}
let new_buffer = self.device.new_buffer(size as NSUInteger, option);
let new_buffer = Arc::new(new_buffer);
// subbuffers.push(new_buffer.clone());
// println!("Created tensor {size} {name}");
for subbuffers in buffers.values_mut() {
let newbuffers = subbuffers
.iter()
.filter(|s| Arc::strong_count(s) > 1)
.map(|s| Arc::clone(s))
.collect();
*subbuffers = newbuffers;
}
subbuffers.push(new_buffer.clone());
new_buffer
}
pub fn new_buffer_managed(&self, size: NSUInteger) -> Arc<Buffer> {
self._new_buffer(size, MTLResourceOptions::StorageModeShared, "managed")
self._new_buffer(size, MTLResourceOptions::StorageModeManaged)
}
pub fn new_buffer_with_data<T>(&self, data: &[T]) -> Arc<Buffer> {
@ -186,25 +141,15 @@ impl MetalDevice {
let tmp = self.device.new_buffer_with_data(
data.as_ptr() as *const core::ffi::c_void,
size,
metal::MTLResourceOptions::StorageModeShared,
metal::MTLResourceOptions::StorageModeManaged,
);
let real = self._new_buffer(
size,
metal::MTLResourceOptions::StorageModePrivate,
"with_data",
);
let command_buffer = self.command_buffer();
command_buffer.set_label("with_data");
let blit = command_buffer.new_blit_command_encoder();
blit.set_label("with_data_blit");
let real = self._new_buffer(size, metal::MTLResourceOptions::StorageModePrivate);
{
let command = self.command_buffer();
let blit = command.new_blit_command_encoder();
blit.copy_from_buffer(&tmp, 0, &real, 0, tmp.length());
blit.end_encoding();
command_buffer.commit();
drop(command_buffer);
// real.did_modify_range(metal::NSRange::new(0, real.length()));
// println!("Command {:?}", command.status());
// self.commit();
}
// This is necessary, for mmaped safetensors
// Because of the unsafe slice cast we're doing.
// The slice might not live long enough for metal
@ -224,29 +169,15 @@ impl MetalDevice {
dtype: DType,
) -> Result<(Matrix, Arc<Buffer>)> {
let elem_count = (b * m * n) as usize;
let buffer = self.new_buffer(elem_count, dtype, "matrix");
let command_buffer = self.command_buffer();
command_buffer.set_label("zeros_matmul");
let blit = command_buffer.new_blit_command_encoder();
blit.fill_buffer(
&buffer,
metal::NSRange {
location: 0,
length: buffer.length(),
},
0,
);
blit.end_encoding();
command_buffer.commit();
buffer.did_modify_range(metal::NSRange::new(0, buffer.length()));
let out_buffer = self.new_buffer(elem_count, dtype);
let result_descriptor =
MatrixDescriptor::init_multiple(m, n, b, n * size, m * n * size, type_id);
let result_matrix = Matrix::init_with_buffer_descriptor(&buffer, 0, &result_descriptor)
let result_matrix = Matrix::init_with_buffer_descriptor(&out_buffer, 0, &result_descriptor)
.ok_or_else(|| {
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
Ok((result_matrix, buffer))
Ok((result_matrix, out_buffer))
}
pub fn capture<P: AsRef<Path>>(&self, path: P) -> Result<()> {
@ -310,20 +241,13 @@ impl BackendStorage for MetalStorage {
self.dtype
);
}
self.device.wait_until_completed();
self.buffer
.did_modify_range(metal::NSRange::new(0, self.buffer.length()));
let buffer = self.device.new_buffer_managed(self.buffer.length());
{
let command_buffer = self.device.command_buffer();
command_buffer.set_label("to_cpu");
let blit = command_buffer.new_blit_command_encoder();
blit.set_label("blit_to_cpu");
blit.copy_from_buffer(&self.buffer, 0, &buffer, 0, self.buffer.length());
blit.end_encoding();
command_buffer.commit();
}
drop(command_buffer);
self.device.wait_until_completed();
match self.dtype {
@ -332,11 +256,7 @@ impl BackendStorage for MetalStorage {
DType::I64 => Ok(CpuStorage::I64(buffer.read_to_vec(length / size))),
DType::F16 => Ok(CpuStorage::F16(buffer.read_to_vec(length / size))),
DType::BF16 => Ok(CpuStorage::BF16(buffer.read_to_vec(length / size))),
DType::F32 => {
let vec = buffer.read_to_vec(length / size);
// println!("Got back {:?}", &vec[..1]);
Ok(CpuStorage::F32(vec))
}
DType::F32 => Ok(CpuStorage::F32(buffer.read_to_vec(length / size))),
DType::F64 => Ok(CpuStorage::F64(buffer.read_to_vec(length / size))),
}
}
@ -348,7 +268,7 @@ impl BackendStorage for MetalStorage {
let el = shape.elem_count();
let dtype = self.dtype;
let buffer = device.new_buffer(el, self.dtype, "affine");
let buffer = device.new_buffer(el, self.dtype);
let command_buffer = self.device.command_buffer();
if layout.is_contiguous() && layout.start_offset() == 0 {
let name = match self.dtype {
@ -389,111 +309,15 @@ impl BackendStorage for MetalStorage {
)
.map_err(MetalError::from)?;
}
command_buffer.commit();
buffer.did_modify_range(metal::NSRange::new(0, buffer.length()));
Ok(Self::new(buffer, device.clone(), dtype))
}
fn powf(&self, layout: &Layout, pow: f64) -> Result<Self> {
let device = self.device().clone();
let shape = layout.shape();
let el = shape.elem_count();
let dtype = self.dtype;
let buffer = device.new_buffer(el, self.dtype, "powf");
let command_buffer = self.device.command_buffer();
if layout.is_contiguous() && layout.start_offset() == 0 {
let name = match self.dtype {
DType::F32 => "powf_float",
DType::F16 => "powf_half",
dtype => crate::bail!("Powf {dtype:?}"),
};
candle_metal_kernels::call_powf(
&device.device,
&command_buffer,
&device.kernels,
name,
el,
&self.buffer,
&buffer,
pow as f32,
)
.map_err(MetalError::from)?;
} else {
let name = match self.dtype {
DType::F32 => "powf_float_strided",
DType::F16 => "powf_half_strided",
dtype => crate::bail!("Powf {dtype:?}"),
};
candle_metal_kernels::call_powf_strided(
&device.device,
&command_buffer,
&device.kernels,
name,
layout.dims(),
&self.buffer,
layout.stride(),
layout.start_offset() * dtype.size_in_bytes(),
&buffer,
pow as f32,
)
.map_err(MetalError::from)?;
}
command_buffer.commit();
buffer.did_modify_range(metal::NSRange::new(0, buffer.length()));
Ok(Self::new(buffer, device.clone(), dtype))
fn powf(&self, _: &Layout, _: f64) -> Result<Self> {
crate::bail!("powf metal")
}
fn elu(&self, layout: &Layout, alpha: f64) -> Result<Self> {
let device = self.device().clone();
let shape = layout.shape();
let el = shape.elem_count();
let dtype = self.dtype;
let buffer = device.new_buffer(el, self.dtype, "elu");
let command_buffer = self.device.command_buffer();
if layout.is_contiguous() && layout.start_offset() == 0 {
let name = match self.dtype {
DType::F32 => "elu_float",
DType::F16 => "elu_half",
dtype => crate::bail!("Powf {dtype:?}"),
};
candle_metal_kernels::call_elu(
&device.device,
&command_buffer,
&device.kernels,
name,
el,
&self.buffer,
&buffer,
alpha as f32,
)
.map_err(MetalError::from)?;
} else {
let name = match self.dtype {
DType::F32 => "elu_float_strided",
DType::F16 => "elu_half_strided",
dtype => crate::bail!("Powf {dtype:?}"),
};
candle_metal_kernels::call_elu_strided(
&device.device,
&command_buffer,
&device.kernels,
name,
layout.dims(),
&self.buffer,
layout.stride(),
layout.start_offset() * dtype.size_in_bytes(),
&buffer,
alpha as f32,
)
.map_err(MetalError::from)?;
}
command_buffer.commit();
buffer.did_modify_range(metal::NSRange::new(0, buffer.length()));
Ok(Self::new(buffer, device.clone(), dtype))
fn elu(&self, _: &Layout, _: f64) -> Result<Self> {
crate::bail!("elu metal")
}
fn reduce_op(&self, op: ReduceOp, layout: &Layout, sum_dims: &[usize]) -> Result<Self> {
@ -541,7 +365,7 @@ impl BackendStorage for MetalStorage {
if dtype == DType::U32 {
crate::bail!("Implement return index reduce op");
}
let buffer = device.new_buffer(dst_el, dtype, "reduce");
let buffer = device.new_buffer(dst_el, dtype);
let command_buffer = self.device.command_buffer();
candle_metal_kernels::call_reduce_contiguous(
&device.device,
@ -555,8 +379,6 @@ impl BackendStorage for MetalStorage {
&buffer,
)
.map_err(MetalError::from)?;
command_buffer.commit();
buffer.did_modify_range(metal::NSRange::new(0, buffer.length()));
Ok(Self::new(buffer, device, dtype))
}
@ -569,10 +391,9 @@ impl BackendStorage for MetalStorage {
let device = self.device();
let shape = layout.shape();
let el_count = shape.elem_count();
let buffer = device.new_buffer(el_count, dtype, "todtype");
device.wait_until_completed();
let buffer = device.new_buffer(el_count, dtype);
let command_buffer = device.command_buffer();
if layout.is_contiguous() && layout.start_offset() == 0 {
if layout.is_contiguous() {
let kernel_name = match (self.dtype, dtype) {
(DType::U32, DType::F32) => "cast_u32_f32",
(DType::U32, DType::U8) => "cast_u32_u8",
@ -614,10 +435,6 @@ impl BackendStorage for MetalStorage {
)
.map_err(MetalError::from)?;
}
command_buffer.set_label("to_dtype");
command_buffer.commit();
buffer.did_modify_range(metal::NSRange::new(0, buffer.length()));
device.wait_until_completed();
Ok(Self::new(buffer, device.clone(), dtype))
}
@ -627,9 +444,8 @@ impl BackendStorage for MetalStorage {
let dtype = self.dtype;
let shape = layout.shape();
let el_count = shape.elem_count();
let buffer = device.new_buffer(el_count, dtype, B::KERNEL);
let buffer = device.new_buffer(el_count, dtype);
let command_buffer = device.command_buffer();
command_buffer.set_label(B::KERNEL);
if layout.is_contiguous() && layout.start_offset() == 0 {
use candle_metal_kernels::unary::contiguous;
@ -647,7 +463,6 @@ impl BackendStorage for MetalStorage {
("uceil", DType::F32) => contiguous::ceil::FLOAT,
("ufloor", DType::F32) => contiguous::floor::FLOAT,
("uround", DType::F32) => contiguous::round::FLOAT,
("utanh", DType::F32) => contiguous::tanh::FLOAT,
("ucos", DType::F16) => contiguous::cos::HALF,
("usin", DType::F16) => contiguous::sin::HALF,
("usqr", DType::F16) => contiguous::sqr::HALF,
@ -661,7 +476,6 @@ impl BackendStorage for MetalStorage {
("uceil", DType::F16) => contiguous::ceil::HALF,
("ufloor", DType::F16) => contiguous::floor::HALF,
("uround", DType::F16) => contiguous::round::HALF,
("utanh", DType::F16) => contiguous::tanh::HALF,
(name, dtype) => crate::bail!("Match {name} - {dtype:?}"),
};
candle_metal_kernels::call_unary_contiguous(
@ -719,8 +533,9 @@ impl BackendStorage for MetalStorage {
)
.map_err(MetalError::from)?;
}
command_buffer.commit();
buffer.did_modify_range(metal::NSRange::new(0, buffer.length()));
command_buffer.set_label("unary");
drop(command_buffer);
self.device.commit();
Ok(Self::new(buffer, device.clone(), dtype))
}
@ -734,31 +549,30 @@ impl BackendStorage for MetalStorage {
let dtype = self.dtype;
let shape = lhs_l.shape();
let el_count = shape.elem_count();
let buffer = device.new_buffer(el_count, dtype, B::KERNEL);
let buffer = device.new_buffer(el_count, dtype);
let command_buffer = device.command_buffer();
if (lhs_l.is_contiguous() && lhs_l.start_offset() == 0)
&& (rhs_l.is_contiguous() && rhs_l.start_offset() == 0)
&& &B::KERNEL[..1] != "b"
{
use candle_metal_kernels::binary::contiguous;
let kernel_name = match (B::KERNEL, dtype) {
("add", DType::F32) => contiguous::add::FLOAT,
// ("badd", DType::F32) => contiguous::add::FLOAT,
("badd", DType::F32) => contiguous::add::FLOAT,
("sub", DType::F32) => contiguous::sub::FLOAT,
//("bsub", DType::F32) => contiguous::sub::FLOAT,
("bsub", DType::F32) => contiguous::sub::FLOAT,
("mul", DType::F32) => contiguous::mul::FLOAT,
// ("bmul", DType::F32) => contiguous::mul::FLOAT,
("bmul", DType::F32) => contiguous::mul::FLOAT,
("div", DType::F32) => contiguous::div::FLOAT,
// ("bdiv", DType::F32) => contiguous::div::FLOAT,
("bdiv", DType::F32) => contiguous::div::FLOAT,
("add", DType::F16) => contiguous::add::HALF,
// ("badd", DType::F16) => contiguous::add::HALF,
("badd", DType::F16) => contiguous::add::HALF,
("sub", DType::F16) => contiguous::sub::HALF,
// ("bsub", DType::F16) => contiguous::sub::HALF,
("bsub", DType::F16) => contiguous::sub::HALF,
("mul", DType::F16) => contiguous::mul::HALF,
// ("bmul", DType::F16) => contiguous::mul::HALF,
("bmul", DType::F16) => contiguous::mul::HALF,
("div", DType::F16) => contiguous::div::HALF,
// ("bdiv", DType::F16) => contiguous::div::HALF,
("bdiv", DType::F16) => contiguous::div::HALF,
(name, dtype) => crate::bail!("Match {name} - {dtype:?}"),
};
candle_metal_kernels::call_binary_contiguous(
@ -803,8 +617,8 @@ impl BackendStorage for MetalStorage {
.map_err(MetalError::from)?;
}
command_buffer.set_label("binary");
command_buffer.commit();
buffer.did_modify_range(metal::NSRange::new(0, buffer.length()));
drop(command_buffer);
self.device.commit();
Ok(Self::new(buffer, device.clone(), dtype))
}
@ -821,7 +635,7 @@ impl BackendStorage for MetalStorage {
let dims = shape.dims();
let el = shape.elem_count();
let dtype = t.dtype;
let buffer = self.device.new_buffer(el, dtype, "where");
let buffer = self.device.new_buffer(el, dtype);
let command_buffer = self.device.command_buffer();
if t.dtype() != f.dtype() {
crate::bail!("Invalid ternary different dtypes for values");
@ -849,8 +663,6 @@ impl BackendStorage for MetalStorage {
&buffer,
)
.map_err(MetalError::from)?;
command_buffer.commit();
buffer.did_modify_range(metal::NSRange::new(0, buffer.length()));
Ok(Self::new(buffer, device, dtype))
}
@ -940,7 +752,7 @@ impl BackendStorage for MetalStorage {
let dst_el = ids_el * left_size * right_size;
let dtype = self.dtype;
let device = self.device();
let buffer = device.new_buffer(dst_el, dtype, "index_select");
let buffer = device.new_buffer(dst_el, dtype);
let name = match (ids.dtype, self.dtype) {
(DType::U32, DType::F32) => "is_u32_f32",
(DType::U32, DType::F16) => "is_u32_f16",
@ -960,8 +772,6 @@ impl BackendStorage for MetalStorage {
&buffer,
)
.map_err(MetalError::from)?;
command_buffer.commit();
buffer.did_modify_range(metal::NSRange::new(0, buffer.length()));
Ok(Self::new(buffer, device.clone(), dtype))
}
@ -985,117 +795,54 @@ impl BackendStorage for MetalStorage {
rhs_l: &Layout,
) -> Result<Self> {
// Create descriptors
let (type_id, size) = match self.dtype {
DType::F32 => (
metal::mps::MPS_FLOATBIT_ENCODING | 32,
core::mem::size_of::<f32>() as NSUInteger,
),
DType::F16 => (
metal::mps::MPS_FLOATBIT_ENCODING | 16,
core::mem::size_of::<f16>() as NSUInteger,
),
dtype => todo!("Dtype for matmul {dtype:?} is not supported"),
};
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
let rhs_m2 = rhs_stride[rhs_stride.len() - 2];
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
// The a tensor has dims batching, k, n (rhs)
let transpose_left = if lhs_m1 == 1 && lhs_m2 == k {
false
} else if lhs_m1 == m && lhs_m2 == 1 {
true
} else {
Err(MetalError::MatMulNonContiguous {
lhs_stride: lhs_stride.to_vec(),
rhs_stride: rhs_stride.to_vec(),
mnk: (m, n, k),
})?
let buffer = self.device.new_buffer(b * m * n, self.dtype);
let name = match self.dtype {
DType::F32 => "sgemm",
DType::F16 => "hgemm",
dtype => {
return Err(MetalError::Message(format!("matmul doesn't support {dtype:?}")).into())
}
};
let transpose_right = if rhs_m1 == 1 && rhs_m2 == n {
false
} else if rhs_m1 == k && rhs_m2 == 1 {
true
} else {
Err(MetalError::MatMulNonContiguous {
lhs_stride: lhs_stride.to_vec(),
rhs_stride: rhs_stride.to_vec(),
mnk: (m, n, k),
})?
};
let b = b as NSUInteger;
let m = m as NSUInteger;
let n = n as NSUInteger;
let k = k as NSUInteger;
let left_matrix = self.matrix(
(b, m, k),
transpose_left,
size,
lhs_l.start_offset() as NSUInteger * size,
type_id,
)?;
let right_matrix = rhs.matrix(
(b, k, n),
transpose_right,
size,
rhs_l.start_offset() as NSUInteger * size,
type_id,
)?;
let (result_matrix, out_buffer) =
self.device
.new_matrix((b, m, n), size, type_id, self.dtype)?;
let command_buffer = self.device.command_buffer();
command_buffer.set_label("matmul");
let alpha = 1.0f64;
// let beta = f64::MIN;
let beta = 1.0;
// Create kernel
let matrix_multiplication = MatrixMultiplication::init(
&self.device,
transpose_left,
transpose_right,
m,
n,
k,
alpha,
beta,
)
.ok_or_else(|| {
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
matrix_multiplication.set_batch_size(b);
matrix_multiplication.set_batch_start(0);
// Encode kernel to command buffer
matrix_multiplication.encode_to_command_buffer(
candle_metal_kernels::call_gemm(
&self.device.device,
&command_buffer,
&left_matrix,
&right_matrix,
&result_matrix,
);
command_buffer.commit();
out_buffer.did_modify_range(metal::NSRange::new(0, out_buffer.length()));
// println!("========= MATMUL {:?}", Arc::strong_count(&out_buffer));
Ok(Self::new(out_buffer, self.device.clone(), self.dtype()))
&self.device.kernels,
name,
(b, m, n, k),
&lhs_l.stride(),
lhs_l.start_offset(),
&self.buffer,
&rhs_l.stride(),
rhs_l.start_offset(),
&rhs.buffer,
&buffer,
)
.map_err(MetalError::from)?;
// Create kernel
drop(command_buffer);
self.device.commit();
Ok(Self::new(buffer, self.device.clone(), self.dtype()))
}
fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> {
let command_buffer = self.device.command_buffer();
// println!("Copy strided");
if src_l.is_contiguous() && self.dtype == dst.dtype() {
command_buffer.set_label("copy_contiguous");
let blit = command_buffer.new_blit_command_encoder();
blit.set_label("copy_contiguous");
let src_offset = (src_l.start_offset() * self.dtype.size_in_bytes()) as NSUInteger;
let length = (src_l.shape().elem_count() * self.dtype.size_in_bytes()) as NSUInteger;
let dst_offset = (dst_offset * dst.dtype().size_in_bytes()) as NSUInteger;
blit.copy_from_buffer(&self.buffer, src_offset, dst.buffer(), dst_offset, length);
blit.copy_from_buffer(
&self.buffer,
src_offset,
dst.buffer(),
dst_offset,
self.buffer.length() - src_offset,
);
blit.end_encoding();
} else {
let src_shape = src_l.shape();
@ -1126,7 +873,8 @@ impl BackendStorage for MetalStorage {
.map_err(MetalError::from)?;
command_buffer.set_label("copy_strided");
}
command_buffer.commit();
drop(command_buffer);
self.device.commit();
Ok(())
}
}
@ -1156,10 +904,10 @@ impl MetalStorage {
) -> Result<Matrix> {
let key = (b, m, n, transpose, size, offset, type_id);
// let mut matrices = self.matrices.try_write().unwrap();
// if let Some(matrix) = matrices.get(&key) {
// Ok(matrix.clone())
// } else {
let mut matrices = self.matrices.try_write().unwrap();
if let Some(matrix) = matrices.get(&key) {
Ok(matrix.clone())
} else {
let descriptor = if transpose {
MatrixDescriptor::init_multiple(n, m, b, m * size, m * n * size, type_id)
} else {
@ -1169,9 +917,9 @@ impl MetalStorage {
.ok_or_else(|| {
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
// matrices.insert(key, matrix.clone());
matrices.insert(key, matrix.clone());
Ok(matrix)
// }
}
}
}
@ -1179,29 +927,16 @@ impl BackendDevice for MetalDevice {
type Storage = MetalStorage;
fn new(ordinal: usize) -> Result<Self> {
// println!("CREATING DEVICE");
let device = metal::Device::all().swap_remove(ordinal);
let n = 64;
let command_queue = device.new_command_queue();
let command_buffers = (0..n)
.map(|i| {
let command_buffer = command_queue.new_command_buffer().to_owned();
command_buffer.enqueue();
command_buffer.set_label(&format!("num {i}"));
command_buffer
})
.collect();
let command_buffers = Arc::new(RwLock::new(command_buffers));
let command_buffer_index = Arc::new(RwLock::new(0));
let command_buffer = Arc::new(RwLock::new(command_queue.new_command_buffer().to_owned()));
let kernels = Arc::new(Kernels::new());
let buffers = Arc::new(RwLock::new(HashMap::new()));
Ok(Self {
device,
command_queue,
command_buffers,
command_buffer_index,
command_buffer,
buffers,
kernels,
})
@ -1222,21 +957,7 @@ impl BackendDevice for MetalDevice {
}
fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<MetalStorage> {
let buffer = self.new_buffer(shape.elem_count(), dtype, "zeros");
let command_buffer = self.command_buffer();
command_buffer.set_label("zeros");
let blit = command_buffer.new_blit_command_encoder();
blit.fill_buffer(
&buffer,
metal::NSRange {
location: 0,
length: buffer.length(),
},
0,
);
blit.end_encoding();
command_buffer.commit();
buffer.did_modify_range(metal::NSRange::new(0, buffer.length()));
let buffer = self.new_buffer(shape.elem_count(), dtype);
Ok(MetalStorage::new(buffer, self.clone(), dtype))
}

View File

@ -1864,7 +1864,7 @@ impl Tensor {
}
(Storage::Cuda(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
(Storage::Metal(storage), Device::Cpu) => {
// println!("{storage:?} - {:?}", storage.to_cpu_storage()?);
println!("{storage:?} - {:?}", storage.to_cpu_storage()?);
Storage::Cpu(storage.to_cpu_storage()?)
}
(Storage::Cuda(storage), Device::Cuda(cuda)) => {

View File

@ -29,7 +29,9 @@ kernel void FN_NAME( \
if (id >= dim) { \
return; \
} \
output[id] = TYPENAME(float(input[id]) * mul + add); \
const TYPENAME m = TYPENAME(mul); \
const TYPENAME a = TYPENAME(add); \
output[id] = input[id] * m + a; \
} \
kernel void FN_NAME##_strided( \
constant size_t &dim, \
@ -45,80 +47,15 @@ kernel void FN_NAME##_strided( \
if (id >= dim) { \
return; \
} \
output[id] = TYPENAME(float(input[get_strided_index(id, num_dims, dims, strides)]) * mul + add); \
}
#define POWF(FN_NAME, TYPENAME) \
kernel void FN_NAME( \
constant size_t &dim, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
output[id] = TYPENAME(pow(input[id], TYPENAME(mul))); \
const TYPENAME m = TYPENAME(mul); \
const TYPENAME a = TYPENAME(add); \
output[id] = input[get_strided_index(id, num_dims, dims, strides)] * m + a; \
} \
kernel void FN_NAME##_strided( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
output[id] = TYPENAME(pow(input[get_strided_index(id, num_dims, dims, strides)], TYPENAME(mul))); \
}
#define ELU(FN_NAME, TYPENAME) \
kernel void FN_NAME( \
constant size_t &dim, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
const TYPENAME x = input[id]; \
output[id] = TYPENAME((x > 0)?x: mul * exp(x - 1)); \
} \
kernel void FN_NAME##_strided( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
const TYPENAME x = input[get_strided_index(id, num_dims, dims, strides)]; \
output[id] = TYPENAME((x > 0)?x: mul * exp(x - 1)); \
} \
AFFINE(affine_float, float)
AFFINE(affine_half, half)
POWF(powf_float, float)
POWF(powf_half, half)
ELU(elu_float, float)
ELU(elu_half, half)
#if __METAL_VERSION__ >= 310
AFFINE(affine_bfloat, bfloat);
POWF(powf_bfloat, bfloat);
ELU(elu_bfloat, bfloat);
#endif

View File

@ -1,6 +1,6 @@
use metal::{
Buffer, CommandBufferRef, CompileOptions, ComputeCommandEncoderRef, ComputePipelineState,
Device, Function, Library, MTLSize,
Device, Function, FunctionConstantValues, Library, MTLDataType, MTLSize, NSUInteger,
};
use std::collections::HashMap;
use std::ffi::c_void;
@ -13,6 +13,7 @@ const BINARY: &str = include_str!("binary.metal");
const TERNARY: &str = include_str!("ternary.metal");
const CAST: &str = include_str!("cast.metal");
const REDUCE: &str = include_str!("reduce.metal");
const MFA: &[u8] = include_bytes!("libMetalFlashAttention.metallib");
fn linear_split(pipeline: &ComputePipelineState, length: usize) -> (MTLSize, MTLSize) {
let size = length as u64;
@ -105,6 +106,7 @@ pub enum Source {
Ternary,
Cast,
Reduce,
Mfa,
}
macro_rules! ops{
@ -153,7 +155,7 @@ macro_rules! ops{
}
pub mod unary {
ops!(cos, sin, exp, sqr, sqrt, neg, log, gelu, ceil, floor, round, erf, gelu_erf, tanh);
ops!(cos, sin, exp, sqr, sqrt, neg, log, gelu, ceil, floor, round, erf, gelu_erf);
}
pub mod binary {
ops!(add, sub, mul, div);
@ -179,9 +181,88 @@ impl<T> From<std::sync::PoisonError<T>> for MetalKernelError {
}
}
type KernelMap<T> = HashMap<&'static str, T>;
#[derive(Debug, PartialEq)]
pub enum Value {
USize(usize),
Bool(bool),
F32(f32),
U16(u16),
}
impl std::hash::Hash for Value {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
match self {
Value::F32(v) => v.to_bits().hash(state),
Value::USize(v) => v.hash(state),
Value::U16(v) => v.hash(state),
Value::Bool(v) => v.hash(state),
}
}
}
impl Value {
fn data_type(&self) -> MTLDataType {
match self {
Value::USize(_) => MTLDataType::UInt,
Value::F32(_) => MTLDataType::Float,
Value::U16(_) => MTLDataType::UShort,
Value::Bool(_) => MTLDataType::Bool,
}
}
}
/// Not true, good enough for our purposes.
impl Eq for Value {}
#[derive(Debug, Eq, PartialEq, Hash)]
struct ConstantValues(Vec<(usize, Value)>);
impl ConstantValues {
pub fn new(values: Vec<(usize, Value)>) -> Self {
Self(values)
}
fn function_constant_values(&self) -> FunctionConstantValues {
let f = FunctionConstantValues::new();
for (index, value) in &self.0 {
let ty = value.data_type();
match value {
Value::USize(v) => {
f.set_constant_value_at_index(
v as *const usize as *const c_void,
ty,
*index as u64,
);
}
Value::F32(v) => {
f.set_constant_value_at_index(
v as *const f32 as *const c_void,
ty,
*index as u64,
);
}
Value::U16(v) => {
f.set_constant_value_at_index(
v as *const u16 as *const c_void,
ty,
*index as u64,
);
}
Value::Bool(v) => {
f.set_constant_value_at_index(
v as *const bool as *const c_void,
ty,
*index as u64,
);
}
}
}
f
}
}
type Libraries = HashMap<Source, Library>;
type Pipelines = KernelMap<ComputePipelineState>;
type Pipelines = HashMap<(&'static str, Option<ConstantValues>), ComputePipelineState>;
#[derive(Debug, Default)]
pub struct Kernels {
@ -208,6 +289,7 @@ impl Kernels {
Source::Indexing => INDEXING,
Source::Cast => CAST,
Source::Reduce => REDUCE,
Source::Mfa => unimplemented!("Mfa is not a source"),
}
}
@ -220,10 +302,20 @@ impl Kernels {
if let Some(lib) = libraries.get(&source) {
Ok(lib.clone())
} else {
let lib = match source {
Source::Mfa => {
let source_data = MFA;
device
.new_library_with_data(source_data)
.map_err(|e| MetalKernelError::LoadLibraryError(e.to_string()))?
}
source => {
let source_content = self.get_library_source(source);
let lib = device
device
.new_library_with_source(source_content, &CompileOptions::new())
.map_err(|e| MetalKernelError::LoadLibraryError(e.to_string()))?;
.map_err(|e| MetalKernelError::LoadLibraryError(e.to_string()))?
}
};
libraries.insert(source, lib.clone());
Ok(lib)
}
@ -234,19 +326,41 @@ impl Kernels {
device: &Device,
source: Source,
name: &'static str,
constants: Option<FunctionConstantValues>,
) -> Result<Function, MetalKernelError> {
let func = self
.load_library(device, source)?
.get_function(name, None)
.get_function(name, constants)
.map_err(|e| MetalKernelError::LoadFunctionError(e.to_string()))?;
Ok(func)
// let mut funcs = self.funcs.write()?;
// if let Some(func) = funcs.get(name) {
// Ok(func.clone())
// } else {
// funcs.insert(name, func.clone());
// Ok(func)
// }
}
fn load_pipeline_with_constants(
&self,
device: &Device,
source: Source,
name: &'static str,
constants: Option<ConstantValues>,
) -> Result<ComputePipelineState, MetalKernelError> {
let mut pipelines = self.pipelines.write()?;
let key = (name, constants);
if let Some(pipeline) = pipelines.get(&key) {
Ok(pipeline.clone())
} else {
let (name, constants) = key;
let func = self.load_function(
device,
source,
name,
constants.as_ref().map(|c| c.function_constant_values()),
)?;
let pipeline = device
.new_compute_pipeline_state_with_function(&func)
.map_err(|e| MetalKernelError::FailedToCreatePipeline(e.to_string()))?;
pipelines.insert((name, constants), pipeline.clone());
Ok(pipeline)
}
}
pub fn load_pipeline(
@ -255,18 +369,7 @@ impl Kernels {
source: Source,
name: &'static str,
) -> Result<ComputePipelineState, MetalKernelError> {
let mut pipelines = self.pipelines.write()?;
if let Some(pipeline) = pipelines.get(name) {
Ok(pipeline.clone())
} else {
let func = self.load_function(device, source, name)?;
let pipeline = device
.new_compute_pipeline_state_with_function(&func)
.map_err(|e| MetalKernelError::FailedToCreatePipeline(e.to_string()))?;
pipelines.insert(name, pipeline.clone());
Ok(pipeline)
}
self.load_pipeline_with_constants(device, source, name, None)
}
}
@ -616,130 +719,6 @@ pub fn call_affine_strided(
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_powf(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
size: usize,
input: &Buffer,
output: &Buffer,
mul: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (size, mul, input, output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_powf_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
input: &Buffer,
input_stride: &[usize],
input_offset: usize,
output: &Buffer,
mul: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let size: usize = shape.iter().product();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
size,
shape.len(),
shape,
input_stride,
mul,
(input, input_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_elu(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
size: usize,
input: &Buffer,
output: &Buffer,
mul: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (size, mul, input, output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_elu_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
input: &Buffer,
input_stride: &[usize],
input_offset: usize,
output: &Buffer,
mul: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let size: usize = shape.iter().product();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
size,
shape.len(),
shape,
input_stride,
mul,
(input, input_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
pub fn call_where_cond_strided(
device: &Device,
command_buffer: &CommandBufferRef,
@ -830,5 +809,169 @@ pub fn call_index_select(
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_gemm(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
(b, m, n, k): (usize, usize, usize, usize),
lhs_stride: &[usize],
lhs_offset: usize,
lhs_buffer: &Buffer,
rhs_stride: &[usize],
rhs_offset: usize,
rhs_buffer: &Buffer,
output: &Buffer,
) -> Result<(), MetalKernelError> {
assert!(rhs_stride.len() >= 2);
assert!(lhs_stride.len() >= 2);
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
let rhs_m2 = rhs_stride[rhs_stride.len() - 2];
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
let a_trans = if lhs_m1 == 1 && lhs_m2 == k {
false
} else if lhs_m1 == m && lhs_m2 == 1 {
true
} else {
todo!();
// Err(MetalError::MatMulNonContiguous {
// lhs_stride: lhs_stride.to_vec(),
// rhs_stride: rhs_stride.to_vec(),
// mnk: (m, n, k),
// })?
};
let b_trans = if rhs_m1 == 1 && rhs_m2 == n {
false
} else if rhs_m1 == k && rhs_m2 == 1 {
true
} else {
todo!();
// Err(MetalError::MatMulNonContiguous {
// lhs_stride: lhs_stride.to_vec(),
// rhs_stride: rhs_stride.to_vec(),
// mnk: (m, n, k),
// })?
};
let d_trans = false;
let alpha = 1.0f32;
let beta = 0.0f32;
let batched = b > 1;
let fused_activation = false;
let fused_bias = false;
let m_simd = 16;
let n_simd = 16;
let k_simd = 16;
let m_splits = 2;
let n_splits = 2;
let constants = Some(ConstantValues::new(vec![
(0, Value::USize(m)),
(1, Value::USize(n)),
(2, Value::USize(k)),
(10, Value::Bool(a_trans)),
(11, Value::Bool(b_trans)),
(13, Value::Bool(d_trans)),
(20, Value::F32(alpha)),
(21, Value::F32(beta)),
(100, Value::Bool(batched)),
(101, Value::Bool(fused_activation)),
// Garbage
(102, Value::Bool(false)),
(103, Value::Bool(false)),
(113, Value::Bool(false)),
(50_000, Value::Bool(false)),
// End garbage
(200, Value::U16(m_simd)),
(201, Value::U16(n_simd)),
(202, Value::U16(k_simd)),
(210, Value::U16(m_splits)),
(211, Value::U16(n_splits)),
(50_001, Value::Bool(fused_bias)),
]));
// println!("Constants {constants:?}");
let pipeline = kernels.load_pipeline_with_constants(device, Source::Mfa, name, constants)?;
let m_group = m_simd * m_splits;
let n_group = n_simd * n_splits;
let a_block_length = m_group * k_simd;
let b_block_length = k_simd * n_group;
let mut block_elements = a_block_length + b_block_length;
if (m % 8 != 0) && (n % 8 != 0) {
let c_block_length = m_group * n_group;
block_elements = std::cmp::max(c_block_length, block_elements)
}
if fused_bias {
if d_trans {
block_elements = std::cmp::max(block_elements, m_group);
} else {
block_elements = std::cmp::max(block_elements, n_group);
}
}
// TODO adapt for f16
let bytes = match name {
"sgemm" => 4,
"hgemm" => 2,
other => {
return Err(MetalKernelError::LoadLibraryError(format!(
"{other} is not a valid kernel for gemm"
)));
}
};
let block_bytes = block_elements * bytes;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
// println!("Threadgroup {block_bytes}");
encoder.set_threadgroup_memory_length(0, block_bytes.into());
encoder.set_buffer(0, Some(lhs_buffer), lhs_offset as NSUInteger);
encoder.set_buffer(1, Some(rhs_buffer), rhs_offset as NSUInteger);
encoder.set_buffer(2, Some(output), 0);
// TODO Tensor D
let grid_z = b;
if batched {
let byte_stride_a: usize = lhs_stride[lhs_stride.len() - 3] * bytes as usize;
let byte_stride_b: usize = rhs_stride[rhs_stride.len() - 3] * bytes as usize;
let byte_stride_c = m * n * bytes as usize;
// TODO byte_stride_d
let byte_stride_d = 0;
let mut buffer: Vec<u64> = Vec::with_capacity(b * 4);
for i in 0..b {
buffer.push((i * byte_stride_a) as u64);
buffer.push((i * byte_stride_b) as u64);
buffer.push((i * byte_stride_c) as u64);
buffer.push((i * byte_stride_d) as u64);
}
encoder.set_bytes(
10,
buffer.len() as NSUInteger * core::mem::size_of::<u64>(),
buffer.as_ptr() as *const NSUInteger as *const c_void,
);
}
let grid_size = MTLSize {
width: divide(n, n_group.into()),
height: divide(m, m_group.into()),
depth: grid_z as NSUInteger,
};
let group_size = MTLSize {
width: 32 * (m_splits as u64) * (n_splits as u64),
height: 1,
depth: 1,
};
// println!("grid size {grid_size:?} group size {group_size:?}");
encoder.dispatch_thread_groups(grid_size, group_size);
encoder.end_encoding();
Ok(())
}
fn divide(m: usize, b: usize) -> NSUInteger {
((m + b - 1) / b) as NSUInteger
}
#[cfg(test)]
mod tests;

View File

@ -18,7 +18,7 @@ METAL_FUNC uint get_strided_index(
return strided_i;
}
constant int THREADGROUP_SIZE = 2048;
constant int THREADGROUP_SIZE = 1024;
# define REDUCE(FN, NAME, T) \
kernel void NAME( \

View File

@ -0,0 +1,211 @@
import Metal
import MetalPerformanceShadersGraph
let type = MTLDataType.float;
let dataType = type;
var B = 2;
var M = 2;
var N = 4;
var K = 3;
var A_trans = false;
var B_trans = false;
var D_trans = false;
var alpha = Float(1.0);
var beta = Float(0.0);
var batched = B > 1;
var fused_activation = false;
var fused_bias = false;
let constants = MTLFunctionConstantValues()
constants.setConstantValue(&M, type: .uint, index: 0)
constants.setConstantValue(&N, type: .uint, index: 1)
constants.setConstantValue(&K, type: .uint, index: 2)
constants.setConstantValue(&A_trans, type: .bool, index: 10)
constants.setConstantValue(&B_trans, type: .bool, index: 11)
constants.setConstantValue(&D_trans, type: .bool, index: 13)
constants.setConstantValue(&alpha, type: .float, index: 20)
constants.setConstantValue(&beta, type: .float, index: 21)
constants.setConstantValue(&batched, type: .bool, index: 100)
constants.setConstantValue(&fused_activation, type: .bool, index: 101)
constants.setConstantValue(&fused_bias, type: .bool, index: 50001)
var M_simd = UInt16(16)
var N_simd = UInt16(16)
var K_simd = UInt16(32)
var M_splits = UInt16(2)
var N_splits = UInt16(2)
constants.setConstantValue(&M_simd, type: .ushort, index: 200)
constants.setConstantValue(&N_simd, type: .ushort, index: 201)
constants.setConstantValue(&K_simd, type: .ushort, index: 202)
constants.setConstantValue(&M_splits, type: .ushort, index: 210)
constants.setConstantValue(&N_splits, type: .ushort, index: 211)
let M_group = M_simd * M_splits
let N_group = N_simd * N_splits
// Satisfy Metal API validation.
#if DEBUG
do {
var garbage: SIMD4<UInt64> = .zero
constants.setConstantValue(&garbage, type: .bool, index: 102)
constants.setConstantValue(&garbage, type: .bool, index: 103)
constants.setConstantValue(&garbage, type: .bool, index: 113)
constants.setConstantValue(&garbage, type: .bool, index: 50000)
}
#endif
print(constants)
let device = MTLCopyAllDevices().first!
device.shouldMaximizeConcurrentCompilation = true
var libraryURL = URL.init(string: "/Users/nicolas/src/candle/candle-metal-kernels/")!;
libraryURL.append(component: "src")
libraryURL.append(component: "libMetalFlashAttention.metallib")
let library = try! device.makeLibrary(URL: libraryURL)
var name: String
switch dataType {
case .half: name = "hgemm"
case .float: name = "sgemm"
default: fatalError()
}
let function = try! library.makeFunction(
name: name, constantValues: constants)
let A_block_length = M_group * K_simd
let B_block_length = K_simd * N_group
var blockElements = A_block_length + B_block_length;
if (M % 8 != 0) && (N % 8 != 0) {
let C_block_length = M_group * N_group;
blockElements = max(C_block_length, blockElements)
}
if fused_bias {
if D_trans {
blockElements = max(blockElements, M_group)
} else {
blockElements = max(blockElements, N_group)
}
}
// let blockBytes = blockElements * UInt16(dataType.size)
let elementSize = 4
let blockBytes = blockElements * UInt16(elementSize)
func ceilDivide(target: Int, granularity: UInt16) -> Int {
(target + Int(granularity) - 1) / Int(granularity)
}
var gridSize = MTLSize(
width: ceilDivide(target: N, granularity: N_group),
height: ceilDivide(target: M, granularity: M_group),
depth: 1)
let groupSize = MTLSize(
width: Int(32 * M_splits * N_splits),
height: 1,
depth: 1)
let commandQueue = device.makeCommandQueue()!
let commandBuffer = commandQueue.makeCommandBuffer()!
let encoder = commandBuffer.makeComputeCommandEncoder(dispatchType: MTLDispatchType.serial)!
let pipeline = try device.makeComputePipelineState(function: function)
let threadgroupMemoryLength = blockBytes;
print(threadgroupMemoryLength)
encoder.setComputePipelineState(pipeline)
encoder.setThreadgroupMemoryLength(Int(threadgroupMemoryLength), index: 0)
let rowsA = M;
let columnsA = K;
let rowsB = K;
let columnsB = N;
let rowsC = M;
let columnsC = N;
var arrayA = [Float](repeating: 0, count: B * rowsA * columnsA)
var arrayB = [Float](repeating: 0, count: B * rowsB * columnsB)
var arrayC = [Float](repeating: 0, count: B * rowsC * columnsC)
for i in 0..<arrayA.count {
arrayA[i] = Float(i)
}
for i in 0..<arrayB.count {
arrayB[i] = Float(i)
}
let bufferA = device.makeBuffer(bytes: arrayA, length: B * rowsA * columnsA * MemoryLayout<Float>.stride, options: [])
let bufferB = device.makeBuffer(bytes: arrayB, length: B * rowsB * columnsB * MemoryLayout<Float>.stride, options: [])
let bufferC = device.makeBuffer(length: B * rowsC * columnsC * MemoryLayout<Float>.stride, options: [])
print(arrayA)
print(arrayB)
encoder.setBuffer(bufferA, offset: 0, index: 0)
encoder.setBuffer(bufferB, offset: 0, index: 1)
encoder.setBuffer(bufferC, offset: 0, index: 2)
var gridZ: Int = B
if batched{
func byteStride(shape: [Int]) -> Int {
let rank = shape.count
var output = elementSize * shape[rank - 2] * shape[rank - 1]
if shape.dropLast(2).reduce(1, *) == 1 {
output = 0
}
return output
}
let byteStrideA = M*K*elementSize
let byteStrideB = N*K*elementSize
let byteStrideC = M*N*elementSize
let byteStrideD = 0
// if let shapeD = tensors.d?.shape {
// let rank = shapeD.count
// byteStrideD = elementSize * shapeD[rank - 1]
// if shapeD.dropLast(1).reduce(1, *) == 1 {
// byteStrideD = 0
// }
// }
withUnsafeTemporaryAllocation(
of: SIMD4<UInt64>.self, capacity: gridZ
) { buffer in
for i in 0..<buffer.count {
buffer[i] = SIMD4(
UInt64(truncatingIfNeeded: i * byteStrideA),
UInt64(truncatingIfNeeded: i * byteStrideB),
UInt64(truncatingIfNeeded: i * byteStrideC),
UInt64(truncatingIfNeeded: i * byteStrideD))
}
let bufferLength = buffer.count * MemoryLayout<SIMD4<UInt64>>.stride
assert(MemoryLayout<SIMD4<UInt64>>.stride == 8 * 4)
encoder.setBytes(buffer.baseAddress!, length: bufferLength, index: 10)
print("BATCHED")
print(buffer)
}
}
gridSize.depth = gridZ
print(gridSize, groupSize)
encoder.dispatchThreadgroups(
gridSize, threadsPerThreadgroup: groupSize
)
encoder.endEncoding()
commandBuffer.commit()
commandBuffer.waitUntilCompleted()
var contents = bufferC!.contents();
var count = B * rowsA * columnsB;
var typedPointer = contents.bindMemory(to: Float.self, capacity: count)
var bufferedPointer = UnsafeBufferPointer(start: typedPointer, count: count)
print(Array(bufferedPointer))

View File

@ -205,25 +205,6 @@ fn cos_strided_random() {
);
}
#[test]
fn gelu_f16() {
let v: Vec<f16> = [-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0]
.iter()
.map(|v| f16::from_f32(*v))
.collect();
let expected: Vec<f32> = vec![-0.0, -0.16, 0.0, 0.84, 1.96, 3.0, 10.0, 20.0];
let results = run(&v, unary::contiguous::gelu::HALF);
assert_eq!(approx_f16(results, 2), expected);
}
#[test]
fn gelu_f32() {
let v: Vec<f32> = vec![-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0];
let expected: Vec<f32> = vec![-0.0, -0.159, 0.0, 0.841, 1.955, 2.996, 10.0, 20.0];
let results = run(&v, unary::contiguous::gelu::FLOAT);
assert_eq!(approx(results, 3), expected);
}
#[test]
fn binary_add_f32() {
let left = vec![1.0f32, 2.0, 3.0];
@ -546,8 +527,8 @@ fn cos_f16() {
.collect();
let results = run(&v, unary::contiguous::cos::HALF);
let expected: Vec<f16> = v.iter().map(|v| f16::from_f32(v.to_f32().cos())).collect();
assert_eq!(approx_f16(results, 2), vec![0.54, -0.42, -0.99]);
assert_eq!(approx_f16(expected, 2), vec![0.54, -0.42, -0.99]);
assert_eq!(approx_f16(results, 4), vec![0.5405, -0.4163, -0.9902]);
assert_eq!(approx_f16(expected, 4), vec![0.5405, -0.4163, -0.9902]);
}
fn run_reduce<T: Clone>(v: &[T], out_length: usize, name: &'static str) -> Vec<T> {
@ -744,3 +725,76 @@ fn where_cond() {
);
assert_eq!(approx(results, 4), vec![-1.0f32, 2.0, -3.0, -4.0, 5.0, 6.0]);
}
fn run_gemm<T: Clone>(
(b, m, n, k): (usize, usize, usize, usize),
lhs: &[T],
lhs_stride: Vec<usize>,
rhs: &[T],
rhs_stride: Vec<usize>,
) -> Vec<T> {
let device = device();
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let options = MTLResourceOptions::StorageModeManaged;
let lhs = device.new_buffer_with_data(
lhs.as_ptr() as *const core::ffi::c_void,
std::mem::size_of_val(lhs) as u64,
options,
);
let rhs = device.new_buffer_with_data(
rhs.as_ptr() as *const core::ffi::c_void,
std::mem::size_of_val(rhs) as u64,
options,
);
let length = b * m * n;
let output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options);
call_gemm(
&device,
command_buffer,
&kernels,
"sgemm",
(b, m, n, k),
&lhs_stride,
0,
&lhs,
&rhs_stride,
0,
&rhs,
&output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
output.read_to_vec::<T>(length)
}
#[test]
fn gemm() {
let (b, m, n, k) = (1, 2, 4, 3);
let lhs_stride = vec![m * k, k, 1];
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
let rhs_stride = vec![n * k, n, 1];
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
let results = run_gemm((b, m, n, k), &lhs, lhs_stride, &rhs, rhs_stride);
assert_eq!(
approx(results, 4),
vec![20.0, 23.0, 26.0, 29.0, 56.0, 68.0, 80.0, 92.0]
);
let (b, m, n, k) = (2, 2, 4, 3);
let lhs_stride = vec![m * k, k, 1];
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
let rhs_stride = vec![n * k, n, 1];
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
let results = run_gemm((b, m, n, k), &lhs, lhs_stride, &rhs, rhs_stride);
assert_eq!(
approx(results, 4),
vec![
20.0, 23.0, 26.0, 29.0, 56.0, 68.0, 80.0, 92.0, 344.0, 365.0, 386.0, 407.0, 488.0,
518.0, 548.0, 578.0
]
);
}

View File

@ -42,14 +42,9 @@ template <typename T> METAL_FUNC T erf(T in){
return T(sign*y);
}
template <typename T> METAL_FUNC T id(T in) { return in; }
template <typename T> METAL_FUNC T gelu_erf(T x) {
return T(x * (1 + erf(x * M_SQRT1_2_F)) / 2);
}
template <typename T> METAL_FUNC T gelu(T x) {
if (x > 5) {
return x;
}
template <typename T> METAL_FUNC T id(T in){ return in; }
template <typename T> METAL_FUNC T gelu_erf(T x){ return T(x * (1 + erf(x * M_SQRT1_2_F)) / 2); }
template <typename T> METAL_FUNC T gelu(T x){
T x_sq = x * x;
T x_cube = x_sq * x;
T alpha = x + static_cast<T>(0.044715) * x_cube;
@ -69,7 +64,7 @@ kernel void FN_NAME( \
if (thread_position_in_grid >= dim) { \
return; \
} \
output[thread_position_in_grid] = TYPENAME(FN(float(input[thread_position_in_grid]))); \
output[thread_position_in_grid] = TYPENAME(FN(input[thread_position_in_grid])); \
}\
kernel void FN_NAME_STRIDED( \
constant size_t &dim, \
@ -83,7 +78,7 @@ kernel void FN_NAME_STRIDED( \
if (thread_position_in_grid >= dim) { \
return; \
} \
output[thread_position_in_grid] = TYPENAME(FN(float(input[get_strided_index(thread_position_in_grid, num_dims, dims, strides)]))); \
output[thread_position_in_grid] = TYPENAME(FN(input[get_strided_index(thread_position_in_grid, num_dims, dims, strides)])); \
}
#define UNARY_OP(NAME) \
@ -107,7 +102,6 @@ UNARY_OP(floor)
UNARY_OP(round)
UNARY_OP(gelu_erf)
UNARY_OP(erf)
UNARY_OP(tanh)
UNARY(id, float, copy_float, copy_float_strided)
UNARY(id, half, copy_half, copy_half_strided)
UNARY(id, uint8_t, copy_u8, copy_u8_strided)
@ -127,7 +121,6 @@ BFLOAT_UNARY_OP(floor)
BFLOAT_UNARY_OP(round)
BFLOAT_UNARY_OP(gelu_erf)
BFLOAT_UNARY_OP(erf)
BFLOAT_UNARY_OP(tanh)
UNARY(id, bfloat, copy_bfloat, copy_bfloat_strided)
#endif

View File

@ -19,7 +19,6 @@ num-traits = { workspace = true }
rayon = { workspace = true }
safetensors = { workspace = true }
serde = { workspace = true }
metal = { workspace = true, optional = true }
candle-metal-kernels = { path = "../candle-metal-kernels", version = "0.3.0", optional = true }
[dev-dependencies]
@ -31,4 +30,4 @@ default = []
accelerate = ["dep:accelerate-src", "candle/accelerate"]
cuda = ["candle/cuda"]
mkl = ["dep:intel-mkl-src", "candle/mkl"]
metal = ["candle/metal", "dep:candle-metal-kernels", "dep:metal"]
metal = ["candle/metal", "dep:candle-metal-kernels"]

View File

@ -226,7 +226,7 @@ impl candle::CustomOp1 for SoftmaxLastDim {
let last_dim = layout.dims()[layout.shape().rank() - 1];
let elem_count = layout.shape().elem_count();
let mut output = device.new_buffer(elem_count, storage.dtype(), "softmax");
let mut output = device.new_buffer(elem_count, storage.dtype());
candle_metal_kernels::call_last_softmax(
device.metal_device(),
&command_buffer,
@ -238,8 +238,6 @@ impl candle::CustomOp1 for SoftmaxLastDim {
&mut output,
)
.unwrap();
command_buffer.commit();
output.did_modify_range(metal::NSRange::new(0, output.length()));
let newstorage = candle::MetalStorage::new(output, device.clone(), storage.dtype());
Ok((newstorage, layout.shape().clone()))
}

View File

@ -31,4 +31,3 @@ accelerate = ["dep:accelerate-src", "candle/accelerate", "candle-nn/accelerate"]
cuda = ["candle/cuda", "candle-nn/cuda"]
flash-attn = ["cuda", "dep:candle-flash-attn"]
mkl = ["dep:intel-mkl-src", "candle/mkl", "candle-nn/mkl"]
metal = ["candle/metal", "candle-nn/metal"]

View File

@ -142,10 +142,10 @@ impl RotaryEmbedding {
.to_dtype(DType::F32)?
.reshape((max_seq_len, 1))?;
let freqs = t.matmul(&inv_freq)?;
let sin = freqs.sin()?;
let cos = freqs.cos()?;
// todo!("{}", sin);
Ok(Self { sin, cos })
Ok(Self {
sin: freqs.sin()?,
cos: freqs.cos()?,
})
}
fn apply_rotary_emb_qkv(
@ -273,10 +273,6 @@ impl MHA {
}
fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
// let view = xs.to_string();
// if view.contains("NaN") {
// panic!("NaN");
// }
let _enter = self.span.enter();
let (b_size, seq_len, _n_embd) = xs.dims3()?;
let qkv = self
@ -412,38 +408,3 @@ impl MixFormerSequentialForCausalLM {
self.blocks.iter_mut().for_each(|b| b.clear_kv_cache())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_rotary() {
let dev = Device::new_metal(0).unwrap();
for i in 0..10000 {
let dim = 8;
let max_seq_len = 12;
let inv_freq: Vec<_> = (0..dim)
.step_by(2)
.map(|i| 1f32 / 10000f32.powf(i as f32 / dim as f32))
.collect();
let inv_freq_len = inv_freq.len();
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), &dev).unwrap();
let t = Tensor::arange(0u32, max_seq_len as u32, &dev)
.unwrap()
.to_dtype(DType::F32)
.unwrap()
.reshape((max_seq_len, 1))
.unwrap();
let x: f32 = t.i((1, 0)).unwrap().to_scalar().unwrap();
assert_eq!(x, 1.0);
let x: f32 = inv_freq.i((0, 1)).unwrap().to_scalar().unwrap();
assert_eq!(x, 0.1);
let freqs = t.matmul(&inv_freq).unwrap();
let x: f32 = freqs.i((1, 1)).unwrap().to_scalar().unwrap();
assert_eq!(x, 0.1);
let sin = freqs.sin().unwrap().contiguous().unwrap();
let x: f32 = sin.i((1, 1)).unwrap().to_scalar().unwrap();
assert_eq!(x, 0.099833414);
}
}
}