#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use candle::test_utils::to_vec0_round; use candle::{Device, Result, Tensor}; /* Equivalent python code: import torch import torch.nn.functional as F input = torch.tensor([ [ 1.1050, 0.3013, -1.5394, -2.1528, -0.8634], [ 1.0730, -0.9419, -0.1670, -0.6582, 0.5061], [ 0.8318, 1.1154, -0.3610, 0.5351, 1.0830]]) target = torch.tensor([1, 0, 4]) print(F.nll_loss(F.log_softmax(input, dim=1), target)) print(F.cross_entropy(input, target)) */ #[test] fn nll_and_cross_entropy() -> Result<()> { let cpu = Device::Cpu; let input = Tensor::new( &[ [1.1050f32, 0.3013, -1.5394, -2.1528, -0.8634], [1.0730, -0.9419, -0.1670, -0.6582, 0.5061], [0.8318, 1.1154, -0.3610, 0.5351, 1.0830], ], &cpu, )?; let target = Tensor::new(&[1u32, 0, 4], &cpu)?; let log_softmax = candle_nn::ops::log_softmax(&input, 1)?; let loss = candle_nn::loss::nll(&log_softmax, &target)?; assert_eq!(to_vec0_round(&loss, 4)?, 1.1312); let loss = candle_nn::loss::cross_entropy(&input, &target)?; assert_eq!(to_vec0_round(&loss, 4)?, 1.1312); Ok(()) }