# candle-convnext [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) and [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808). This candle implementation uses a pre-trained ConvNeXt network for inference. The classification head has been trained on the ImageNet dataset and returns the probabilities for the top-5 classes. ## Running an example ``` $ cargo run --example convnext --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg --which tiny loaded image Tensor[dims 3, 224, 224; f32] model built mountain bike, all-terrain bike, off-roader: 84.09% bicycle-built-for-two, tandem bicycle, tandem: 4.15% maillot : 0.74% crash helmet : 0.54% unicycle, monocycle : 0.44% ```