mod test_utils; use candle::{DType, Device, IndexOp, Result, Tensor}; use test_utils::to_vec3_round; fn zeros(device: &Device) -> Result<()> { let tensor = Tensor::zeros((5, 2), DType::F32, device)?; let (dim1, dim2) = tensor.dims2()?; assert_eq!(dim1, 5); assert_eq!(dim2, 2); Ok(()) } fn add_mul(device: &Device) -> Result<()> { let tensor = Tensor::new(&[3f32, 1., 4.], device)?; let dim1 = tensor.dims1()?; assert_eq!(dim1, 3); let content: Vec = tensor.to_vec1()?; assert_eq!(content, [3., 1., 4.]); let tensor = Tensor::add(&tensor, &tensor)?; let content: Vec = tensor.to_vec1()?; assert_eq!(content, [6., 2., 8.]); let tensor = Tensor::mul(&tensor, &tensor)?; let content: Vec = tensor.to_vec1()?; assert_eq!(content, [36., 4., 64.]); Ok(()) } fn tensor_2d(device: &Device) -> Result<()> { let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]]; let tensor = Tensor::new(data, device)?; let dims = tensor.dims2()?; assert_eq!(dims, (2, 5)); let content: Vec> = tensor.to_vec2()?; assert_eq!(content, data); Ok(()) } fn binary_op(device: &Device) -> Result<()> { let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]]; let tensor = Tensor::new(data, device)?; let data2 = &[[5f32, 5., 5., 5., 5.], [2., 1., 7., 8., 2.]]; let tensor2 = Tensor::new(data2, device)?; let tensor = (&tensor + (&tensor * &tensor)? / (&tensor + &tensor2))?; let dims = tensor.dims2()?; assert_eq!(dims, (2, 5)); let content: Vec> = tensor.to_vec2()?; assert_eq!(content[0], [4.125, 1.1666666, 5.7777777, 1.1666666, 7.5]); assert_eq!(content[1], [3.0, 1.5, 10.5, 12.0, 3.0]); #[allow(clippy::eq_op)] let tensor = (&tensor - &tensor)?; let content: Vec> = tensor.to_vec2()?; assert_eq!(content[0], [0., 0., 0., 0., 0.]); Ok(()) } fn transpose(device: &Device) -> Result<()> { let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]]; let tensor = Tensor::new(data, device)?.t()?; let dims = tensor.dims2()?; assert_eq!(dims, (5, 2)); assert_eq!( tensor.to_vec2::()?, &[[3f32, 2.], [1., 1.], [4., 7.], [1., 8.], [5., 2.]] ); assert_eq!(tensor.t()?.to_vec2::()?, data); assert_eq!(tensor.contiguous()?.t()?.to_vec2::()?, data); assert_eq!(((tensor + 1.)?.t()? - 1.)?.to_vec2::()?, data); Ok(()) } fn softmax(device: &Device) -> Result<()> { let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]]; let tensor = Tensor::new(data, device)?; let t0 = tensor.log()?.softmax(0)?; let t1 = tensor.log()?.softmax(1)?; let t2 = tensor.log()?.softmax(2)?; assert_eq!( to_vec3_round(t0, 4)?, &[ // 3/5, 1/2, 4/11 [[0.6, 0.5, 0.3636], [0.1111, 0.7143, 0.5294]], // 2/5, 1/2, 7/11 [[0.4, 0.5, 0.6364], [0.8889, 0.2857, 0.4706]] ] ); assert_eq!( to_vec3_round(t1, 4)?, &[ // 3/4, 1/6, 4/13 [[0.75, 0.1667, 0.3077], [0.25, 0.8333, 0.6923]], // 2/10, 1/3, 7/15 [[0.2, 0.3333, 0.4667], [0.8, 0.6667, 0.5333]] ] ); assert_eq!( to_vec3_round(t2, 4)?, &[ // (3, 1, 4) / 8, (1, 5, 9) / 15 [[0.375, 0.125, 0.5], [0.0667, 0.3333, 0.6]], // (2, 1, 7) / 10, (8, 2, 8) / 18 [[0.2, 0.1, 0.7], [0.4444, 0.1111, 0.4444]] ] ); Ok(()) } fn sum(device: &Device) -> Result<()> { let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.sum_keepdim(2)?.to_vec3::()?, &[[[8], [15]], [[10], [18]]] ); assert_eq!( tensor.sum_keepdim(0)?.to_vec3::()?, &[[[5, 2, 11], [9, 7, 17]]], ); assert_eq!(tensor.sum_keepdim((0, 2, 1))?.to_vec3::()?, &[[[51]]],); assert_eq!( tensor.t()?.sum_keepdim(1)?.t()?.to_vec3::()?, &[[[8], [15]], [[10], [18]]] ); assert_eq!( tensor.sum_keepdim((2, 1))?.to_vec3::()?, &[[[8 + 15]], [[10 + 18]]] ); let data: Vec = (0..4000u32).collect(); let tensor = Tensor::new(data.as_slice(), device)?; assert_eq!(tensor.sum_keepdim(0)?.to_vec1::()?, &[7998000]); let tensor = tensor.reshape((2000, 2))?; assert_eq!(tensor.sum_keepdim((0, 1))?.to_vec2::()?, &[[7998000]]); assert_eq!( tensor.sum_keepdim(0)?.sum_keepdim(1)?.to_vec2::()?, &[[7998000]] ); assert_eq!( tensor.sum_keepdim(1)?.sum_keepdim(0)?.to_vec2::()?, &[[7998000]] ); assert_eq!( tensor.sum_keepdim(0)?.to_vec2::()?, &[[3998000, 4000000]] ); // Make the tensor non contiguous. let tensor = tensor.t()?.contiguous()?.t()?; assert_eq!(tensor.sum_keepdim((0, 1))?.to_vec2::()?, &[[7998000]]); assert_eq!( tensor.sum_keepdim(0)?.sum_keepdim(1)?.to_vec2::()?, &[[7998000]] ); assert_eq!( tensor.sum_keepdim(1)?.sum_keepdim(0)?.to_vec2::()?, &[[7998000]] ); assert_eq!( tensor.sum_keepdim(0)?.to_vec2::()?, &[[3998000, 4000000]] ); let t1 = tensor.reshape((200, 5, 4))?; let t2 = t1.transpose(0, 2)?.contiguous()?.transpose(0, 2)?; for tensor in [t1, t2] { assert_eq!( tensor.sum_keepdim((0, 1, 2))?.to_vec3::()?, &[[[7998000]]] ); assert_eq!( tensor .sum_keepdim(0)? .sum_keepdim(2)? .sum_keepdim(1)? .to_vec3::()?, &[[[7998000]]] ); assert_eq!( tensor .sum_keepdim(0)? .sum_keepdim((1, 2))? .to_vec3::()?, &[[[7998000]]] ); assert_eq!( tensor .sum_keepdim(1)? .sum_keepdim((0, 2))? .to_vec3::()?, &[[[7998000]]] ); assert_eq!( tensor.sum_keepdim(0)?.to_vec3::()?, &[[ [398000, 398200, 398400, 398600], [398800, 399000, 399200, 399400], [399600, 399800, 400000, 400200], [400400, 400600, 400800, 401000], [401200, 401400, 401600, 401800] ]] ); } Ok(()) } fn narrow(device: &Device) -> Result<()> { let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.narrow(2, 1, 2)?.to_vec3::()?, &[[[1.0, 4.0], [5.0, 9.0]], [[1.0, 7.0], [2.0, 8.0]]], ); assert_eq!( tensor.narrow(1, 1, 1)?.to_vec3::()?, &[[[1.0, 5.0, 9.0]], [[8.0, 2.0, 8.0]]], ); assert_eq!( tensor.narrow(0, 0, 1)?.to_vec3::()?, &[[[3.0, 1.0, 4.0], [1.0, 5.0, 9.0]]], ); assert_eq!( tensor.narrow(0, 1, 1)?.to_vec3::()?, &[[[2.0, 1.0, 7.0], [8.0, 2.0, 8.0]]], ); // The following has been checked against PyTorch via: // import torch // t = torch.tensor([[[3., 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]]) // t.transpose(-1, -2).narrow(1, 1, 2) assert_eq!( tensor.t()?.narrow(1, 1, 2)?.to_vec3::()?, &[[[1.0, 5.0], [4.0, 9.0]], [[1.0, 2.0], [7.0, 8.0]]], ); Ok(()) } fn broadcast(device: &Device) -> Result<()> { let data = &[3f32, 1., 4.]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.broadcast_left((3, 1))?.to_vec3::()?, &[[[3.0, 1.0, 4.0]], [[3.0, 1.0, 4.0]], [[3.0, 1.0, 4.0]]] ); Ok(()) } fn cat(device: &Device) -> Result<()> { // 1D let t1 = Tensor::new(&[3f32, 1., 4.], device)?; let t2 = Tensor::new(&[1f32, 5., 9., 2.], device)?; let t3 = Tensor::new(&[6f32, 5., 3., 5., 8., 9.], device)?; assert_eq!(Tensor::cat(&[&t1], 0)?.to_vec1::()?, [3f32, 1., 4.],); assert_eq!( Tensor::cat(&[&t1, &t2], 0)?.to_vec1::()?, [3f32, 1., 4., 1., 5., 9., 2.], ); assert_eq!( Tensor::cat(&[&t1, &t2, &t3], 0)?.to_vec1::()?, [3f32, 1., 4., 1., 5., 9., 2., 6., 5., 3., 5., 8., 9.], ); // 2D let data = &[[3f32, 1., 4., 1., 5.], [2., 7., 1., 8., 2.]]; let t1 = Tensor::new(data, device)?; let data2 = &[[5f32, 5., 5., 5., 5.], [2., 7., 1., 8., 2.]]; let t2 = Tensor::new(data2, device)?; assert_eq!( Tensor::cat(&[&t1, &t2], 0)?.to_vec2::()?, [ [3.0, 1.0, 4.0, 1.0, 5.0], [2.0, 7.0, 1.0, 8.0, 2.0], [5.0, 5.0, 5.0, 5.0, 5.0], [2.0, 7.0, 1.0, 8.0, 2.0] ] ); // PyTorch equivalent: // import torch // t1 = torch.tensor([[3, 1, 4, 1, 5], [2, 7, 1, 8, 2]]) // t2 = torch.tensor([[5]*5, [2, 7, 1, 8, 2]]) // torch.cat([t1.t(), t2.t()], dim=1).t() assert_eq!( Tensor::cat(&[&t1.t()?, &t2.t()?], 1)? .t()? .to_vec2::()?, [ [3.0, 1.0, 4.0, 1.0, 5.0], [2.0, 7.0, 1.0, 8.0, 2.0], [5.0, 5.0, 5.0, 5.0, 5.0], [2.0, 7.0, 1.0, 8.0, 2.0] ] ); assert_eq!( Tensor::cat(&[&t1, &t2], 1)?.to_vec2::()?, [ [3.0, 1.0, 4.0, 1.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0], [2.0, 7.0, 1.0, 8.0, 2.0, 2.0, 7.0, 1.0, 8.0, 2.0] ] ); Ok(()) } fn embeddings(device: &Device) -> Result<()> { let ids = Tensor::new(&[0u32, 2u32, 1u32], device)?; let t = Tensor::new(&[[0f32, 1f32], [2f32, 3f32], [4f32, 5f32]], device)?; let hs = Tensor::embedding(&ids, &t)?; assert_eq!(hs.to_vec2::()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]); Ok(()) } fn cmp(device: &Device) -> Result<()> { let t1 = Tensor::new(&[[0f32, 1f32], [2f32, 3f32], [4f32, 5f32]], device)?; let t2 = Tensor::new(&[[1f32, 0f32], [3f32, 3f32], [4f32, 7f32]], device)?; assert_eq!(t1.eq(&t2)?.to_vec2::()?, &[[0, 0], [0, 1], [1, 0]]); assert_eq!(t1.ne(&t2)?.to_vec2::()?, &[[1, 1], [1, 0], [0, 1]]); assert_eq!(t1.le(&t2)?.to_vec2::()?, &[[1, 0], [1, 1], [1, 1]]); assert_eq!(t1.lt(&t2)?.to_vec2::()?, &[[1, 0], [1, 0], [0, 1]]); assert_eq!(t1.gt(&t2)?.to_vec2::()?, &[[0, 1], [0, 0], [0, 0]]); assert_eq!(t1.ge(&t2)?.to_vec2::()?, &[[0, 1], [0, 1], [1, 0]]); Ok(()) } fn index_select(device: &Device) -> Result<()> { let ids = Tensor::new(&[0u32, 2u32, 1u32], device)?; let t = Tensor::arange(0f32, 12f32, device)?.reshape((4, 3))?; assert_eq!( t.to_vec2::()?, &[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0] ] ); let hs = t.index_select(&ids, 1)?; assert_eq!( hs.to_vec2::()?, &[ [0.0, 2.0, 1.0], [3.0, 5.0, 4.0], [6.0, 8.0, 7.0], [9.0, 11.0, 10.0] ] ); let hs = t.index_select(&ids, 0)?; assert_eq!( hs.to_vec2::()?, &[[0.0, 1.0, 2.0], [6.0, 7.0, 8.0], [3.0, 4.0, 5.0]] ); Ok(()) } fn index_add(device: &Device) -> Result<()> { let ids = Tensor::new(&[0u32, 1u32, 1u32], device)?; let t = Tensor::arange(0f32, 12f32, device)?.reshape((4, 3))?; assert_eq!( t.to_vec2::()?, &[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0] ] ); let init = Tensor::ones((4, 2), DType::F32, device)?; let hs = init.index_add(&ids, &t, 1)?; assert_eq!( hs.to_vec2::()?, &[[1.0, 4.0], [4.0, 10.0], [7.0, 16.0], [10.0, 22.0]], ); let init = Tensor::zeros((4, 2), DType::F32, device)?; let ids = Tensor::new(&[1u32, 0u32, 0u32], device)?; let hs = init.index_add(&ids, &t, 1)?; assert_eq!( hs.to_vec2::()?, &[[3.0, 0.0], [9.0, 3.0], [15.0, 6.0], [21.0, 9.0]], ); let init = Tensor::zeros((6, 3), DType::F32, device)?; let ids = Tensor::new(&[5u32, 0u32, 1u32, 0u32], device)?; let hs = init.index_add(&ids, &t, 0)?; assert_eq!( hs.to_vec2::()?, &[ [12.0, 14.0, 16.0], [6.0, 7.0, 8.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 2.0] ] ); Ok(()) } fn gather(device: &Device) -> Result<()> { let ids = Tensor::new(&[[0u32], [2u32], [1u32], [0u32]], device)?; let t = Tensor::arange(0f32, 12f32, device)?.reshape((4, 3))?; assert_eq!( t.to_vec2::()?, &[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0] ] ); let hs = t.gather(&ids, 1)?; assert_eq!(hs.to_vec2::()?, &[[0.0], [5.0], [7.0], [9.0]]); let ids = Tensor::new( &[[0u32, 0u32], [2u32, 0u32], [1u32, 1u32], [0u32, 2u32]], device, )?; let hs = t.gather(&ids, 1)?; assert_eq!( hs.to_vec2::()?, &[[0.0, 0.0], [5.0, 3.0], [7.0, 7.0], [9.0, 11.0]] ); let ids = Tensor::new(&[[0u32, 2u32, 0u32]], device)?; let hs = t.gather(&ids, 0)?; assert_eq!(hs.to_vec2::()?, &[[0.0, 7.0, 2.0]]); let ids = Tensor::new(&[[0u32, 2u32, 0u32], [0u32, 1u32, 1u32]], device)?; let hs = t.gather(&ids, 0)?; assert_eq!(hs.to_vec2::()?, &[[0.0, 7.0, 2.0], [0.0, 4.0, 5.0]]); Ok(()) } fn matmul(device: &Device) -> Result<()> { let data = vec![1.0f32, 2.0, 3.0, 4.0]; let a = Tensor::from_slice(&data, (2, 2), device)?; let data = vec![1.0f32, 2.0, 3.0, 4.0]; let b = Tensor::from_slice(&data, (2, 2), device)?; let c = a.matmul(&b)?; assert_eq!(c.to_vec2::()?, &[[7.0f32, 10.0], [15.0, 22.0]]); let data = vec![1.0f32, 2.0]; let a = Tensor::from_slice(&data, (2, 1), device)?; let data = vec![3.0f32, 4.0]; let b = Tensor::from_slice(&data, (1, 2), device)?; let c = a.matmul(&b)?; assert_eq!(c.to_vec2::()?, &[&[3.0, 4.0], &[6.0, 8.0]]); let data: Vec<_> = (0..6).map(|i| i as f32).collect(); let a = Tensor::from_slice(&data, (2, 3), device)?; let data: Vec<_> = (0..6).map(|i| (i + 2) as f32).collect(); let b = Tensor::from_slice(&data, (3, 2), device)?; let c = a.matmul(&b)?; assert_eq!(c.to_vec2::()?, &[&[16., 19.], &[52., 64.]]); let data: Vec<_> = (0..12).map(|i| i as f32).collect(); let a = Tensor::from_slice(&data, (2, 2, 3), device)?; let data: Vec<_> = (0..12).map(|i| (i + 2) as f32).collect(); let b = Tensor::from_slice(&data, (2, 3, 2), device)?; let expected = [[[16., 19.], [52., 64.]], [[214., 235.], [304., 334.]]]; let c = a.matmul(&b)?; assert_eq!(c.to_vec3::()?, &expected); // Also perform the matmul on contiguous transposed versions. let a_tt = a.t()?.contiguous()?.t()?; assert!(!a_tt.is_contiguous()); assert_eq!(a.dims(), a_tt.dims()); assert_eq!(a_tt.stride(), &[6, 1, 2]); let b_tt = b.t()?.contiguous()?.t()?; assert!(!b_tt.is_contiguous()); assert_eq!(b.dims(), b_tt.dims()); assert_eq!(b_tt.stride(), &[6, 1, 3]); assert_eq!(a_tt.matmul(&b)?.to_vec3::()?, &expected); assert_eq!(a.matmul(&b_tt)?.to_vec3::()?, &expected); assert_eq!(a_tt.matmul(&b_tt)?.to_vec3::()?, &expected); Ok(()) } fn broadcasting(device: &Device) -> Result<()> { let t1 = Tensor::arange(0f32, 24f32, device)?.reshape((4, 2, 3))?; let t2 = Tensor::new(&[100f32, 200f32], device)?; let s = t1.broadcast_add(&t2.reshape((2, 1))?)?; assert_eq!( s.to_vec3::()?, &[ [[100.0, 101.0, 102.0], [203.0, 204.0, 205.0]], [[106.0, 107.0, 108.0], [209.0, 210.0, 211.0]], [[112.0, 113.0, 114.0], [215.0, 216.0, 217.0]], [[118.0, 119.0, 120.0], [221.0, 222.0, 223.0]] ] ); let s = t1.t()?.broadcast_add(&t2)?; assert_eq!( s.to_vec3::()?, &[ [[100.0, 203.0], [101.0, 204.0], [102.0, 205.0]], [[106.0, 209.0], [107.0, 210.0], [108.0, 211.0]], [[112.0, 215.0], [113.0, 216.0], [114.0, 217.0]], [[118.0, 221.0], [119.0, 222.0], [120.0, 223.0]] ] ); let s = t1.broadcast_sub(&t2.reshape((2, 1))?)?; assert_eq!( s.to_vec3::()?, &[ [[-100.0, -99.0, -98.0], [-197.0, -196.0, -195.0]], [[-94.0, -93.0, -92.0], [-191.0, -190.0, -189.0]], [[-88.0, -87.0, -86.0], [-185.0, -184.0, -183.0]], [[-82.0, -81.0, -80.0], [-179.0, -178.0, -177.0]] ] ); let s = t1.t()?.broadcast_sub(&t2)?; assert_eq!( s.to_vec3::()?, &[ [[-100.0, -197.0], [-99.0, -196.0], [-98.0, -195.0]], [[-94.0, -191.0], [-93.0, -190.0], [-92.0, -189.0]], [[-88.0, -185.0], [-87.0, -184.0], [-86.0, -183.0]], [[-82.0, -179.0], [-81.0, -178.0], [-80.0, -177.0]] ] ); // Test a narrowed version as this uses a layout start_offset. let t1 = t1.i(2..)?; let s = t1.broadcast_add(&t2.reshape((2, 1))?)?; assert_eq!( s.to_vec3::()?, &[ [[112.0, 113.0, 114.0], [215.0, 216.0, 217.0]], [[118.0, 119.0, 120.0], [221.0, 222.0, 223.0]] ] ); let s = t1.t()?.broadcast_add(&t2)?; assert_eq!( s.to_vec3::()?, &[ [[112.0, 215.0], [113.0, 216.0], [114.0, 217.0]], [[118.0, 221.0], [119.0, 222.0], [120.0, 223.0]] ] ); let s = t1.broadcast_sub(&t2.reshape((2, 1))?)?; assert_eq!( s.to_vec3::()?, &[ [[-88.0, -87.0, -86.0], [-185.0, -184.0, -183.0]], [[-82.0, -81.0, -80.0], [-179.0, -178.0, -177.0]] ] ); let s = t1.t()?.broadcast_sub(&t2)?; assert_eq!( s.to_vec3::()?, &[ [[-88.0, -185.0], [-87.0, -184.0], [-86.0, -183.0]], [[-82.0, -179.0], [-81.0, -178.0], [-80.0, -177.0]] ] ); let t3 = Tensor::new(1f32, device)?.broadcast_div(&t2)?; let s = t1.broadcast_mul(&t2.reshape((2, 1))?)?; let s_div = t1.broadcast_div(&t3.reshape((2, 1))?)?; assert_eq!( s.to_vec3::()?, &[ [[1200.0, 1300.0, 1400.0], [3000.0, 3200.0, 3400.0]], [[1800.0, 1900.0, 2000.0], [4200.0, 4400.0, 4600.0]] ] ); assert_eq!(s.to_vec3::()?, s_div.to_vec3::()?,); let s = t1.t()?.broadcast_mul(&t2)?; let s_div = t1.t()?.broadcast_div(&t3)?; assert_eq!( s.to_vec3::()?, &[ [[1200.0, 3000.0], [1300.0, 3200.0], [1400.0, 3400.0]], [[1800.0, 4200.0], [1900.0, 4400.0], [2000.0, 4600.0]] ] ); assert_eq!(s.to_vec3::()?, s_div.to_vec3::()?,); Ok(()) } test_device!(zeros, zeros_cpu, zeros_gpu); test_device!(add_mul, add_mul_cpu, add_mul_gpu); test_device!(tensor_2d, tensor_2d_cpu, tensor_2d_gpu); test_device!(narrow, narrow_cpu, narrow_gpu); test_device!(broadcast, broadcast_cpu, broadcast_gpu); test_device!(cat, cat_cpu, cat_gpu); test_device!(sum, sum_cpu, sum_gpu); test_device!(transpose, transpose_cpu, transpose_gpu); test_device!(binary_op, binary_op_cpu, binary_op_gpu); test_device!(softmax, softmax_cpu, softmax_gpu); test_device!(embeddings, embeddings_cpu, embeddings_gpu); test_device!(cmp, cmp_cpu, cmp_gpu); test_device!(matmul, matmul_cpu, matmul_gpu); test_device!(broadcasting, broadcasting_cpu, broadcasting_gpu); test_device!(index_select, index_select_cpu, index_select_gpu); test_device!(index_add, index_add_cpu, index_add_gpu); test_device!(gather, gather_cpu, gather_gpu);