# candle-xlm-roberta This example demonstrates how to use the XLM-RoBERTa model in Candle especially known for their use in reranking. It uses the `fill-mask` task to generate a word for a masked token. And a `reranker` task to rerank a list of documents for a given query. ## Usage Fill Mask: ```bash cargo run --example xlm-roberta --release -- --task fill-mask --model xlm-roberta-base ``` ```markdown Sentence: 0 : Hello I'm a fashion model. Sentence: 1 : I'm a little boy. Sentence: 2 : I'm living in berlin. ``` Reranker: ```bash cargo run --example xlm-roberta --release -- --task reranker --model bge-reranker-base ``` ```markdown Ranking Results: -------------------------------------------------------------------------------- > Rank #4 | Score: 0.0001 | South Korea is a country in East Asia. > Rank #5 | Score: 0.0000 | There are forests in the mountains. > Rank #2 | Score: 0.7314 | Pandas look like bears. > Rank #3 | Score: 0.6948 | There are some animals with black and white fur. > Rank #1 | Score: 0.9990 | The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China. -------------------------------------------------------------------------------- ``` Text-Classification: ```bash cargo run --example xlm-roberta -- --task text-classification --model xlmr-formality-classifier ``` ```markdown Formality Scores: Text 1: "I like you. I love you" formal: 0.9933 informal: 0.0067 Text 2: "Hey, what's up?" formal: 0.8812 informal: 0.1188 Text 3: "Siema, co porabiasz?" formal: 0.9358 informal: 0.0642 Text 4: "I feel deep regret and sadness about the situation in international politics." formal: 0.9987 informal: 0.0013 ```