#![allow(dead_code)] // https://github.com/openai/whisper/blob/main/whisper/model.py // TODO: // - kv-cache support? // - Language detection? // - Batch size greater than 1. // - More token filters (SuppressBlanks, ApplyTimestampRules). #[cfg(feature = "mkl")] extern crate intel_mkl_src; use anyhow::{Error as E, Result}; use candle::{DType, Device, Tensor}; use candle_hub::{api::sync::Api, Repo, RepoType}; use candle_nn::VarBuilder; use clap::Parser; use rand::{distributions::Distribution, SeedableRng}; use tokenizers::Tokenizer; mod audio; mod model; use model::{Config, Whisper}; const DTYPE: DType = DType::F32; // Audio parameters. const SAMPLE_RATE: usize = 16000; const N_FFT: usize = 400; const N_MELS: usize = 80; const HOP_LENGTH: usize = 160; const CHUNK_LENGTH: usize = 30; const N_SAMPLES: usize = CHUNK_LENGTH * SAMPLE_RATE; // 480000 samples in a 30-second chunk const N_FRAMES: usize = N_SAMPLES / HOP_LENGTH; // 3000 frames in a mel spectrogram input const N_SAMPLES_PER_TOKEN: usize = HOP_LENGTH * 2; // the initial convolutions has stride 2 const FRAMES_PER_SECOND: usize = SAMPLE_RATE / HOP_LENGTH; // 10ms per audio frame const TOKENS_PER_SECOND: usize = SAMPLE_RATE / N_SAMPLES_PER_TOKEN; // 20ms per audio token const NO_SPEECH_THRESHOLD: f64 = 0.6; const LOGPROB_THRESHOLD: f64 = -1.0; const TEMPERATURES: [f64; 6] = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]; const COMPRESSION_RATIO_THRESHOLD: f64 = 2.4; // Tokenizer dependent bits. const SOT_TOKEN: u32 = 50257; const EOT_TOKEN: u32 = 50256; const NO_SPEECH_TOKEN: u32 = 50361; const NO_TIMESTAMP_TOKEN: u32 = 50362; // From the _get_suppress_tokens function + 50362 (no timestamp) // https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/decoding.py#L605 const SUPPRESS_TOKENS: [u32; 91] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50357, 50358, 50359, 50360, 50361, 50362, ]; #[derive(Debug, Clone)] struct DecodingResult { tokens: Vec, text: String, avg_logprob: f64, no_speech_prob: f64, temperature: f64, compression_ratio: f64, } #[derive(Debug, Clone)] struct Segment { start: f64, duration: f64, dr: DecodingResult, } struct Decoder { model: Whisper, rng: rand::rngs::StdRng, tokenizer: Tokenizer, suppress_tokens: Tensor, } impl Decoder { fn new(model: Whisper, tokenizer: Tokenizer, seed: u64, device: &Device) -> Result { let suppress_tokens: Vec = (0..model.config.vocab_size as u32) .map(|i| { if SUPPRESS_TOKENS.contains(&i) { f32::NEG_INFINITY } else { 0f32 } }) .collect(); let suppress_tokens = Tensor::new(suppress_tokens.as_slice(), device)?; Ok(Self { model, rng: rand::rngs::StdRng::seed_from_u64(seed), tokenizer, suppress_tokens, }) } fn decode(&mut self, mel: &Tensor, t: f64) -> Result { let model = &self.model; let audio_features = model.encoder.forward(mel)?; println!("audio features: {:?}", audio_features.dims()); let sample_len = model.config.max_target_positions / 2; let mut sum_logprob = 0f64; let mut no_speech_prob = f64::NAN; let mut tokens = vec![SOT_TOKEN]; for i in 0..sample_len { let tokens_t = Tensor::new(tokens.as_slice(), &mel.device())?; // The model expects a batch dim but this inference loop does not handle // it so we add it at this point. let tokens_t = tokens_t.unsqueeze(0)?; let logits = model.decoder.forward(&tokens_t, &audio_features)?; let logits = logits.squeeze(0)?; // Extract the no speech probability on the first iteration by looking at the first // token logits and the probability for the according token. if i == 0 { no_speech_prob = logits .get(0)? .softmax(0)? .get(NO_SPEECH_TOKEN as usize)? .to_scalar::()? as f64; } let (seq_len, _) = logits.shape().r2()?; let logits = logits .get(seq_len - 1)? .broadcast_add(&self.suppress_tokens)?; let next_token = if t > 0f64 { let prs = (&logits / t)?.softmax(0)?; let logits_v: Vec = prs.to_vec1()?; let distr = rand::distributions::WeightedIndex::new(&logits_v)?; distr.sample(&mut self.rng) as u32 } else { let logits_v: Vec = logits.to_vec1()?; logits_v .iter() .enumerate() .max_by(|(_, u), (_, v)| u.total_cmp(v)) .map(|(i, _)| i as u32) .unwrap() }; tokens.push(next_token); let prob = logits .softmax(candle::D::Minus1)? .get(next_token as usize)? .to_scalar::()? as f64; if next_token == EOT_TOKEN || tokens.len() > model.config.max_target_positions { break; } sum_logprob += prob.ln(); } let text = self .tokenizer .decode(tokens.clone(), true) .map_err(E::msg)?; let avg_logprob = sum_logprob / tokens.len() as f64; Ok(DecodingResult { tokens, text, avg_logprob, no_speech_prob, temperature: t, compression_ratio: f64::NAN, }) } fn decode_with_fallback(&mut self, segment: &Tensor) -> Result { for (i, &t) in TEMPERATURES.iter().enumerate() { let dr: Result = self.decode(segment, t); if i == TEMPERATURES.len() - 1 { return dr; } // On errors, we try again with a different temperature. match dr { Ok(dr) => { let needs_fallback = dr.compression_ratio > COMPRESSION_RATIO_THRESHOLD || dr.avg_logprob < LOGPROB_THRESHOLD; if !needs_fallback || dr.no_speech_prob > NO_SPEECH_THRESHOLD { return Ok(dr); } } Err(err) => { println!("Error running at {t}: {err}") } } } unreachable!() } fn run(&mut self, mel: &Tensor) -> Result> { let (_, _, content_frames) = mel.shape().r3()?; let mut seek = 0; let mut segments = vec![]; while seek < content_frames { let start = std::time::Instant::now(); let time_offset = (seek * HOP_LENGTH) as f64 / SAMPLE_RATE as f64; let segment_size = usize::min(content_frames - seek, N_FRAMES); let mel_segment = mel.narrow(2, seek, segment_size)?; let segment_duration = (segment_size * HOP_LENGTH) as f64 / SAMPLE_RATE as f64; let dr = self.decode_with_fallback(&mel_segment)?; seek += segment_size; if dr.no_speech_prob > NO_SPEECH_THRESHOLD && dr.avg_logprob < LOGPROB_THRESHOLD { println!("no speech detected, skipping {seek} {dr:?}"); continue; } let segment = Segment { start: time_offset, duration: segment_duration, dr, }; println!("{seek}: {segment:?}, in {:?}", start.elapsed()); segments.push(segment) } Ok(segments) } } #[derive(Parser, Debug)] #[command(author, version, about, long_about = None)] struct Args { /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, #[arg(long)] model_id: Option, /// The model to use, check out available models: /// https://huggingface.co/models?search=whisper #[arg(long)] revision: Option, /// The input to be processed, in wav format, will default to `jfk.wav`. Alternatively /// this can be set to sample:jfk, sample:gb1, ... to fetch a sample from the following /// repo: https://huggingface.co/datasets/Narsil/candle_demo/ #[arg(long)] input: Option, /// The seed to use when generating random samples. #[arg(long, default_value_t = 299792458)] seed: u64, /// The mel filters in safetensors format. #[arg( long, default_value = "candle-examples/examples/whisper/mel_filters.safetensors" )] filters: String, } fn main() -> Result<()> { let args = Args::parse(); let device = if args.cpu { Device::Cpu } else { Device::new_cuda(0)? }; let default_model = "openai/whisper-tiny.en".to_string(); let path = std::path::PathBuf::from(default_model.clone()); let default_revision = "refs/pr/15".to_string(); let (model_id, revision) = match (args.model_id, args.revision) { (Some(model_id), Some(revision)) => (model_id, revision), (Some(model_id), None) => (model_id, "main".to_string()), (None, Some(revision)) => (default_model, revision), (None, None) => (default_model, default_revision), }; let (config_filename, tokenizer_filename, weights_filename, input) = if path.exists() { let mut config_filename = path.clone(); config_filename.push("config.json"); let mut tokenizer_filename = path.clone(); tokenizer_filename.push("tokenizer.json"); let mut model_filename = path; model_filename.push("model.safetensors"); ( config_filename, tokenizer_filename, model_filename, std::path::PathBuf::from(args.input.expect("You didn't specify a file to read from yet, are using a local model, please add `--input example.wav` to read some audio file")), ) } else { let repo = Repo::with_revision(model_id, RepoType::Model, revision); let api = Api::new()?; let sample = if let Some(input) = args.input { if let Some(sample) = input.strip_prefix("sample:") { api.get( &Repo::new("Narsil/candle-examples".to_string(), RepoType::Dataset), &format!("samples_{sample}.wav"), )? } else { std::path::PathBuf::from(input) } } else { println!("No audio file submitted: Downloading https://huggingface.co/datasets/Narsil/candle_demo/blob/main/samples_jfk.wav"); api.get( &Repo::new("Narsil/candle-examples".to_string(), RepoType::Dataset), "samples_jfk.wav", )? }; ( api.get(&repo, "config.json")?, api.get(&repo, "tokenizer.json")?, api.get(&repo, "model.safetensors")?, sample, ) }; let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?; let mel_filters = unsafe { candle::safetensors::MmapedFile::new(args.filters)? }; let mel_filters = mel_filters.deserialize()?; let mel_filters = mel_filters.tensor("mel_80", &device)?; println!("loaded mel filters {:?}", mel_filters.shape()); let mel_filters = mel_filters.flatten_all()?.to_vec1::()?; let mut input = std::fs::File::open(input)?; let (header, data) = wav::read(&mut input)?; println!("loaded wav data: {header:?}"); if header.sampling_rate != SAMPLE_RATE as u32 { anyhow::bail!("wav file must have a {} sampling rate", SAMPLE_RATE) } let data = data.as_sixteen().expect("expected 16 bit wav file"); let pcm_data: Vec<_> = data[..data.len() / header.channel_count as usize] .iter() .map(|v| *v as f32 / 32768.) .collect(); println!("pcm data loaded {}", pcm_data.len()); let mel = audio::pcm_to_mel(&pcm_data, &mel_filters)?; let mel_len = mel.len(); let mel = Tensor::from_vec(mel, (1, N_MELS, mel_len / N_MELS), &device)?; println!("loaded mel: {:?}", mel.dims()); let weights = unsafe { candle::safetensors::MmapedFile::new(weights_filename)? }; let weights = weights.deserialize()?; let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, &device); let config: Config = serde_json::from_str(&std::fs::read_to_string(config_filename)?)?; let model = Whisper::load(&vb, config)?; let mut dc = Decoder::new(model, tokenizer, args.seed, &device)?; dc.run(&mel)?; Ok(()) }