#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use anyhow::Result; use clap::Parser; use candle_transformers::models::csm::{Config, Model}; use candle::DType; use candle_nn::VarBuilder; use hf_hub::{api::sync::Api, Repo, RepoType}; #[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)] enum Which { #[value(name = "1b")] Csm1b, } #[derive(Parser, Debug)] #[command(author, version, about, long_about = None)] struct Args { /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, /// Enable tracing (generates a trace-timestamp.json file). #[arg(long)] tracing: bool, #[arg(long)] use_flash_attn: bool, #[arg(long)] prompt: String, /// The temperature used to generate samples. #[arg(long, default_value_t = 0.7)] temperature: f64, /// Nucleus sampling probability cutoff. #[arg(long)] top_p: Option, /// Only sample among the top K samples. #[arg(long)] top_k: Option, /// The seed to use when generating random samples. #[arg(long, default_value_t = 299792458)] seed: u64, /// The length of the sample to generate (in tokens). #[arg(long, short = 'n', default_value_t = 10000)] sample_len: usize, /// The model size to use. #[arg(long, default_value = "1b")] which: Which, #[arg(long)] model_id: Option, #[arg(long, default_value = "main")] revision: String, #[arg(long)] tokenizer: Option, #[arg(long)] config: Option, #[arg(long)] weights: Option, /// Penalty to be applied for repeating tokens, 1. means no penalty. #[arg(long, default_value_t = 1.1)] repeat_penalty: f32, /// The context size to consider for the repeat penalty. #[arg(long, default_value_t = 64)] repeat_last_n: usize, } fn main() -> Result<()> { use tracing_chrome::ChromeLayerBuilder; use tracing_subscriber::prelude::*; let args = Args::parse(); let _guard = if args.tracing { let (chrome_layer, guard) = ChromeLayerBuilder::new().build(); tracing_subscriber::registry().with(chrome_layer).init(); Some(guard) } else { None }; println!( "avx: {}, neon: {}, simd128: {}, f16c: {}", candle::utils::with_avx(), candle::utils::with_neon(), candle::utils::with_simd128(), candle::utils::with_f16c() ); println!( "temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}", args.temperature, args.repeat_penalty, args.repeat_last_n ); let start = std::time::Instant::now(); let api = Api::new()?; let model_id = match args.model_id { Some(model_id) => model_id, None => { let name = match args.which { Which::Csm1b => "sesame/csm-1b", }; name.to_string() } }; let repo = api.repo(Repo::with_revision( model_id, RepoType::Model, args.revision, )); let filenames = match args.weights { Some(files) => files .split(',') .map(std::path::PathBuf::from) .collect::>(), None => vec![repo.get("model.safetensors")?], }; println!("retrieved the files in {:?}", start.elapsed()); let start = std::time::Instant::now(); let config: Config = match args.config { Some(config_file) => serde_json::from_slice(&std::fs::read(config_file)?)?, None => { let config_file = repo.get("config.json")?; serde_json::from_slice(&std::fs::read(config_file)?)? } }; let device = candle_examples::device(args.cpu)?; let (_model, _device) = { let dtype = DType::F32; let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? }; let model = Model::new(&config, vb)?; (model, device) }; println!("loaded the model in {:?}", start.elapsed()); Ok(()) }