// #![deny(missing_docs)] use crate::shape::Dim; use crate::{op::Op, storage::Storage, DType, Device, Error, Layout, Result, Shape}; use std::sync::Arc; /// Unique identifier for tensors. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct TensorId(usize); impl TensorId { fn new() -> Self { // https://users.rust-lang.org/t/idiomatic-rust-way-to-generate-unique-id/33805 use std::sync::atomic; static COUNTER: atomic::AtomicUsize = atomic::AtomicUsize::new(1); Self(COUNTER.fetch_add(1, atomic::Ordering::Relaxed)) } } pub struct Tensor_ { id: TensorId, storage: Arc, layout: Layout, op: Option, is_variable: bool, } impl AsRef for Tensor { fn as_ref(&self) -> &Tensor { self } } // Tensors are refcounted so that cloning is cheap when building the op graph. // Storages are also refcounted independently so that its possible to avoid // copying the storage for operations that only modify the shape or stride. #[derive(Clone)] /// The core struct for manipulating tensors. /// /// ```rust /// use candle::{Tensor, DType, Device}; /// /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = Tensor::zeros((3, 4), DType::F32, &Device::Cpu)?; /// /// let c = a.matmul(&b)?; /// # Ok::<(), candle::Error>(()) /// ``` /// /// Tensors are reference counted with [`Arc`] so cloning them is cheap. pub struct Tensor(Arc); impl std::ops::Deref for Tensor { type Target = Tensor_; fn deref(&self) -> &Self::Target { self.0.as_ref() } } macro_rules! unary_op { ($fn_name:ident, $op_name:ident) => { pub fn $fn_name(&self) -> Result { let shape = self.shape(); let storage = self .storage .unary_impl::(self.layout())?; let op = if self.track_op() { Some(Op::$op_name(self.clone())) } else { None }; Ok(from_storage(storage, shape.clone(), op, false)) } }; } macro_rules! binary_op { ($fn_name:ident, $op_name:ident) => { pub fn $fn_name(&self, rhs: &Self) -> Result { let shape = self.same_shape_binary_op(rhs, stringify!($fn_name))?; let storage = self.storage.binary_impl::( &rhs.storage, self.layout(), rhs.layout(), )?; let op = if self.track_op() || rhs.track_op() { Some(Op::$op_name(self.clone(), rhs.clone())) } else { None }; Ok(from_storage(storage, shape.clone(), op, false)) } }; } macro_rules! broadcast_binary_op { ($fn_name:ident, $inner_fn_name:ident) => { pub fn $fn_name(&self, rhs: &Self) -> Result { let lhs = self; let shape = lhs.broadcast_shape_binary_op(rhs, stringify!($fn_name))?; let l_broadcast = shape != *lhs.shape(); let r_broadcast = shape != *rhs.shape(); match (l_broadcast, r_broadcast) { (true, true) => lhs .broadcast_as(&shape)? .$inner_fn_name(&rhs.broadcast_as(&shape)?), (false, true) => lhs.$inner_fn_name(&rhs.broadcast_as(&shape)?), (true, false) => lhs.broadcast_as(&shape)?.$inner_fn_name(rhs), (false, false) => lhs.$inner_fn_name(rhs), } } }; } /// Creates a fresh tensor structure based on a storage and a shape, this uses contiguous strides. fn from_storage>( storage: Storage, shape: S, op: Option, is_variable: bool, ) -> Tensor { let tensor_ = Tensor_ { id: TensorId::new(), storage: Arc::new(storage), layout: Layout::contiguous(shape), op, is_variable, }; Tensor(Arc::new(tensor_)) } impl Tensor { fn ones_impl>( shape: S, dtype: DType, device: &Device, is_variable: bool, ) -> Result { let storage = device.ones(&crate::shape::SCALAR, dtype)?; from_storage(storage, crate::shape::SCALAR, None, is_variable).broadcast_as(shape) } /// Create a new tensors filled with ones /// /// ```rust /// use candle::{Tensor, DType, Device}; /// let a = Tensor::ones((2, 3), DType::F32, &Device::Cpu)?; /// let b = Tensor::from_slice(&[1.0f32, 1.0, 1.0, 1.0, 1.0, 1.0], (2, 3), &Device::Cpu)?; /// // a == b /// # Ok::<(), candle::Error>(()) /// ``` pub fn ones>(shape: S, dtype: DType, device: &Device) -> Result { Self::ones_impl(shape, dtype, device, false) } pub fn ones_var>(shape: S, dtype: DType, device: &Device) -> Result { // Maybe we should allocate some actual storage for vars rather than just using a // broadcasted scalar? Self::ones_impl(shape, dtype, device, true) } /// Create a new tensors filled with ones with same shape, dtype, and device /// as the other tensors /// /// ```rust /// use candle::{Tensor, DType, Device}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = a.ones_like()?; /// // b == a + 1 /// # Ok::<(), candle::Error>(()) /// ``` pub fn ones_like(&self) -> Result { Tensor::ones(self.shape(), self.dtype(), &self.device()) } /// Create a new tensors filled with zeros /// /// ```rust /// use candle::{Tensor, DType, Device}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = Tensor::from_slice(&[0.0f32, 0.0, 0.0, 0.0, 0.0, 0.0], (2, 3), &Device::Cpu)?; /// // a == b /// # Ok::<(), candle::Error>(()) /// ``` fn zeros_impl>( shape: S, dtype: DType, device: &Device, is_variable: bool, ) -> Result { let storage = device.zeros(&crate::shape::SCALAR, dtype)?; from_storage(storage, crate::shape::SCALAR, None, is_variable).broadcast_as(shape) } /// Create a new tensors filled with zeros /// /// ```rust /// use candle::{Tensor, DType, Device}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = Tensor::from_slice(&[0.0f32, 0.0, 0.0, 0.0, 0.0, 0.0], (2, 3), &Device::Cpu)?; /// // a == b /// # Ok::<(), candle::Error>(()) /// ``` pub fn zeros>(shape: S, dtype: DType, device: &Device) -> Result { Self::zeros_impl(shape, dtype, device, false) } pub fn zeros_var>(shape: S, dtype: DType, device: &Device) -> Result { Self::zeros_impl(shape, dtype, device, true) } /// Create a new tensors filled with ones with same shape, dtype, and device /// as the other tensors /// /// ```rust /// use candle::{Tensor, DType, Device}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = a.zeros_like()?; /// // b is on CPU f32. /// # Ok::<(), candle::Error>(()) /// ``` pub fn zeros_like(&self) -> Result { Tensor::zeros(self.shape(), self.dtype(), &self.device()) } pub fn new_impl( array: A, shape: Shape, device: &Device, is_variable: bool, ) -> Result { let n: usize = shape.elem_count(); let buffer_size: usize = array.shape()?.elem_count(); if buffer_size != n { return Err(Error::ShapeMismatch { buffer_size, shape }); } let storage = device.storage(array)?; Ok(from_storage(storage, shape, None, is_variable)) } pub fn new(array: A, device: &Device) -> Result { let shape = array.shape()?; Self::new_impl(array, shape, device, false) } pub fn var(array: A, device: &Device) -> Result { let shape = array.shape()?; Self::new_impl(array, shape, device, true) } fn from_vec_impl, D: crate::WithDType>( data: Vec, shape: S, device: &Device, is_variable: bool, ) -> Result { let shape = shape.into(); let buffer_size = data.len(); if buffer_size != shape.elem_count() { return Err(Error::ShapeMismatch { buffer_size, shape }); } let storage = device.storage_owned(data)?; Ok(from_storage(storage, shape, None, is_variable)) } pub fn from_vec, D: crate::WithDType>( data: Vec, shape: S, device: &Device, ) -> Result { Self::from_vec_impl(data, shape, device, false) } pub fn var_from_vec, D: crate::WithDType>( data: Vec, shape: S, device: &Device, ) -> Result { Self::from_vec_impl(data, shape, device, true) } pub fn from_slice, D: crate::WithDType>( array: &[D], shape: S, device: &Device, ) -> Result { Self::new_impl(array, shape.into(), device, false) } pub fn var_from_slice, D: crate::WithDType>( array: &[D], shape: S, device: &Device, ) -> Result { Self::new_impl(array, shape.into(), device, true) } pub(crate) fn broadcast_shape_binary_op<'a>( &'a self, rhs: &'a Self, op: &'static str, ) -> Result { let lhs = self; let lhs_dims = lhs.shape().dims(); let rhs_dims = rhs.shape().dims(); let lhs_ndims = lhs_dims.len(); let rhs_ndims = rhs_dims.len(); let bcast_ndims = usize::max(lhs_ndims, rhs_ndims); let mut bcast_dims = vec![0; bcast_ndims]; for (idx, bcast_value) in bcast_dims.iter_mut().enumerate() { let rev_idx = bcast_ndims - idx; let l_value = if lhs_ndims < rev_idx { 1 } else { lhs_dims[lhs_ndims - rev_idx] }; let r_value = if rhs_ndims < rev_idx { 1 } else { rhs_dims[rhs_ndims - rev_idx] }; *bcast_value = if l_value == r_value { l_value } else if l_value == 1 { r_value } else if r_value == 1 { l_value } else { Err(Error::ShapeMismatchBinaryOp { lhs: self.shape().clone(), rhs: rhs.shape().clone(), op, })? } } Ok(Shape::from(bcast_dims)) } pub(crate) fn same_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<&Shape> { let lhs = self.shape(); let rhs = rhs.shape(); if lhs != rhs { Err(Error::ShapeMismatchBinaryOp { lhs: lhs.clone(), rhs: rhs.clone(), op, }) } else { Ok(lhs) } } /// Returns true if the computation graph should track this op, that is if it is /// a variable or if it has some variable as dependencies. pub(crate) fn track_op(&self) -> bool { self.is_variable || self.op.is_some() } // TODO: Also make an inplace version or a pre-allocated? This could be tricky // if this can create cycles in the compute graph. binary_op!(add, Add); binary_op!(mul, Mul); binary_op!(sub, Sub); binary_op!(div, Div); broadcast_binary_op!(broadcast_add, add); broadcast_binary_op!(broadcast_mul, mul); broadcast_binary_op!(broadcast_sub, sub); broadcast_binary_op!(broadcast_div, div); unary_op!(neg, Neg); unary_op!(exp, Exp); unary_op!(log, Log); unary_op!(sin, Sin); unary_op!(cos, Cos); unary_op!(abs, Abs); unary_op!(sqr, Sqr); unary_op!(sqrt, Sqrt); unary_op!(gelu, Gelu); unary_op!(relu, Relu); pub fn to_scalar(&self) -> Result { if self.rank() != 0 { return Err(Error::UnexpectedNumberOfDims { expected: 0, got: self.rank(), shape: self.shape().clone(), }); } let from_cpu_storage = |cpu_storage: &crate::CpuStorage| { let data = S::cpu_storage_as_slice(cpu_storage)?; Ok::<_, Error>(data[self.layout().start_offset()]) }; match self.storage.as_ref() { Storage::Cpu(cpu_storage) => from_cpu_storage(cpu_storage), Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?), } } pub fn affine(&self, mul: f64, add: f64) -> Result { let storage = self.storage.affine(self.layout(), mul, add)?; let op = if self.track_op() { Some(Op::Affine { arg: self.clone(), mul, add, }) } else { None }; Ok(from_storage(storage, self.shape(), op, false)) } pub fn elu(&self, alpha: f64) -> Result { let storage = self.storage.elu(self.layout(), alpha)?; let op = if self.track_op() { Some(Op::Elu(self.clone(), alpha)) } else { None }; Ok(from_storage(storage, self.shape(), op, false)) } fn check_dim(&self, dim: usize, op: &'static str) -> Result<()> { if dim >= self.dims().len() { Err(Error::DimOutOfRange { shape: self.shape().clone(), dim, op, })? } else { Ok(()) } } /// Returns a new tensor that is a narrowed version of the input, the dimension `dim` /// ranges from `start` to `start + len`. pub fn narrow(&self, dim: D, start: usize, len: usize) -> Result { let dims = self.dims(); let dim = dim.to_index(self.shape(), "narrow")?; if start + len > dims[dim] { Err(Error::NarrowInvalidArgs { shape: self.shape().clone(), dim, start, len, })? } if start == 0 && dims[dim] == len { Ok(self.clone()) } else { let op = if self.track_op() { Some(Op::Narrow(self.clone(), dim, start, len)) } else { None }; let tensor_ = Tensor_ { id: TensorId::new(), storage: self.storage.clone(), layout: self.layout().narrow(dim, start, len)?, op, is_variable: false, }; Ok(Tensor(Arc::new(tensor_))) } } pub fn softmax(&self, dim: D) -> Result { let dim = dim.to_index(self.shape(), "softmax")?; // TODO: unify the two branches. if self.device().is_cuda() { // We do not have a cuda kernel for divide_by_sum_over_dim so split // the operation. let exp = self.exp()?; let sum_exp = exp.sum(&[dim])?; exp.broadcast_div(&sum_exp) } else { let shape = self.shape(); let mut storage = self.storage.unary_impl::(self.layout())?; // The resulting storage is contiguous. storage.divide_by_sum_over_dim(shape, dim)?; let op = if self.track_op() { Some(Op::Softmax(self.clone(), dim)) } else { None }; Ok(from_storage(storage, shape.clone(), op, false)) } } pub fn sum(&self, sum_dims: &[usize]) -> Result { for &dim in sum_dims { self.check_dim(dim, "sum")?; } let storage = self.storage.sum(self.layout(), sum_dims)?; let op = if self.track_op() { Some(Op::Sum(self.clone(), sum_dims.to_vec())) } else { None }; let mut dims = self.dims().to_vec(); for &sum_dim in sum_dims.iter() { dims[sum_dim] = 1 } Ok(from_storage(storage, dims, op, false)) } pub fn conv1d(&self, kernel: &Self, padding: usize, stride: usize) -> Result { let (c_out, c_in_k, k_size) = kernel.shape().r3()?; let (b_size, c_in, l_in) = match *self.dims() { [b_size, c_in, l_in] => (Some(b_size), c_in, l_in), [c_in, l_in] => (None, c_in, l_in), _ => todo!("proper error message"), }; if c_in != c_in_k { todo!("proper error message") } let params = crate::conv::ParamsConv1D { b_size, l_in, c_out, c_in, k_size, padding, stride, }; let storage = self.storage .conv1d(self.layout(), &kernel.storage, kernel.layout(), ¶ms)?; let op = if self.track_op() || kernel.track_op() { Some(Op::Conv1D { arg: self.clone(), kernel: kernel.clone(), padding, stride, }) } else { None }; let out_dims = params.out_dims(); Ok(from_storage(storage, out_dims, op, false)) } pub fn matmul(&self, rhs: &Self) -> Result { let a_dims = self.shape().dims(); let b_dims = rhs.shape().dims(); let dim = a_dims.len(); if dim < 2 || b_dims.len() != dim { Err(Error::ShapeMismatchBinaryOp { lhs: self.shape().clone(), rhs: rhs.shape().clone(), op: "matmul", })? } let m = a_dims[dim - 2]; let k = a_dims[dim - 1]; let k2 = b_dims[dim - 2]; let n = b_dims[dim - 1]; let c_shape = Shape::from(&a_dims[..dim - 2]).extend(&[m, n]); let batching: usize = a_dims[..dim - 2].iter().product(); let batching_b: usize = b_dims[..dim - 2].iter().product(); if k != k2 || batching != batching_b { Err(Error::ShapeMismatchBinaryOp { lhs: self.shape().clone(), rhs: rhs.shape().clone(), op: "matmul", })? } let storage = self.storage.matmul( &rhs.storage, (batching, m, n, k), self.layout(), rhs.layout(), )?; let op = if self.track_op() || rhs.track_op() { Some(Op::Matmul(self.clone(), rhs.clone())) } else { None }; Ok(from_storage(storage, c_shape, op, false)) } pub fn where_cond(&self, on_true: &Self, on_false: &Self) -> Result { let _shap = self.same_shape_binary_op(on_true, "where_cond")?; let shape = self.same_shape_binary_op(on_false, "where_cond")?; let storage = self.storage.where_cond( self.layout(), &on_true.storage, on_true.layout(), &on_false.storage, on_false.layout(), )?; let op = if self.track_op() || on_true.track_op() || on_false.track_op() { Some(Op::WhereCond( self.clone(), on_true.clone(), on_false.clone(), )) } else { None }; Ok(from_storage(storage, shape, op, false)) } pub fn embedding(ids: &Self, rhs: &Self) -> Result { if !rhs.is_contiguous() { return Err(Error::RequiresContiguous { op: "embedding" }); } else if rhs.rank() != 2 || ids.rank() != 1 { return Err(Error::ShapeMismatchBinaryOp { lhs: ids.shape().clone(), rhs: rhs.shape().clone(), op: "embedding", }); } let ids_shape = ids.shape(); let seq_len = ids_shape.r1()?; let (_, hidden_size) = rhs.shape().r2()?; let storage = ids .storage .embedding(ids.layout(), &rhs.storage, rhs.layout())?; let shape: Shape = (seq_len, hidden_size).into(); let op = if ids.track_op() || rhs.track_op() { Some(Op::Embedding(ids.clone(), rhs.clone())) } else { None }; Ok(from_storage(storage, shape, op, false)) } pub(crate) fn strided_index(&self) -> crate::StridedIndex { self.layout.strided_index() } /// Returns data from the underlying storage, this does not take the strides /// into account so the size of the resulting buffer might be larger than the /// tensor number of elements. pub fn storage_data(&self) -> Result> { match self.storage.as_ref() { Storage::Cpu(cpu_storage) => { let slice = S::cpu_storage_as_slice(cpu_storage)?; Ok(std::borrow::Cow::Borrowed(slice)) } Storage::Cuda(slice) => { let cpu_storage = slice.to_cpu_storage()?; let storage_data = S::cpu_storage_data(cpu_storage)?; Ok(std::borrow::Cow::Owned(storage_data)) } } } pub fn to_vec1(&self) -> Result> { if self.rank() != 1 { return Err(Error::UnexpectedNumberOfDims { expected: 1, got: self.rank(), shape: self.shape().clone(), }); } match self.storage.as_ref() { Storage::Cpu(cpu_storage) => { let data = S::cpu_storage_as_slice(cpu_storage)?; Ok(self.strided_index().map(|i| data[i]).collect()) } Storage::Cuda(slice) => { // TODO: Would it be possible to only fetch the necessary data? let cpu_storage = slice.to_cpu_storage()?; let data = S::cpu_storage_as_slice(&cpu_storage)?; Ok(self.strided_index().map(|i| data[i]).collect()) } } } pub fn to_vec2(&self) -> Result>> { let (dim1, dim2) = self.shape().r2()?; let from_cpu_storage = |cpu_storage: &crate::CpuStorage| { let data = S::cpu_storage_as_slice(cpu_storage)?; let mut rows = vec![]; let mut src_index = self.strided_index(); for _idx_row in 0..dim1 { let row = (0..dim2).map(|_| data[src_index.next().unwrap()]).collect(); rows.push(row) } assert!(src_index.next().is_none()); Ok(rows) }; match self.storage.as_ref() { Storage::Cpu(storage) => from_cpu_storage(storage), Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?), } } pub fn to_vec3(&self) -> Result>>> { let (dim1, dim2, dim3) = self.shape().r3()?; let from_cpu_storage = |cpu_storage: &crate::CpuStorage| { let data = S::cpu_storage_as_slice(cpu_storage)?; let mut top_rows = vec![]; let mut src_index = self.strided_index(); for _idx in 0..dim1 { let mut rows = vec![]; for _jdx in 0..dim2 { let row = (0..dim3).map(|_| data[src_index.next().unwrap()]).collect(); rows.push(row) } top_rows.push(rows); } assert!(src_index.next().is_none()); Ok(top_rows) }; match self.storage.as_ref() { Storage::Cpu(storage) => from_cpu_storage(storage), Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?), } } pub fn dtype(&self) -> DType { self.storage.dtype() } pub fn device(&self) -> Device { self.storage.device() } pub fn shape(&self) -> &Shape { self.layout().shape() } pub fn dims(&self) -> &[usize] { self.shape().dims() } pub fn dim(&self, dim: D) -> Result { let dim = dim.to_index(self.shape(), "dim")?; Ok(self.dims()[dim]) } pub fn layout(&self) -> &Layout { &self.layout } pub fn stride(&self) -> &[usize] { self.layout.stride() } pub fn rank(&self) -> usize { self.shape().rank() } pub fn elem_count(&self) -> usize { self.shape().elem_count() } pub fn id(&self) -> TensorId { self.id } pub fn is_variable(&self) -> bool { self.is_variable } pub(crate) fn op(&self) -> &Option { &self.op } pub fn sum_all(&self) -> Result { let dims: Vec<_> = (0..self.rank()).collect(); self.sum(&dims) } fn flatten_( &self, start_dim: Option, end_dim: Option, ) -> Result { if self.rank() == 0 { self.reshape(1) } else { let start_dim = match start_dim { None => 0, Some(dim) => dim.to_index(self.shape(), "flatten")?, }; let end_dim = match end_dim { None => self.rank() - 1, Some(dim) => dim.to_index(self.shape(), "flatten")?, }; if start_dim < end_dim { let dims = self.dims(); let mut dst_dims = dims[..start_dim].to_vec(); dst_dims.push(dims[start_dim..end_dim + 1].iter().product::()); if end_dim + 1 < dims.len() { dst_dims.extend(&dims[end_dim + 1..]); } self.reshape(dst_dims) } else { Ok(self.clone()) } } } pub fn flatten(&self, start_dim: D1, end_dim: D2) -> Result { self.flatten_(Some(start_dim), Some(end_dim)) } pub fn flatten_to(&self, end_dim: D) -> Result { self.flatten_(None::, Some(end_dim)) } pub fn flatten_from(&self, start_dim: D) -> Result { self.flatten_(Some(start_dim), None::) } pub fn flatten_all(&self) -> Result { self.flatten_(None::, None::) } pub fn get(&self, i: usize) -> Result { let dims = self.dims(); if dims.is_empty() { Ok(self.clone()) } else { self.narrow(0, i, 1)?.reshape(&dims[1..]) } } /// Returns a tensor that is a transposed version of the input, the two last dimensions of the /// input are swapped. pub fn t(&self) -> Result { let rank = self.rank(); if rank < 2 { return Err(Error::UnexpectedNumberOfDims { expected: 2, got: rank, shape: self.shape().clone(), }); } self.transpose(rank - 2, rank - 1) } /// Returns a tensor that is a transposed version of the input, the given dimensions are /// swapped. pub fn transpose(&self, dim1: D1, dim2: D2) -> Result { let dim1 = dim1.to_index(self.shape(), "transpose")?; let dim2 = dim2.to_index(self.shape(), "transpose")?; let op = if self.track_op() { Some(Op::Transpose(self.clone(), dim1, dim2)) } else { None }; let tensor_ = Tensor_ { id: TensorId::new(), storage: self.storage.clone(), layout: self.layout.transpose(dim1, dim2)?, op, is_variable: false, }; Ok(Tensor(Arc::new(tensor_))) } /// Returns true if the data is stored in a C contiguous (aka row major) way. pub fn is_contiguous(&self) -> bool { self.layout.is_contiguous() } /// Returns true if the data is stored in a Fortran contiguous (aka column major) way. pub fn is_fortran_contiguous(&self) -> bool { self.layout.is_fortran_contiguous() } /// Compared to clone, this copies the actual storage but may fail because of running out of /// memory. pub fn copy(&self) -> Result { let tensor_ = Tensor_ { id: TensorId::new(), storage: Arc::new(self.storage.try_clone(self.layout())?), layout: self.layout.clone(), op: None, // TODO is_variable: false, }; Ok(Tensor(Arc::new(tensor_))) } /// Returns a new tensor detached from the current graph, gradient are not propagated through /// this new node. pub fn detach(&self) -> Result { let tensor_ = Tensor_ { id: TensorId::new(), storage: self.storage.clone(), layout: self.layout.clone(), op: None, is_variable: false, }; Ok(Tensor(Arc::new(tensor_))) } /// If the target device is the same as the tensor device, only a shallow copy is performed. pub fn to_device(&self, device: &Device) -> Result { if self.device().same_id(device) { Ok(self.clone()) } else { let storage = match (self.storage.as_ref(), device) { (Storage::Cpu(storage), Device::Cuda(cuda)) => { Storage::Cuda(cuda.cuda_from_cpu_storage(storage)?) } (Storage::Cuda(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?), (Storage::Cuda(storage), Device::Cuda(cuda)) => { // TODO: Avoid passing through the cpu storage here, especially if the gpu ids // are the same. let cpu_storage = storage.to_cpu_storage()?; Storage::Cuda(cuda.cuda_from_cpu_storage(&cpu_storage)?) } (Storage::Cpu(storage), Device::Cpu) => Storage::Cpu(storage.clone()), }; let op = if self.track_op() { Some(Op::ToDevice(self.clone())) } else { None }; let tensor_ = Tensor_ { id: TensorId::new(), storage: Arc::new(storage), layout: self.layout.clone(), op, is_variable: false, }; Ok(Tensor(Arc::new(tensor_))) } } /// Returns a new tensor duplicating data from the original tensor. New dimensions are inserted /// on the left. pub fn broadcast_left>(&self, left_shape: S) -> Result { let left_shape = left_shape.into(); let mut dims = left_shape.into_dims(); dims.extend(self.dims()); self.broadcast_as(dims) } pub fn broadcast_as>(&self, shape: S) -> Result { let op = if self.track_op() { Some(Op::Broadcast(self.clone())) } else { None }; let tensor_ = Tensor_ { id: TensorId::new(), storage: self.storage.clone(), layout: self.layout.broadcast_as(shape)?, op, is_variable: false, }; Ok(Tensor(Arc::new(tensor_))) } /// An alias for broadcast_as. pub fn expand>(&self, shape: S) -> Result { self.broadcast_as(shape) } pub fn to_dtype(&self, dtype: DType) -> Result { if self.dtype() == dtype { Ok(self.clone()) } else { let shape = self.shape(); let storage = self.storage.to_dtype(self.layout(), dtype)?; let op = if self.track_op() { Some(Op::ToDType(self.clone())) } else { None }; Ok(from_storage(storage, shape.clone(), op, false)) } } pub fn contiguous(&self) -> Result { if self.is_contiguous() { Ok(self.clone()) } else { let shape = self.shape(); let mut storage = self.device().zeros(shape, self.dtype())?; self.storage .copy_strided_src(&mut storage, 0, self.layout())?; Ok(from_storage( storage, shape.clone(), None, // TODO false, )) } } // TODO: Do we want to allow target shape using -1 on some dimensions? /// Reshape returns a tensor with the target shape provided that the number of elements of the /// original tensor is the same. /// If the input tensor is contiguous, this is a view on the original data. Otherwise this uses /// a new storage and copies the data over, the returned tensor is always contiguous. pub fn reshape>(&self, shape: S) -> Result { let shape = shape.into(); if shape.elem_count() != self.elem_count() { return Err(Error::ShapeMismatchBinaryOp { lhs: self.shape().clone(), rhs: shape, op: "reshape", }); } let op = if self.track_op() { Some(Op::Reshape(self.clone())) } else { None }; if self.is_contiguous() { let tensor_ = Tensor_ { id: TensorId::new(), storage: self.storage.clone(), layout: Layout::contiguous_with_offset(shape, self.layout.start_offset()), op, is_variable: false, }; Ok(Tensor(Arc::new(tensor_))) } else { let mut storage = self.device().zeros(&shape, self.dtype())?; self.storage .copy_strided_src(&mut storage, 0, self.layout())?; Ok(from_storage(storage, shape, op, false)) } } pub fn squeeze(&self, dim: D) -> Result { // The PyTorch semantics are to return the same tensor if the target dimension // does not have a size of 1. let dims = self.dims(); let dim = dim.to_index(self.shape(), "squeeze")?; if dims[dim] == 1 { let mut dims = dims.to_vec(); dims.remove(dim); self.reshape(dims) } else { Ok(self.clone()) } } pub fn unsqueeze(&self, dim: usize) -> Result { let mut dims = self.dims().to_vec(); dims.insert(dim, 1); self.reshape(dims) } /// Stacks two or more tensors along a particular dimension. /// /// All tensors must have the same rank, and the output has /// 1 additional rank /// /// ```rust /// # use candle::{Tensor, DType, Device}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// /// let c = Tensor::stack(&[&a, &b], 0)?; /// assert_eq!(c.shape().dims(), &[2, 2, 3]); /// /// let c = Tensor::stack(&[&a, &b], 2)?; /// assert_eq!(c.shape().dims(), &[2, 3, 2]); /// # Ok::<(), candle::Error>(()) /// ``` pub fn stack, D: Dim>(args: &[A], dim: D) -> Result { if args.is_empty() { return Err(Error::OpRequiresAtLeastOneTensor { op: "stack" }); } let dim = dim.to_index_plus_one(args[0].as_ref().shape(), "stack")?; let args = args .iter() .map(|t| t.as_ref().unsqueeze(dim)) .collect::>>()?; Self::cat(&args, dim) } /// Concatenates two or more tensors along a particular dimension. /// /// All tensors must of the same rank, and the output will have /// the same rank /// /// ```rust /// # use candle::{Tensor, DType, Device}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// /// let c = Tensor::cat(&[&a, &b], 0)?; /// assert_eq!(c.shape().dims(), &[4, 3]); /// /// let c = Tensor::cat(&[&a, &b], 1)?; /// assert_eq!(c.shape().dims(), &[2, 6]); /// # Ok::<(), candle::Error>(()) /// ``` pub fn cat, D: Dim>(args: &[A], dim: D) -> Result { if args.is_empty() { return Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }); } let arg0 = args[0].as_ref(); if args.len() == 1 { return Ok(arg0.clone()); } let dim = dim.to_index(arg0.shape(), "cat")?; for arg in args { arg.as_ref().check_dim(dim, "cat")?; } if dim == 0 { Self::cat0(args) } else { // TODO: Avoid these transpositions and have an implementation that works // for dim != 0... let args: Vec = args .iter() .map(|a| a.as_ref().transpose(0, dim)) .collect::>>()?; let cat = Self::cat0(&args)?; cat.transpose(0, dim) } } fn cat0>(args: &[A]) -> Result { if args.is_empty() { return Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }); } let arg0 = args[0].as_ref(); if args.len() == 1 { return Ok(arg0.clone()); } let rank = arg0.rank(); let device = arg0.device(); let dtype = arg0.dtype(); let first_dims = arg0.shape().dims(); let mut cat_dims = first_dims.to_vec(); cat_dims[0] = 0; let mut offsets = vec![0usize]; for (arg_idx, arg) in args.iter().enumerate() { let arg = arg.as_ref(); if arg.dtype() != dtype { // TODO: Improve the error message. return Err(Error::DTypeMismatchBinaryOp { lhs: dtype, rhs: arg.dtype(), op: "cat", }); } if arg.device().location() != device.location() { // TODO: Improve the error message. return Err(Error::DeviceMismatchBinaryOp { lhs: device.location(), rhs: arg.device().location(), op: "cat", }); } let mut mismatch = arg.rank() != rank; for (dim_idx, (v1, v2)) in arg0 .shape() .dims() .iter() .zip(arg.shape().dims().iter()) .enumerate() { if dim_idx == 0 { cat_dims[0] += v2; } if dim_idx != 0 && v1 != v2 { // TODO: It would probably be good to have a nicer error message here, i.e. // mention the problematic dimension and the values. mismatch = true; } } if mismatch { return Err(Error::ShapeMismatchCat { dim: 0, // TODO: not the appropriate error message first_shape: arg0.shape().clone(), n: arg_idx + 1, nth_shape: arg.shape().clone(), }); } let next_offset = offsets.last().unwrap() + arg.elem_count(); offsets.push(next_offset); } let shape = Shape::from(cat_dims); let op = if args.iter().any(|arg| arg.as_ref().track_op()) { let args: Vec = args.iter().map(|arg| arg.as_ref().clone()).collect(); Some(Op::Cat(args, 0)) } else { None }; let mut storage = device.zeros(&shape, dtype)?; for (arg, &offset) in args.iter().zip(offsets.iter()) { let arg = arg.as_ref(); arg.storage .copy_strided_src(&mut storage, offset, arg.layout())?; } Ok(from_storage(storage, shape, op, false)) } } macro_rules! bin_trait { ($trait:ident, $fn1:ident, $mul:expr, $add:expr) => { impl> std::ops::$trait for Tensor { type Output = Result; fn $fn1(self, rhs: B) -> Self::Output { Tensor::$fn1(&self, rhs.borrow()) } } impl> std::ops::$trait for &Tensor { type Output = Result; fn $fn1(self, rhs: B) -> Self::Output { Tensor::$fn1(&self, rhs.borrow()) } } impl> std::ops::$trait> for Tensor { type Output = Result; fn $fn1(self, rhs: Result) -> Self::Output { Tensor::$fn1(&self, rhs?.borrow()) } } impl> std::ops::$trait> for &Tensor { type Output = Result; fn $fn1(self, rhs: Result) -> Self::Output { Tensor::$fn1(&self, rhs?.borrow()) } } impl std::ops::$trait for Tensor { type Output = Result; fn $fn1(self, rhs: f64) -> Self::Output { self.affine($mul(rhs), $add(rhs)) } } impl std::ops::$trait for &Tensor { type Output = Result; fn $fn1(self, rhs: f64) -> Self::Output { self.affine($mul(rhs), $add(rhs)) } } }; } bin_trait!(Add, add, |_| 1., |v| v); bin_trait!(Sub, sub, |_| 1., |v: f64| -v); bin_trait!(Mul, mul, |v| v, |_| 0.); bin_trait!(Div, div, |v| 1. / v, |_| 0.);