#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use candle::{IndexOp, D}; use candle_examples::save_image; use clap::{Parser, ValueEnum}; #[derive(Clone, Copy, Debug, ValueEnum)] enum Which { SqueezeNet, EfficientNet, EsrGan, } #[derive(Parser)] struct Args { #[arg(long)] image: String, #[arg(long)] model: Option, /// The model to be used. #[arg(value_enum, long, default_value_t = Which::SqueezeNet)] which: Which, } pub fn main() -> anyhow::Result<()> { let args = Args::parse(); let image = match args.which { Which::SqueezeNet | Which::EfficientNet => { candle_examples::imagenet::load_image224(&args.image)? } Which::EsrGan => candle_examples::imagenet::load_image_with_std_mean( &args.image, 128, &[0.0f32, 0.0, 0.0], &[1.0f32, 1.0, 1.0], )?, }; let image = match args.which { Which::SqueezeNet => image, Which::EfficientNet => image.permute((1, 2, 0))?, Which::EsrGan => image, }; println!("loaded image {image:?}"); let model = match args.model { Some(model) => std::path::PathBuf::from(model), None => match args.which { Which::SqueezeNet => hf_hub::api::sync::Api::new()? .model("lmz/candle-onnx".into()) .get("squeezenet1.1-7.onnx")?, Which::EfficientNet => hf_hub::api::sync::Api::new()? .model("onnx/EfficientNet-Lite4".into()) .get("efficientnet-lite4-11.onnx")?, Which::EsrGan => hf_hub::api::sync::Api::new()? .model("qualcomm/Real-ESRGAN-x4plus".into()) .get("Real-ESRGAN-x4plus.onnx")?, }, }; let model = candle_onnx::read_file(model)?; let graph = model.graph.as_ref().unwrap(); let mut inputs = std::collections::HashMap::new(); inputs.insert(graph.input[0].name.to_string(), image.unsqueeze(0)?); let mut outputs = candle_onnx::simple_eval(&model, inputs)?; let output = outputs.remove(&graph.output[0].name).unwrap(); let prs = match args.which { Which::SqueezeNet => candle_nn::ops::softmax(&output, D::Minus1)?, Which::EfficientNet => output, Which::EsrGan => output, }; match args.which { Which::EfficientNet | Which::SqueezeNet => { let prs = prs.i(0)?.to_vec1::()?; // Sort the predictions and take the top 5 let mut top: Vec<_> = prs.iter().enumerate().collect(); top.sort_by(|a, b| b.1.partial_cmp(a.1).unwrap()); let top = top.into_iter().take(5).collect::>(); // Print the top predictions for &(i, p) in &top { println!( "{:50}: {:.2}%", candle_examples::imagenet::CLASSES[i], p * 100.0 ); } } Which::EsrGan => { let max_pixel_val = candle::Tensor::try_from(255.0f32)? .to_device(prs.device())? .broadcast_as(prs.shape())?; let out = (prs * max_pixel_val)?.i(0)?.to_dtype(candle::DType::U8)?; let pb = std::path::PathBuf::from(args.image); let input_file_name = pb.file_name().unwrap(); let mut output_file_name = std::ffi::OsString::from("super_"); output_file_name.push(input_file_name); save_image(&out, output_file_name)?; } } Ok(()) }