use candle::{DType, Device, IndexOp, Result, Tensor, D}; use candle_nn::{Embedding, Linear, VarBuilder}; use std::collections::HashMap; use std::sync::{Arc, Mutex}; use super::MAX_SEQ_LEN; pub struct Config { pub hidden_size: usize, pub intermediate_size: usize, pub vocab_size: usize, pub n_layer: usize, pub n_head: usize, pub n_embd: usize, } impl Config { pub fn config_7b() -> Self { Self { hidden_size: 4096, intermediate_size: 11008, vocab_size: 32000, n_layer: 32, n_head: 32, n_embd: 4096, } } } #[derive(Clone)] pub struct Cache { masks: Arc>>, pub use_kv_cache: bool, #[allow(clippy::type_complexity)] kvs: Arc>>>, device: Device, } impl Cache { pub fn new(use_kv_cache: bool, config: &Config, device: &Device) -> Self { Self { masks: Arc::new(Mutex::new(HashMap::new())), use_kv_cache, kvs: Arc::new(Mutex::new(vec![None; config.n_layer])), device: device.clone(), } } fn mask(&self, t: usize) -> Result { let mut masks = self.masks.lock().unwrap(); if let Some(mask) = masks.get(&t) { Ok(mask.clone()) } else { // TODO: If we support bool or u8 tensors, this would be better. let mask: Vec<_> = (0..t) .flat_map(|i| (0..t).map(move |j| u32::from(j > i))) .collect(); let mask = Tensor::from_slice(&mask, (t, t), &self.device)?; masks.insert(t, mask.clone()); Ok(mask) } } } fn silu(xs: &Tensor) -> Result { xs / (xs.neg()?.exp()? + 1.0)? } fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result { let weight = vb.get((size2, size1), "weight")?; Ok(Linear::new(weight, None)) } fn embedding(cfg: &Config, vb: VarBuilder) -> Result { let embeddings = vb.get((cfg.vocab_size, cfg.hidden_size), "weight")?; Ok(Embedding::new(embeddings, cfg.hidden_size)) } struct RmsNorm { scale: Tensor, } impl RmsNorm { fn load(size: usize, vb: VarBuilder) -> Result { let scale = vb.get(size, "weight")?; Ok(Self::new(scale)) } fn new(scale: Tensor) -> Self { Self { scale } } fn forward(&self, x: &Tensor) -> Result { let in_dtype = x.dtype(); // This is a no-op if x's dtype is already f32. let x = x.to_dtype(DType::F32)?; let (b_sz, seq_len, hidden_size) = x.shape().r3()?; let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?; let norm_x = norm_x.broadcast_as((b_sz, seq_len, hidden_size))?; let x_normed = (x / (norm_x + 1e-5)?.sqrt()?)?; let size = self.scale.shape().r1()?; let scale = self .scale .to_dtype(DType::F32)? .broadcast_as((b_sz, seq_len, size))?; let x = (scale * x_normed)?; let x = x.to_dtype(in_dtype)?; Ok(x) } } struct CausalSelfAttention { c_attn: Linear, c_proj: Linear, n_head: usize, cache: Cache, } impl CausalSelfAttention { fn new(c_attn: Linear, c_proj: Linear, n_head: usize, cache: &Cache) -> Self { Self { c_attn, c_proj, n_head, cache: cache.clone(), } } fn apply_rotary_emb(&self, x: &Tensor, freqs_cis: &Tensor) -> Result { let mut dims = x.dims().to_vec(); let fcis_dims = freqs_cis.dims(); let freqs_cis = if dims[2] < fcis_dims[1] { freqs_cis.narrow(1, 0, dims[2])? } else { freqs_cis.clone() }; let v = dims.pop().unwrap(); dims.push(v / 2); dims.push(2); let x = x.reshape(dims)?; let re_x = x.narrow(D::Minus1, 0, 1)?; let im_x = x.narrow(D::Minus1, 1, 1)?; let re_f = freqs_cis .narrow(D::Minus1, 0, 1)? .broadcast_as(re_x.shape())?; let im_f = freqs_cis .narrow(D::Minus1, 1, 1)? .broadcast_as(im_x.shape())?; let re = ((&re_x * &re_f)? - (&im_x * &im_f)?)?; let im = ((&re_x * &im_f)? + (&im_x * &re_f)?)?; let rope = Tensor::cat(&[&re, &im], D::Minus1)?; let rope = rope.flatten_from(D::Minus2)?; Ok(rope) } fn forward(&self, x: &Tensor, freqs_cis: &Tensor, block_idx: usize) -> Result { let x_dtype = x.dtype(); let (b_sz, seq_len, n_embd) = x.shape().r3()?; let qkv = self.c_attn.forward(x)?; let qkv = qkv.to_dtype(DType::F32)?; let q = qkv.narrow(D::Minus1, 0, n_embd)?; let k = qkv.narrow(D::Minus1, n_embd, n_embd)?; let v = qkv.narrow(D::Minus1, 2 * n_embd, n_embd)?; let target_dim = [b_sz, seq_len, self.n_head, n_embd / self.n_head]; let k = k.reshape(target_dim.as_slice())?.transpose(1, 2)?; let q = q.reshape(target_dim.as_slice())?.transpose(1, 2)?; let mut v = v.reshape(target_dim.as_slice())?.transpose(1, 2)?; let q = self.apply_rotary_emb(&q, freqs_cis)?; let mut k = self.apply_rotary_emb(&k, freqs_cis)?; if self.cache.use_kv_cache { let mut cache = self.cache.kvs.lock().unwrap(); if let Some((cache_k, cache_v)) = &cache[block_idx] { k = Tensor::cat(&[cache_k, &k], 2)?.contiguous()?; v = Tensor::cat(&[cache_v, &v], 2)?.contiguous()?; let k_seq_len = k.dims()[1]; if k_seq_len > MAX_SEQ_LEN { k = k .narrow(D::Minus1, k_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)? .contiguous()? } let v_seq_len = v.dims()[1]; if v_seq_len > 2 * MAX_SEQ_LEN { v = v .narrow(D::Minus1, v_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)? .contiguous()? } } cache[block_idx] = Some((k.clone(), v.clone())) } let att = (q.matmul(&k.t()?)? / (k.dim(D::Minus1)? as f64).sqrt())?; let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?; let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?; let att = att.softmax(D::Minus1)?; // Convert to contiguous as matmul doesn't support strided vs for now. let y = att.matmul(&v.contiguous()?)?; let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?; let y = y.to_dtype(x_dtype)?; let y = self.c_proj.forward(&y)?; Ok(y) } fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result { let size_in = cfg.hidden_size; let size = (cfg.hidden_size / cfg.n_head) * cfg.n_head; let q_proj = vb.get((size_in, size), "q_proj.weight")?; let k_proj = vb.get((size_in, size), "k_proj.weight")?; let v_proj = vb.get((size_in, size), "v_proj.weight")?; // Invert the transformation from: // https://github.com/huggingface/transformers/blob/2642d8d04b14c18199ebe7b35f976da02df61752/src/transformers/models/llama/convert_llama_weights_to_hf.py#L101 let n_head = cfg.n_head; let q_proj = q_proj .reshape((n_head, 2, size / n_head / 2, size_in))? .transpose(1, 2)? .reshape((size_in, size))?; let k_proj = k_proj .reshape((n_head, 2, size / n_head / 2, size_in))? .transpose(1, 2)? .reshape((size_in, size))?; let attn_weight = Tensor::cat(&[q_proj, k_proj, v_proj], 0)?; let c_attn = Linear::new(attn_weight, None); let o_proj = linear(size, size_in, vb.pp("o_proj"))?; Ok(Self::new(c_attn, o_proj, cfg.n_head, cache)) } } fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result { let shape = mask.shape(); let on_true = Tensor::new(on_true, &on_false.device())?.broadcast_as(shape.dims())?; let m = mask.where_cond(&on_true, on_false)?; Ok(m) } struct Mlp { c_fc1: Linear, c_fc2: Linear, c_proj: Linear, } impl Mlp { fn new(c_fc1: Linear, c_fc2: Linear, c_proj: Linear) -> Self { Self { c_fc1, c_fc2, c_proj, } } fn forward(&self, x: &Tensor) -> Result { let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?; self.c_proj.forward(&x) } fn load(vb: VarBuilder, cfg: &Config) -> Result { let h_size = cfg.hidden_size; let i_size = cfg.intermediate_size; let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?; let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?; let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?; Ok(Self::new(c_fc1, c_fc2, c_proj)) } } struct Block { rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp, } impl Block { fn new(rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp) -> Self { Self { rms_1, attn, rms_2, mlp, } } fn forward(&self, x: &Tensor, freqs_cis: &Tensor, block_idx: usize) -> Result { let x = (self .attn .forward(&self.rms_1.forward(x)?, freqs_cis, block_idx)? + x)?; let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + x)?; Ok(x) } fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result { let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?; let mlp = Mlp::load(vb.pp("mlp"), cfg)?; let input_layernorm = RmsNorm::load(cfg.hidden_size, vb.pp("input_layernorm"))?; let post_attention_layernorm = RmsNorm::load(cfg.hidden_size, vb.pp("post_attention_layernorm"))?; Ok(Self::new( input_layernorm, attn, post_attention_layernorm, mlp, )) } } pub struct Llama { wte: Embedding, blocks: Vec, ln_f: RmsNorm, lm_head: Linear, } impl Llama { fn new(wte: Embedding, blocks: Vec, ln_f: RmsNorm, lm_head: Linear) -> Self { Self { wte, blocks, ln_f, lm_head, } } pub fn forward(&self, x: &Tensor, freqs_cis: &Tensor) -> Result { let (_b_sz, seq_len) = x.shape().r2()?; let mut x = self.wte.forward(x)?; for (block_idx, block) in self.blocks.iter().enumerate() { x = block.forward(&x, freqs_cis, block_idx)?; } let x = self.ln_f.forward(&x)?; let x = x.i((.., seq_len - 1, ..))?; let logits = self.lm_head.forward(&x)?; logits.to_dtype(DType::F32) } pub fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result { let wte = embedding(cfg, vb.pp("model.embed_tokens"))?; let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?; let norm = RmsNorm::load(cfg.hidden_size, vb.pp("model.norm"))?; let blocks: Vec<_> = (0..cfg.n_layer) .map(|i| Block::load(vb.pp(&format!("model.layers.{i}")), cache, cfg).unwrap()) .collect(); Ok(Self::new(wte, blocks, norm, lm_head)) } }