# Adapted from https://github.com/Lightning-AI/lit-llama/blob/main/scripts/convert_checkpoint.py import sys import torch import numpy as np from typing import Dict from pathlib import Path def tr(v): return np.ascontiguousarray(np.transpose(v)) def convert_state_dict(state_dict: Dict[str, torch.Tensor], dtype: torch.dtype = torch.float32) -> Dict[str, torch.Tensor]: print("start conv") def get_and_remove(key, transpose=False): v = state_dict[key].to(dtype).numpy() if transpose: v = tr(v) del state_dict[key] return v converted = {} converted["transformer.wte.weight"] = get_and_remove("tok_embeddings.weight") converted["lm_head.weight"] = get_and_remove("output.weight", transpose=True) converted["transformer.ln_f.scale"] = get_and_remove("norm.weight") for layer_idx in sorted(set([k.split(".")[1] for k in state_dict if k.startswith("layers")])): print(layer_idx) # attention # the wq, wk, wv from the FB model are stacked in our model as c_attn converted[f"transformer.h.{layer_idx}.attn.c_attn.weight"] = tr(np.concatenate( ( get_and_remove(f"layers.{layer_idx}.attention.wq.weight"), get_and_remove(f"layers.{layer_idx}.attention.wk.weight"), get_and_remove(f"layers.{layer_idx}.attention.wv.weight"), ) )) converted[f"transformer.h.{layer_idx}.attn.c_proj.weight"] = tr(get_and_remove( f"layers.{layer_idx}.attention.wo.weight" )) # mlp converted[f"transformer.h.{layer_idx}.mlp.c_fc1.weight"] = get_and_remove( f"layers.{layer_idx}.feed_forward.w1.weight", transpose=True, ) converted[f"transformer.h.{layer_idx}.mlp.c_proj.weight"] = get_and_remove( f"layers.{layer_idx}.feed_forward.w2.weight", transpose=True, ) converted[f"transformer.h.{layer_idx}.mlp.c_fc2.weight"] = get_and_remove( f"layers.{layer_idx}.feed_forward.w3.weight", transpose=True, ) # rms norm converted[f"transformer.h.{layer_idx}.rms_1.scale"] = get_and_remove(f"layers.{layer_idx}.attention_norm.weight") converted[f"transformer.h.{layer_idx}.rms_2.scale"] = get_and_remove(f"layers.{layer_idx}.ffn_norm.weight") return converted def convert_weights(llama_ckpt, *, output_npz: Path = Path("llama.npz"), dtype: str = "float32") -> None: dt = getattr(torch, dtype, None) if not isinstance(dt, torch.dtype): raise ValueError(f"{dtype} is not a valid dtype.") checkpoint = torch.load(llama_ckpt, map_location="cpu") converted = convert_state_dict(checkpoint, dtype=dt) del checkpoint np.savez(output_npz, **converted) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError(f"usage: convert_checkpoint.py ..../LLaMA/7B/consolidated.00.pth") convert_weights(sys.argv[1])