use anyhow::Result; use candle::Tensor; const MAX_SEQ_LEN: usize = 5000; pub type VarBuilder<'a> = candle_nn::VarBuilder<'a>; pub type Linear = candle_nn::Linear; pub fn linear(size1: usize, size2: usize, bias: bool, vb: VarBuilder) -> Result { let weight = vb.get((size2, size1), "weight")?; let bias = if bias { Some(vb.get(size2, "bias")?) } else { None }; Ok(Linear::new(weight, bias)) } pub type LayerNorm = candle_nn::LayerNorm; pub fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result { let (weight, bias) = match (vb.get(size, "weight"), vb.get(size, "bias")) { (Ok(weight), Ok(bias)) => (weight, bias), (Err(err), _) | (_, Err(err)) => { if let (Ok(weight), Ok(bias)) = (vb.get(size, "gamma"), vb.get(size, "beta")) { (weight, bias) } else { return Err(err.into()); } } }; Ok(LayerNorm::new(weight, bias, eps)) } #[derive(Debug)] pub struct Dropout { pr: f64, } impl Dropout { pub fn new(pr: f64) -> Self { Self { pr } } pub fn forward(&self, x: &Tensor) -> Result { // TODO Ok(x.clone()) } } pub type Embedding = candle_nn::Embedding; pub fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result { let embeddings = vb.get((vocab_size, hidden_size), "weight")?; Ok(Embedding::new(embeddings, hidden_size)) } pub type Conv1d = candle_nn::Conv1d; pub type Conv1dConfig = candle_nn::Conv1dConfig; // Applies weight norm for inference by recomputing the weight tensor. This // does not apply to training. // https://pytorch.org/docs/stable/generated/torch.nn.utils.weight_norm.html pub fn conv1d_weight_norm( in_c: usize, out_c: usize, kernel_size: usize, config: Conv1dConfig, vb: VarBuilder, ) -> Result { let weight_g = vb.get((out_c, 1, 1), "weight_g")?; let weight_v = vb.get((out_c, in_c, kernel_size), "weight_v")?; let norm_v = (&weight_v * &weight_v)?.sum(&[1, 2])?.sqrt()?; let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?; let bias = vb.get(out_c, "bias")?; Ok(Conv1d::new(weight, Some(bias), config)) } pub fn conv1d( in_c: usize, out_c: usize, kernel_size: usize, config: Conv1dConfig, vb: VarBuilder, ) -> Result { let weight = vb.get((out_c, in_c, kernel_size), "weight")?; let bias = vb.get(out_c, "bias")?; Ok(Conv1d::new(weight, Some(bias), config)) } pub type HiddenAct = candle_nn::Activation;