use candle::{DType, IndexOp, Result, Tensor, D}; use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder}; #[derive(Debug)] struct PatchEmbed { proj: candle_nn::Conv2d, } impl PatchEmbed { fn new( in_chans: usize, embed_dim: usize, k_size: usize, stride: usize, padding: usize, vb: VarBuilder, ) -> Result { let cfg = candle_nn::Conv2dConfig { stride, padding, ..Default::default() }; let proj = candle_nn::conv2d(in_chans, embed_dim, k_size, cfg, vb.pp("proj"))?; Ok(Self { proj }) } } impl Module for PatchEmbed { fn forward(&self, xs: &Tensor) -> Result { xs.apply(&self.proj)?.permute((0, 2, 3, 1)) } } #[derive(Debug)] struct Attention { qkv: Linear, proj: Linear, num_heads: usize, scale: f64, use_rel_pos: bool, rel_pos_hw: Option<(Tensor, Tensor)>, } impl Attention { fn new( dim: usize, num_heads: usize, qkv_bias: bool, use_rel_pos: bool, window_size: usize, vb: VarBuilder, ) -> Result { let qkv = crate::linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?; let proj = crate::linear(vb.pp("proj"), dim, dim, true)?; let head_dim = dim / num_heads; let scale = 1. / (head_dim as f64).sqrt(); let rel_pos_hw = if use_rel_pos { let h = vb.get((2 * window_size - 1, head_dim), "rel_pos_h")?; let w = vb.get((2 * window_size - 1, head_dim), "rel_pos_w")?; Some((h, w)) } else { None }; Ok(Self { qkv, proj, num_heads, scale, use_rel_pos, rel_pos_hw, }) } } impl Module for Attention { fn forward(&self, xs: &Tensor) -> Result { let (b, h, w, c) = xs.dims4()?; let qkv = self .qkv .forward(xs)? .reshape((b, h * w, 3, self.num_heads, c / self.num_heads))? .permute((2, 0, 3, 1, 4))? .reshape((3, b * self.num_heads, h * w, c / self.num_heads))?; let q = qkv.i(0)?; let k = qkv.i(1)?; let v = qkv.i(2)?; let attn = (q * self.scale)?.matmul(&k.t()?)?; if self.use_rel_pos { todo!() } let attn = candle_nn::ops::softmax_last_dim(&attn)?; let attn = attn .matmul(&v)? .reshape((b, self.num_heads, h, w, c / self.num_heads))? .permute((0, 2, 3, 1, 4))? .reshape((b, h, w, c / self.num_heads))?; self.proj.forward(&attn) } } #[derive(Debug)] struct Block { norm1: LayerNorm, attn: Attention, norm2: LayerNorm, mlp: crate::MlpBlock, window_size: usize, } impl Block { fn new( dim: usize, num_heads: usize, qkv_bias: bool, use_rel_pos: bool, window_size: usize, vb: VarBuilder, ) -> Result { let norm1 = layer_norm(dim, 1e-5, vb.pp("norm1"))?; let norm2 = layer_norm(dim, 1e-5, vb.pp("norm2"))?; let attn = Attention::new( dim, num_heads, qkv_bias, use_rel_pos, window_size, vb.pp("attn"), )?; let mlp = crate::MlpBlock::new(dim, dim * 4, vb.pp("mlp"))?; Ok(Self { norm1, attn, norm2, mlp, window_size, }) } } impl Module for Block { fn forward(&self, xs: &Tensor) -> Result { let shortcut = xs; let xs = self.norm1.forward(xs)?; if self.window_size > 0 { todo!() } let xs = self.attn.forward(&xs)?; if self.window_size > 0 { todo!() } let xs = (xs + shortcut)?; &xs + xs.apply(&self.norm2)?.apply(&self.mlp)? } } #[derive(Debug)] struct ImageEncoderViT { img_size: usize, patch_embed: PatchEmbed, blocks: Vec, neck_conv1: candle_nn::Conv2d, neck_ln1: LayerNorm, neck_conv2: candle_nn::Conv2d, neck_ln2: LayerNorm, pos_embed: Option, } impl ImageEncoderViT { #[allow(clippy::too_many_arguments)] fn new( img_size: usize, patch_size: usize, in_chans: usize, embed_dim: usize, depth: usize, num_heads: usize, out_chans: usize, qkv_bias: bool, use_rel_pos: bool, use_abs_pos: bool, window_size: usize, vb: VarBuilder, ) -> Result { let patch_embed = PatchEmbed::new( in_chans, embed_dim, patch_size, patch_size, 0, vb.pp("patch_embed"), )?; let mut blocks = Vec::with_capacity(depth); let vb_b = vb.pp("blocks"); for i in 0..depth { let block = Block::new( embed_dim, num_heads, qkv_bias, use_rel_pos, window_size, vb_b.pp(i), )?; blocks.push(block) } let neck_conv1 = candle_nn::conv2d_no_bias( embed_dim, out_chans, 1, Default::default(), vb.pp("neck.0"), )?; let neck_ln1 = layer_norm(out_chans, 1e-6, vb.pp("neck.1"))?; let cfg = candle_nn::Conv2dConfig { padding: 1, ..Default::default() }; let neck_conv2 = candle_nn::conv2d_no_bias(out_chans, out_chans, 3, cfg, vb.pp("neck.2"))?; let neck_ln2 = layer_norm(out_chans, 1e-6, vb.pp("neck.3"))?; let pos_embed = if use_abs_pos { let p = vb.get( (1, img_size / patch_size, img_size / patch_size, embed_dim), "pos_embed", )?; Some(p) } else { None }; Ok(Self { img_size, patch_embed, blocks, neck_conv1, neck_ln1, neck_conv2, neck_ln2, pos_embed, }) } } impl Module for ImageEncoderViT { fn forward(&self, xs: &Tensor) -> Result { let xs = self.patch_embed.forward(xs)?; let mut xs = match &self.pos_embed { Some(pos_embed) => (xs + pos_embed)?, None => xs, }; for block in self.blocks.iter() { xs = block.forward(&xs)? } xs.permute((0, 3, 1, 2))? .apply(&self.neck_conv1)? .apply(&self.neck_ln1)? .apply(&self.neck_conv2)? .apply(&self.neck_ln2) } }