#[cfg(feature = "accelerate")] extern crate accelerate_src; #[cfg(feature = "mkl")] extern crate intel_mkl_src; use anyhow::Result; use candle_core::{Device, Tensor}; fn cuda_graph() -> Result<()> { let device = Device::new_cuda_with_stream(0)?; let cu_device = match &device { Device::Cuda(dev) => dev, _ => unreachable!(), }; let cu_stream = cu_device.cu_stream(); { // load_ptx cannot be called while capturing the stream so we need this to happen // beforehand. let x = Tensor::zeros(16, candle_core::DType::F32, &device)?; let y = Tensor::zeros(16, candle_core::DType::F32, &device)?; y.slice_set(&x, 0, 0)?; device.synchronize()?; } unsafe { cudarc::driver::sys::lib() .cuStreamBeginCapture_v2( *cu_stream, cudarc::driver::sys::CUstreamCaptureMode_enum::CU_STREAM_CAPTURE_MODE_THREAD_LOCAL, ) .result()? }; { let x = Tensor::zeros(16, candle_core::DType::F32, &device)?; let y = Tensor::zeros(16, candle_core::DType::F32, &device)?; y.slice_set(&x, 0, 0)?; // let y = x.affine(2., 1.)?; } let cu_graph = unsafe { let mut cu_graph = std::mem::MaybeUninit::uninit(); cudarc::driver::sys::lib() .cuStreamEndCapture(*cu_stream, cu_graph.as_mut_ptr()) .result()?; cu_graph.assume_init() }; let cu_graph_e = unsafe { let mut cu_graph_e = std::mem::MaybeUninit::uninit(); cudarc::driver::sys::lib() .cuGraphInstantiateWithFlags(cu_graph_e.as_mut_ptr(), cu_graph, 0) .result()?; cu_graph_e.assume_init() }; for _i in 0..100 { unsafe { cudarc::driver::sys::lib() .cuGraphLaunch(cu_graph_e, *cu_stream) .result()? } } Ok(()) } fn main() -> Result<()> { cuda_graph()?; return Ok(()); let device = Device::new_cuda_with_stream(0)?; let x = Tensor::randn(0f32, 1.0, (8 * 4096, 8 * 4096), &device)? .to_dtype(candle_core::DType::BF16)?; candle_core::cuda::set_gemm_reduced_precision_f32(false); candle_core::cuda::set_gemm_reduced_precision_bf16(false); let _x1 = x.matmul(&x)?; drop(_x1); let start_time = std::time::Instant::now(); let _x1 = x.matmul(&x)?; device.synchronize()?; println!("fp32: {:?}", start_time.elapsed()); drop(_x1); candle_core::cuda::set_gemm_reduced_precision_f32(true); candle_core::cuda::set_gemm_reduced_precision_bf16(true); let _x1 = x.matmul(&x)?; drop(_x1); let start_time = std::time::Instant::now(); let _x1 = x.matmul(&x)?; device.synchronize()?; println!("tf32: {:?}", start_time.elapsed()); drop(_x1); Ok(()) }