#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use clap::{Parser, ValueEnum}; use candle::{DType, IndexOp, D}; use candle_nn::{Module, VarBuilder}; use candle_transformers::models::mobilenetv4; #[derive(Clone, Copy, Debug, ValueEnum)] enum Which { Small, Medium, Large, HybridMedium, HybridLarge, } impl Which { fn model_filename(&self) -> String { let name = match self { Self::Small => "conv_small.e2400_r224", Self::Medium => "conv_medium.e500_r256", Self::HybridMedium => "hybrid_medium.ix_e550_r256", Self::Large => "conv_large.e600_r384", Self::HybridLarge => "hybrid_large.ix_e600_r384", }; format!("timm/mobilenetv4_{}_in1k", name) } fn resolution(&self) -> u32 { match self { Self::Small => 224, Self::Medium => 256, Self::HybridMedium => 256, Self::Large => 384, Self::HybridLarge => 384, } } fn config(&self) -> mobilenetv4::Config { match self { Self::Small => mobilenetv4::Config::small(), Self::Medium => mobilenetv4::Config::medium(), Self::HybridMedium => mobilenetv4::Config::hybrid_medium(), Self::Large => mobilenetv4::Config::large(), Self::HybridLarge => mobilenetv4::Config::hybrid_large(), } } } #[derive(Parser)] struct Args { #[arg(long)] model: Option, #[arg(long)] image: String, /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, #[arg(value_enum, long, default_value_t=Which::Small)] which: Which, } pub fn main() -> anyhow::Result<()> { let args = Args::parse(); let device = candle_examples::device(args.cpu)?; let image = candle_examples::imagenet::load_image(args.image, args.which.resolution() as usize)? .to_device(&device)?; println!("loaded image {image:?}"); let model_file = match args.model { None => { let model_name = args.which.model_filename(); let api = hf_hub::api::sync::Api::new()?; let api = api.model(model_name); api.get("model.safetensors")? } Some(model) => model.into(), }; let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? }; let model = mobilenetv4::mobilenetv4(&args.which.config(), 1000, vb)?; println!("model built"); let logits = model.forward(&image.unsqueeze(0)?)?; let prs = candle_nn::ops::softmax(&logits, D::Minus1)? .i(0)? .to_vec1::()?; let mut prs = prs.iter().enumerate().collect::>(); prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1)); for &(category_idx, pr) in prs.iter().take(5) { println!( "{:24}: {:.2}%", candle_examples::imagenet::CLASSES[category_idx], 100. * pr ); } Ok(()) }