# Generated content DO NOT EDIT from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Sequence from os import PathLike from candle.typing import _ArrayLike, Device, Scalar, Index, Shape from candle import Tensor, DType, QTensor class ONNXModel: """ A wrapper around an ONNX model. """ def __init__(self, path: str): pass @property def doc_string(self) -> str: """ The doc string of the model. """ pass @property def domain(self) -> str: """ The domain of the operator set of the model. """ pass def initializers(self) -> Dict[str, Tensor]: """ Get the weights of the model. """ pass @property def inputs(self) -> Optional[Dict[str, ONNXTensorDescription]]: """ The inputs of the model. """ pass @property def ir_version(self) -> int: """ The version of the IR this model targets. """ pass @property def model_version(self) -> int: """ The version of the model. """ pass @property def outputs(self) -> Optional[Dict[str, ONNXTensorDescription]]: """ The outputs of the model. """ pass @property def producer_name(self) -> str: """ The producer of the model. """ pass @property def producer_version(self) -> str: """ The version of the producer of the model. """ pass def run(self, inputs: Dict[str, Tensor]) -> Dict[str, Tensor]: """ Run the model on the given inputs. """ pass class ONNXTensorDescription: """ A wrapper around an ONNX tensor description. """ @property def dtype(self) -> DType: """ The data type of the tensor. """ pass @property def shape(self) -> Tuple[Union[int, str, Any]]: """ The shape of the tensor. """ pass