//! DINOv2: Learning Robust Visual Features without Supervision //! https://github.com/facebookresearch/dinov2 #[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use clap::Parser; use candle::{DType, IndexOp, Result, Tensor, D}; use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder}; const IMG_SIZE: usize = 518; const PATCH_SIZE: usize = 14; const NUM_CLASSES: usize = 1000; fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result { if bias { candle_nn::linear(in_dim, out_dim, vb) } else { candle_nn::linear_no_bias(in_dim, out_dim, vb) } } #[derive(Debug)] struct Attention { qkv: Linear, proj: Linear, num_heads: usize, scale: f64, } impl Attention { fn new( vb: VarBuilder, dim: usize, num_heads: usize, qkv_bias: bool, proj_bias: bool, ) -> Result { let qkv = linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?; let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?; let scale = 1. / ((dim / num_heads) as f64).sqrt(); Ok(Self { qkv, proj, num_heads, scale, }) } } impl Module for Attention { fn forward(&self, xs: &Tensor) -> Result { let (b, n, c) = xs.dims3()?; let qkv = self .qkv .forward(xs)? .reshape((b, n, 3, self.num_heads, c / self.num_heads))? .transpose(1, 2)? // 02134 .transpose(0, 1)? // 20134 .transpose(2, 3)?; // 20314 let q = (qkv.i(0)? * self.scale)?; let k = qkv.i(1)?; let v = qkv.i(2)?; let attn = candle_nn::ops::softmax(&q.matmul(&k.t()?)?, D::Minus1)?; let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?; self.proj.forward(&attn) } } #[derive(Debug)] struct LayerScale { gamma: Tensor, } impl LayerScale { fn new(vb: VarBuilder, dim: usize) -> Result { let gamma = vb.get(dim, "gamma")?; Ok(Self { gamma }) } } impl Module for LayerScale { fn forward(&self, xs: &Tensor) -> Result { xs.broadcast_mul(&self.gamma) } } #[derive(Debug)] struct Mlp { fc1: Linear, fc2: Linear, } impl Mlp { fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result { let out_features = in_features; let fc1 = linear(vb.pp("fc1"), in_features, hidden_features, bias)?; let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?; Ok(Self { fc1, fc2 }) } } impl Module for Mlp { fn forward(&self, xs: &Tensor) -> Result { let xs = self.fc1.forward(xs)?.gelu()?; self.fc2.forward(&xs) } } #[derive(Debug)] struct Block { norm1: LayerNorm, attn: Attention, ls1: LayerScale, norm2: LayerNorm, mlp: Mlp, ls2: LayerScale, } impl Block { fn new(vb: VarBuilder, dim: usize, num_heads: usize) -> Result { let norm1 = layer_norm(dim, 1e-5, vb.pp("norm1"))?; let attn = Attention::new(vb.pp("attn"), dim, num_heads, true, true)?; let ls1 = LayerScale::new(vb.pp("ls1"), dim)?; let norm2 = layer_norm(dim, 1e-5, vb.pp("norm2"))?; let mlp = Mlp::new(vb.pp("mlp"), dim, dim * 4, true)?; let ls2 = LayerScale::new(vb.pp("ls2"), dim)?; Ok(Self { norm1, attn, ls1, norm2, mlp, ls2, }) } } impl Module for Block { fn forward(&self, xs: &Tensor) -> Result { let residual = xs; let xs = self .ls1 .forward(&self.attn.forward(&self.norm1.forward(xs)?)?)?; let xs = (xs + residual)?; let residual = &xs; let xs = self .ls2 .forward(&self.mlp.forward(&self.norm2.forward(&xs)?)?)?; xs + residual } } #[derive(Debug)] struct PatchEmbed { proj: candle_nn::Conv2d, patch_size: (usize, usize), num_patches: usize, } impl PatchEmbed { fn new( vb: VarBuilder, img_size: usize, patch_size: usize, in_chans: usize, embed_dim: usize, ) -> Result { let config = candle_nn::Conv2dConfig { stride: patch_size, ..Default::default() }; let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?; let num_patches = (img_size / patch_size) * (img_size / patch_size); Ok(Self { proj, patch_size: (patch_size, patch_size), num_patches, }) } } impl Module for PatchEmbed { fn forward(&self, xs: &Tensor) -> Result { let (_b, _c, h, w) = xs.dims4()?; let (patch_h, patch_w) = self.patch_size; if (h % patch_h) != 0 { candle::bail!("image height {h} is not a multiple of patch height {patch_h}") } if (w % patch_w) != 0 { candle::bail!("image width {w} is not a multiple of patch width {patch_w}") } let xs = self.proj.forward(xs)?; let (b, c, h, w) = xs.dims4()?; // flatten embeddings. xs.reshape((b, c, h * w))?.transpose(1, 2) } } #[derive(Debug)] pub struct DinoVisionTransformer { patch_embed: PatchEmbed, cls_token: Tensor, pos_embed: Tensor, blocks: Vec, norm: LayerNorm, head: Linear, } impl DinoVisionTransformer { pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result { let patch_embed = PatchEmbed::new(vb.pp("patch_embed"), IMG_SIZE, PATCH_SIZE, 3, embed_dim)?; let cls_token = vb.get((1, 1, embed_dim), "cls_token")?; let num_tokens = 1; let pos_embed = vb.get( (1, patch_embed.num_patches + num_tokens, embed_dim), "pos_embed", )?; let head = linear(vb.pp("head"), 2 * embed_dim, NUM_CLASSES, true)?; let norm = layer_norm(embed_dim, 1e-5, vb.pp("norm"))?; let vb_b = vb.pp("blocks"); let blocks = (0..depth) .map(|i| Block::new(vb_b.pp(&i.to_string()), embed_dim, num_heads)) .collect::>>()?; Ok(Self { patch_embed, cls_token, pos_embed, blocks, norm, head, }) } fn interpolate_pos_encoding(&self, xs: &Tensor, w: usize, h: usize) -> Result { let npatch = xs.dim(1)? - 1; let n = self.pos_embed.dim(1)? - 1; let sqrt_n = (n as f64).sqrt(); if npatch == n && w == h { return Ok(xs.clone()); } let class_pos_embed = self.pos_embed.i((.., ..1))?; let patch_pos_embed = self.pos_embed.i((.., 1..))?; let dim = xs.dim(D::Minus1)?; let (w0, h0) = ((w / PATCH_SIZE) as f64 + 0.1, (h / PATCH_SIZE) as f64 + 0.1); let patch_pos_embed = patch_pos_embed .reshape((1, sqrt_n as usize, sqrt_n as usize, dim))? .transpose(2, 3)? .transpose(1, 2)?; // This uses bicubic interpolation in the original implementation. let patch_pos_embed = patch_pos_embed.upsample_nearest2d(h0 as usize, w0 as usize)?; let el_count = patch_pos_embed.shape().elem_count(); let patch_pos_embed = patch_pos_embed .transpose(1, 2)? .transpose(2, 3)? .reshape((1, el_count / dim, dim))?; Tensor::cat(&[&class_pos_embed, &patch_pos_embed], 1) } fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result { let (_b, _nc, w, h) = xs.dims4()?; let xs = self.patch_embed.forward(xs)?; let xs = Tensor::cat(&[&self.cls_token, &xs], 1)?; &xs + &self.interpolate_pos_encoding(&xs, w, h)? } } impl Module for DinoVisionTransformer { fn forward(&self, xs: &Tensor) -> Result { let mut xs = self.prepare_tokens_with_mask(xs)?; for blk in self.blocks.iter() { xs = blk.forward(&xs)? } let xs = self.norm.forward(&xs)?; let xs_norm_clstoken = xs.i((.., 0))?; let xs_norm_patchtokens = xs.i((.., 1..))?.mean(1)?; let xs = Tensor::cat(&[xs_norm_clstoken, xs_norm_patchtokens], D::Minus1)?; self.head.forward(&xs) } } pub fn vit_small(vb: VarBuilder) -> Result { DinoVisionTransformer::new(vb, 12, 384, 6) } #[derive(Parser)] struct Args { #[arg(long)] model: String, #[arg(long)] image: String, /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, } pub fn main() -> anyhow::Result<()> { let args = Args::parse(); let device = candle_examples::device(args.cpu)?; let image = candle_examples::load_image224(args.image)?; println!("loaded image {image:?}"); let weights = unsafe { candle::safetensors::MmapedFile::new(args.model)? }; let weights = weights.deserialize()?; let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &device); let model = vit_small(vb)?; println!("model built"); let logits = model.forward(&image.unsqueeze(0)?)?; let prs = candle_nn::ops::softmax(&logits, D::Minus1)?; println!("{prs}"); Ok(()) }