#include "cuda_utils.cuh" #include #include const int BLOCK_SIZE = 1024; // TODO: Maybe add some fast_sum_f16_f32 variant that not only accumulate in f32 // but also expect a f32 output so that this can be used for normalization e.g. // in softmax. // Fast reduce sum kernel, this assumes that the dimensions to loop over are at // the end, each block is responsible for populating one value in the output // array. There are at most 1024 threads per block. template __device__ void fast_sum(const size_t src_numel, const size_t el_to_sum_per_block, const size_t num_dims, const size_t *info, const T *src, T *dst) { const size_t *dims = info; const size_t *strides = info + num_dims; __shared__ T shr[BLOCK_SIZE]; size_t tid = threadIdx.x; size_t dst_id = blockIdx.x; shr[tid] = 0; // Elements summed in this block range from dst_id * el_to_sum_per_block // to (dst_id + 1) * el_to_sum_per_block. size_t start_idx = dst_id * el_to_sum_per_block; size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); size_t idx = start_idx + tid; while (idx < stop_idx) { // TODO: Fast version for the contiguous case. size_t strided_i = get_strided_index(idx, num_dims, dims, strides); shr[tid] += src[strided_i]; idx += blockDim.x; } // Parallel reduction, see the slides: // https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf // https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce for (int s = blockDim.x / 2; s > 0; s >>= 1) { __syncthreads(); if (tid < s) shr[tid] += shr[tid + s]; } if (tid == 0) dst[dst_id] = shr[0]; } // Softmax implementation adapted from ggml. // https://github.com/ggerganov/llama.cpp/blob/d59bd97065cd7ded6c4ecab54b1d5e0b1b11e318/ggml-cuda.cu#L4159 template __device__ void softmax(const T * x, T * dst, const int ncols) { const int row = blockDim.x*blockIdx.x + threadIdx.x; const int block_size = blockDim.y; const int tid = threadIdx.y; T max_val = -INFINITY; for (int col = tid; col < ncols; col += block_size) { const int i = row*ncols + col; max_val = maxg(max_val, x[i]); } // find the max value in the block #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { max_val = maxg(max_val, __shfl_xor_sync(0xffffffff, max_val, mask, 32)); } ACC tmp = 0.; for (int col = tid; col < ncols; col += block_size) { const int i = row*ncols + col; const T val = expg(x[i] - max_val); tmp += static_cast(val); dst[i] = val; } // sum up partial sums #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); } const ACC inv_tmp = 1. / tmp; for (int col = tid; col < ncols; col += block_size) { const int i = row*ncols + col; dst[i] *= inv_tmp; } } template __device__ void fast_max(const size_t src_numel, const size_t el_to_sum_per_block, const size_t num_dims, const size_t *info, const T *src, T *dst) { const size_t *dims = info; const size_t *strides = info + num_dims; __shared__ T shr[BLOCK_SIZE]; size_t tid = threadIdx.x; size_t dst_id = blockIdx.x; shr[tid] = -INFINITY; // Elements summed in this block range from dst_id * el_to_sum_per_block // to (dst_id + 1) * el_to_sum_per_block. size_t start_idx = dst_id * el_to_sum_per_block; size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); size_t idx = start_idx + tid; while (idx < stop_idx) { // TODO: Fast version for the contiguous case. size_t strided_i = get_strided_index(idx, num_dims, dims, strides); shr[tid] = maxg(shr[tid], src[strided_i]); idx += blockDim.x; } // Parallel reduction, see the slides: // https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf // https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce for (int s = blockDim.x / 2; s > 0; s >>= 1) { __syncthreads(); if (tid < s) shr[tid] = maxg(shr[tid], shr[tid + s]); } if (tid == 0) dst[dst_id] = shr[0]; } template __device__ void fast_min(const size_t src_numel, const size_t el_to_sum_per_block, const size_t num_dims, const size_t *info, const T *src, T *dst) { const size_t *dims = info; const size_t *strides = info + num_dims; __shared__ T shr[BLOCK_SIZE]; size_t tid = threadIdx.x; size_t dst_id = blockIdx.x; shr[tid] = INFINITY; // Elements summed in this block range from dst_id * el_to_sum_per_block // to (dst_id + 1) * el_to_sum_per_block. size_t start_idx = dst_id * el_to_sum_per_block; size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); size_t idx = start_idx + tid; while (idx < stop_idx) { // TODO: Fast version for the contiguous case. size_t strided_i = get_strided_index(idx, num_dims, dims, strides); shr[tid] = ming(shr[tid], src[strided_i]); idx += blockDim.x; } // Parallel reduction, see the slides: // https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf // https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce for (int s = blockDim.x / 2; s > 0; s >>= 1) { __syncthreads(); if (tid < s) shr[tid] = ming(shr[tid], shr[tid + s]); } if (tid == 0) dst[dst_id] = shr[0]; } template __device__ void fast_argmin(const size_t src_numel, const size_t el_to_sum_per_block, const size_t num_dims, const size_t *info, const T *src, uint32_t *dst) { const size_t *dims = info; const size_t *strides = info + num_dims; __shared__ T shr[BLOCK_SIZE]; __shared__ uint32_t shr_index[BLOCK_SIZE]; size_t tid = threadIdx.x; size_t dst_id = blockIdx.x; // Not sure how that works on uint32_t and uint8_t but it seems to do ok. shr[tid] = INFINITY; shr_index[tid] = 0xFFFFFFFF; bool not_set = true; // Elements summed in this block range from dst_id * el_to_sum_per_block // to (dst_id + 1) * el_to_sum_per_block. size_t start_idx = dst_id * el_to_sum_per_block; size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); size_t idx = start_idx + tid; while (idx < stop_idx) { // TODO: Fast version for the contiguous case. size_t strided_i = get_strided_index(idx, num_dims, dims, strides); if (not_set || src[strided_i] < shr[tid]) { shr[tid] = src[strided_i]; // Assume that the reduction takes place over the last dimension which is contiguous. shr_index[tid] = idx % dims[num_dims - 1]; not_set = false; } idx += blockDim.x; } // Parallel reduction, see the slides: // https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf // https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce for (int s = blockDim.x / 2; s > 0; s >>= 1) { __syncthreads(); if (tid < s && shr[tid + s] < shr[tid]) { shr[tid] = shr[tid + s]; shr_index[tid] = shr_index[tid + s]; } } if (tid == 0) dst[dst_id] = shr_index[0]; } template __device__ void fast_argmax(const size_t src_numel, const size_t el_to_sum_per_block, const size_t num_dims, const size_t *info, const T *src, uint32_t *dst) { const size_t *dims = info; const size_t *strides = info + num_dims; __shared__ T shr[BLOCK_SIZE]; __shared__ uint32_t shr_index[BLOCK_SIZE]; size_t tid = threadIdx.x; size_t dst_id = blockIdx.x; shr[tid] = -INFINITY; shr_index[tid] = 0xFFFFFFFF; bool not_set = true; // Elements summed in this block range from dst_id * el_to_sum_per_block // to (dst_id + 1) * el_to_sum_per_block. size_t start_idx = dst_id * el_to_sum_per_block; size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); size_t idx = start_idx + tid; while (idx < stop_idx) { // TODO: Fast version for the contiguous case. size_t strided_i = get_strided_index(idx, num_dims, dims, strides); if (not_set || src[strided_i] > shr[tid]) { shr[tid] = src[strided_i]; // Assume that the reduction takes place over the last dimension which is contiguous. shr_index[tid] = idx % dims[num_dims - 1]; not_set = false; } idx += blockDim.x; } // Parallel reduction, see the slides: // https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf // https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce for (int s = blockDim.x / 2; s > 0; s >>= 1) { __syncthreads(); if (tid < s && shr[tid + s] > shr[tid]) { shr[tid] = shr[tid + s]; shr_index[tid] = shr_index[tid + s]; } } if (tid == 0) dst[dst_id] = shr_index[0]; } #define FAST_OP(TYPENAME, MIN_NAME, MAX_NAME, ARGMIN_NAME, ARGMAX_NAME, SUM_NAME) \ extern "C" __global__ void ARGMIN_NAME( \ const size_t src_numel, const size_t el_to_sum_per_block, \ const size_t num_dims, const size_t *info, const TYPENAME *src, \ uint32_t *dst) { \ fast_argmin(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \ } \ extern "C" __global__ void ARGMAX_NAME( \ const size_t src_numel, const size_t el_to_sum_per_block, \ const size_t num_dims, const size_t *info, const TYPENAME *src, \ uint32_t *dst) { \ fast_argmax(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \ } \ extern "C" __global__ void MIN_NAME( \ const size_t src_numel, const size_t el_to_sum_per_block, \ const size_t num_dims, const size_t *info, const TYPENAME *src, \ TYPENAME *dst) { \ fast_min(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \ } \ extern "C" __global__ void MAX_NAME( \ const size_t src_numel, const size_t el_to_sum_per_block, \ const size_t num_dims, const size_t *info, const TYPENAME *src, \ TYPENAME *dst) { \ fast_max(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \ } \ extern "C" __global__ void SUM_NAME( \ const size_t src_numel, const size_t el_to_sum_per_block, \ const size_t num_dims, const size_t *info, const TYPENAME *src, \ TYPENAME *dst) { \ fast_sum(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \ } #define SUM_OP(TYPENAME, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const size_t numel, const size_t num_dims, const size_t num_sum_dims, \ const size_t *info, const TYPENAME *inp, TYPENAME *out) { \ const size_t *dims = info; \ const size_t *strides = info + num_dims; \ const size_t *sum_dims_l = info + 2 * num_dims; \ const size_t *sum_dims_s = info + 2 * num_dims + num_sum_dims; \ if (is_contiguous(num_dims, dims, strides)) { \ for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; \ i += blockDim.x * gridDim.x) { \ size_t dst_index = i; \ for (unsigned int nd = 0; nd < num_sum_dims; ++nd) { \ size_t stride = sum_dims_s[nd]; \ size_t pre = dst_index / stride; \ size_t post = dst_index % stride; \ dst_index = (pre / sum_dims_l[nd]) * stride + post; \ } \ atomicAdd(out + dst_index, inp[i]); \ } \ } else { \ for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; \ i += blockDim.x * gridDim.x) { \ unsigned strided_i = get_strided_index(i, num_dims, dims, strides); \ size_t dst_index = i; \ for (unsigned int nd = 0; nd < num_sum_dims; ++nd) { \ size_t stride = sum_dims_s[nd]; \ size_t pre = dst_index / stride; \ size_t post = dst_index % stride; \ dst_index = (pre / sum_dims_l[nd]) * stride + post; \ } \ atomicAdd(out + dst_index, inp[strided_i]); \ } \ } \ } #define SOFTMAX_OP(TYPENAME, ACC_TYPENAME, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const TYPENAME *src, TYPENAME *dst, \ const int n_cols) { \ softmax(src, dst, n_cols); \ } \ #if __CUDA_ARCH__ >= 800 SOFTMAX_OP(__nv_bfloat16, float, softmax_bf16) SUM_OP(__nv_bfloat16, sum_bf16) FAST_OP(__nv_bfloat16, fast_min_bf16, fast_max_bf16, fast_argmin_bf16, fast_argmax_bf16, fast_sum_bf16) #endif #if __CUDA_ARCH__ >= 530 SOFTMAX_OP(__half, float, softmax_f16) SUM_OP(__half, sum_f16) FAST_OP(__half, fast_min_f16, fast_max_f16, fast_argmin_f16, fast_argmax_f16, fast_sum_f16) #endif SUM_OP(float, sum_f32) SUM_OP(double, sum_f64) SUM_OP(uint32_t, sum_u32) SOFTMAX_OP(float, float, softmax_f32) SOFTMAX_OP(double, double, softmax_f64) FAST_OP(float, fast_min_f32, fast_max_f32, fast_argmin_f32, fast_argmax_f32, fast_sum_f32) FAST_OP(double, fast_min_f64, fast_max_f64, fast_argmin_f64, fast_argmax_f64, fast_sum_f64) FAST_OP(uint32_t, fast_min_u32, fast_max_u32, fast_argmin_u32, fast_argmax_u32, fast_sum_u32) FAST_OP(int64_t, fast_min_i64, fast_max_i64, fast_argmin_i64, fast_argmax_i64, fast_sum_i64) FAST_OP(uint8_t, fast_min_u8, fast_max_u8, fast_argmin_u8, fast_argmax_u8, fast_sum_u8)