mod test_utils; use candle_core::{Device, Tensor}; // https://github.com/huggingface/candle/issues/364 #[test] fn avg_pool2d() -> anyhow::Result<()> { let data: Vec = vec![ 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ]; let t = Tensor::from_vec(data, (1, 1, 4, 4), &Device::Cpu)?; let pool = t.avg_pool2d((2, 2), (2, 2))?.squeeze(0)?.squeeze(0)?; assert_eq!(pool.to_vec2::()?, [[0.5f32, 1.], [1., 1.]]); Ok(()) } #[test] fn max_pool2d() -> anyhow::Result<()> { let data: Vec = vec![ 1., 2., 1., 3., 0., 0., 1., 1., 1., 1., 1., 1., 5., 1., 1., 1., ]; let t = Tensor::from_vec(data, (1, 1, 4, 4), &Device::Cpu)?; let pool = t.max_pool2d((2, 2), (2, 2))?.squeeze(0)?.squeeze(0)?; assert_eq!(pool.to_vec2::()?, [[2f32, 3.], [5., 1.]]); Ok(()) } /* This test corresponds to the following PyTorch script. import torch torch.manual_seed(4242) t = torch.randn((1, 2, 4, 4)) print(t.flatten()) res = torch.nn.functional.avg_pool2d(t, 2) print(res) */ #[test] fn avg_pool2d_pytorch() -> anyhow::Result<()> { let t = Tensor::new( &[ 0.4056f32, -0.8689, -0.0773, -1.5630, -2.8012, -1.5059, 0.3972, 1.0852, 0.4997, 3.0616, 1.6541, 0.0964, -0.8338, -1.6523, -0.8323, -0.1699, 0.0823, 0.3526, 0.6843, 0.2395, 1.2279, -0.9287, -1.7030, 0.1370, 0.6047, 0.3770, -0.6266, 0.3529, 2.2013, -0.6836, 0.2477, 1.3127, ], &Device::Cpu, )? .reshape((1, 2, 4, 4))?; let pool = t.avg_pool2d((2, 2), (2, 2))?.squeeze(0)?; assert_eq!( test_utils::to_vec3_round(pool, 4)?, [ [[-1.1926, -0.0395], [0.2688, 0.1871]], [[0.1835, -0.1606], [0.6249, 0.3217]] ] ); let pool = t.avg_pool2d((3, 3), (3, 3))?.squeeze(0)?; assert_eq!(test_utils::to_vec3_round(pool, 4)?, [[[0.085]], [[0.0078]]]); Ok(()) }