use memmap2::MmapOptions; use candle::{Device, Result, Shape, Tensor, WithDType}; use std::fs::File; use std::path::PathBuf; use super::*; use safetensors::{SafeTensors, tensor::{Dtype, TensorView}}; use half::f16; fn convert<'a>(view: TensorView<'a>, device: &Device) -> Result{ match view.dtype(){ Dtype::F16 => { let v = view.data(); if (v.as_ptr() as usize) % 2 == 0 { // SAFETY This is safe because we just checked that this // was correctly aligned. let data: &[f16] = unsafe { std::slice::from_raw_parts(v.as_ptr() as *const f16, v.len() / 2) }; Tensor::from_slice(data, view.shape(), device) } else { let mut c = Vec::with_capacity(v.len() / 2); let mut i = 0; while i < v.len() { c.push(f16::from_le_bytes([v[i], v[i + 1]])); i += 2; } Tensor::from_slice(&c, view.shape(), device) } } dt => todo!("Unhandled dtype {dt:?}") } } pub struct VarBuilder<'a>{ routing: HashMap, safetensors: Vec>, device: Device, } impl<'a> VarBuilder<'a>{ pub fn new(safetensors: Vec>, device: Device) -> Self{ let mut routing = HashMap::new(); for (index, sf) in safetensors.iter().enumerate(){ for k in sf.names(){ routing.insert(k.to_string(), index); } } Self{ safetensors, device, routing } } pub fn get(&self, tensor_name: &str) -> Result{ // Unwrap or 0 just to let the proper error flow. let index = self.routing.get(tensor_name).unwrap_or(&0); let view = self.safetensors[*index].tensor(tensor_name).unwrap(); let tensor = convert(view, &self.device)?; Ok(tensor) } } impl Linear{ fn load(prefix: &str, vb: &VarBuilder) -> Result{ let weight = vb.get(&format!("{prefix}.weight"))?; Ok(Self::new(weight)) } fn load_multi(prefixes: &[&str], vb: &VarBuilder) -> Result{ let weights: Vec<_> = prefixes.iter().map(|p| vb.get(&format!("{p}.weight")).unwrap()).collect(); println!("shapes {:?}", weights.iter().map(|w| w.shape()).collect::>()); let weight = Tensor::cat(&weights, 0)?; Ok(Self::new(weight)) } } impl RmsNorm{ fn load(prefix: &str, vb: &VarBuilder) -> Result{ let scale = vb.get(&format!("{prefix}.weight"))?; Ok(Self::new(scale)) } } impl CausalSelfAttention{ fn load(prefix: &str, vb: &VarBuilder, cache: &Cache, config: &Config) -> Result{ let c_attn = Linear::load_multi(&[&format!("{prefix}.q_proj"), &format!("{prefix}.k_proj"), &format!("{prefix}.v_proj")], vb)?; let o_proj = Linear::load(&format!("{prefix}.o_proj"), vb)?; Ok(Self::new(c_attn,o_proj, config.n_head, cache)) } } impl Mlp{ fn load(prefix: &str, vb: &VarBuilder, config: &Config) -> Result{ let c_fc1 = Linear::load(&format!("{prefix}.gate_proj"), vb)?; let c_fc2 = Linear::load(&format!("{prefix}.up_proj"), vb)?; let c_proj = Linear::load(&format!("{prefix}.down_proj"), vb)?; Ok(Self::new(c_fc1, c_fc2, c_proj)) } } impl Block{ fn load(prefix: &str, vb: &VarBuilder, cache: &Cache, config: &Config) -> Result{ let attn = CausalSelfAttention::load(&format!("{prefix}.self_attn"), vb, cache, config)?; let mlp = Mlp::load(&format!("{prefix}.mlp"), vb, config)?; let input_layernorm = RmsNorm::load(&format!("{prefix}.input_layernorm"), vb)?; let post_attention_layernorm = RmsNorm::load(&format!("{prefix}.post_attention_layernorm"), vb)?; Ok(Self::new(input_layernorm, attn, post_attention_layernorm, mlp)) } } impl Llama{ pub fn load(device: &Device, filenames: &[PathBuf], cache: &Cache, config: &Config) -> Result{ let handles: Vec<_> = filenames.iter().map(|f| { let file = File::open(f).unwrap(); let buffer = unsafe { MmapOptions::new().map(&file).unwrap() }; buffer }).collect(); let tensors: Vec<_> = handles.iter().map(|h| { let tensors = SafeTensors::deserialize(h).unwrap(); tensors }).collect(); let vb = VarBuilder::new(tensors, device.clone()); let embedding = vb.get("model.embed_tokens.weight")?; let wte = Embedding::new(embedding); let lm_head = Linear::load("lm_head", &vb)?; let norm = RmsNorm::load("model.norm", &vb)?; let blocks: Vec<_> = (0..config.n_layer).map(|i| Block::load(&format!("model.layers.{i}"), &vb, cache, config).unwrap()).collect(); Ok(Self::new( wte, blocks, norm, lm_head )) } }