#![allow(dead_code)] #![allow(unused)] #[cfg(feature = "mkl")] extern crate intel_mkl_src; mod cuda_kernels; use clap::Parser; use candle::backend::BackendStorage; use candle::cpu_backend; use candle::{CpuStorage, CustomOp1, DType, Device, Error, Layout, Result, Shape, Tensor}; #[derive(Parser, Debug)] #[command(author, version, about, long_about = None)] struct Args { /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, } struct LayerNorm; impl CustomOp1 for LayerNorm { fn name(&self) -> &'static str { "layer-norm" } fn cpu_fwd(&self, s: &CpuStorage, l: &Layout) -> Result<(CpuStorage, Shape)> { let s = s.as_slice::()?; let _s = match l.contiguous_offsets() { None => Err(Error::Wrapped("input has to be contiguous".into()))?, Some((o1, o2)) => &s[o1..o2], }; todo!() } #[cfg(feature = "cuda")] fn cuda_fwd( &self, s: &candle::CudaStorage, l: &Layout, ) -> Result<(candle::CudaStorage, Shape)> { use candle::cuda_backend::{cudarc, WrapErr}; use cudarc::driver::{LaunchAsync, LaunchConfig}; let (d1, d2) = l.shape().dims2()?; let d1 = d1 as u32; let d2 = d2 as u32; let dev = s.device().clone(); let s = s.as_cuda_slice::()?; let s = match l.contiguous_offsets() { None => Err(Error::Wrapped("input has to be contiguous".into()))?, Some((o1, o2)) => s.slice(o1..o2), }; let elem_count = l.shape().elem_count(); let dst = unsafe { dev.alloc::(elem_count) }.w()?; let func = dev.get_or_load_func("rms_f32", cuda_kernels::LAYERNORM_KERNELS)?; let params = (&dst, &s, 1e-5f32, d1, d2); let cfg = LaunchConfig { grid_dim: (d1, 1, 1), block_dim: (d2, 1, 1), shared_mem_bytes: 0, }; unsafe { func.launch(cfg, params) }.w()?; let dst = candle::CudaStorage::wrap_cuda_slice(dst, dev); Ok((dst, l.shape().clone())) } } fn main() -> anyhow::Result<()> { let args = Args::parse(); let device = candle_examples::device(args.cpu)?; let t = Tensor::arange(0f32, 14f32, &device)?.reshape((2, 7))?; println!("{t}"); let t = t.custom_op1(LayerNorm)?; println!("{t}"); Ok(()) }