#![allow(dead_code)] use anyhow::Result; use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor}; use std::collections::HashMap; const MAX_SEQ_LEN: usize = 5000; pub struct VarBuilder<'a> { safetensors: Option<(HashMap, Vec>)>, dtype: DType, device: Device, } impl<'a> VarBuilder<'a> { pub fn from_safetensors( safetensors: Vec>, dtype: DType, device: &Device, ) -> Self { let mut routing = HashMap::new(); for (index, sf) in safetensors.iter().enumerate() { for k in sf.names() { routing.insert(k.to_string(), index); } } Self { safetensors: Some((routing, safetensors)), device: device.clone(), dtype, } } pub fn zeros(dtype: DType, device: &Device) -> Self { Self { safetensors: None, device: device.clone(), dtype, } } pub fn get>(&self, s: S, tensor_name: &str) -> candle::Result { let s: Shape = s.into(); match &self.safetensors { None => Tensor::zeros(s, self.dtype, &self.device), Some((routing, safetensors)) => { // Unwrap or 0 just to let the proper error flow. let index = routing.get(tensor_name).unwrap_or(&0); let tensor = safetensors[*index] .tensor(tensor_name, &self.device)? .to_dtype(self.dtype)?; if *tensor.shape() != s { let msg = format!("shape mismatch for {tensor_name}"); Err(candle::Error::UnexpectedShape { msg, expected: s, got: tensor.shape().clone(), })? } Ok(tensor) } } } } #[derive(Debug)] pub struct Linear { weight: Tensor, bias: Option, } impl Linear { pub fn load(size1: usize, size2: usize, bias: bool, p: &str, vb: &VarBuilder) -> Result { let weight = vb.get((size2, size1), &format!("{p}.weight"))?; let bias = if bias { Some(vb.get(size2, &format!("{p}.bias"))?) } else { None }; Ok(Self { weight, bias }) } pub fn forward(&self, x: &Tensor) -> candle::Result { let (bsize, _, _) = x.shape().r3()?; let w = self.weight.broadcast_left(bsize)?.t()?; let x = x.matmul(&w)?; match &self.bias { None => Ok(x), Some(bias) => x.broadcast_add(bias), } } } #[derive(Debug)] pub struct LayerNorm { weight: Tensor, bias: Tensor, eps: f64, } impl LayerNorm { pub fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self { Self { weight, bias, eps } } pub fn load(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result { let (weight, bias) = match ( vb.get(size, &format!("{p}.weight")), vb.get(size, &format!("{p}.bias")), ) { (Ok(weight), Ok(bias)) => (weight, bias), (Err(err), _) | (_, Err(err)) => { if let (Ok(weight), Ok(bias)) = ( vb.get(size, &format!("{p}.gamma")), vb.get(size, &format!("{p}.beta")), ) { (weight, bias) } else { return Err(err.into()); } } }; Ok(Self { weight, bias, eps }) } pub fn forward(&self, x: &Tensor) -> Result { let dtype = x.dtype(); let (_bsize, _seq_len, hidden_size) = x.shape().r3()?; let x = x.to_dtype(DType::F32)?; let mean_x = (x.sum(&[2])? / hidden_size as f64)?; let x = x.broadcast_sub(&mean_x)?; let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?; let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?; let x = x_normed .to_dtype(dtype)? .broadcast_mul(&self.weight)? .broadcast_add(&self.bias)?; Ok(x) } } #[derive(Debug)] pub struct Dropout { pr: f64, } impl Dropout { pub fn new(pr: f64) -> Self { Self { pr } } pub fn forward(&self, x: &Tensor) -> Result { // TODO Ok(x.clone()) } } #[derive(Debug)] pub struct Embedding { embeddings: Tensor, hidden_size: usize, } impl Embedding { pub fn new(embeddings: Tensor, hidden_size: usize) -> Self { Self { embeddings, hidden_size, } } pub fn load(vocab_size: usize, hidden_size: usize, p: &str, vb: &VarBuilder) -> Result { let embeddings = vb.get((vocab_size, hidden_size), &format!("{p}.weight"))?; Ok(Self::new(embeddings, hidden_size)) } pub fn forward(&self, indexes: &Tensor) -> Result { let mut final_dims = indexes.dims().to_vec(); final_dims.push(self.hidden_size); let indexes = indexes.flatten_all()?; let values = Tensor::embedding(&indexes, &self.embeddings)?; let values = values.reshape(final_dims)?; Ok(values) } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub struct ConvConfig { pub padding: usize, pub stride: usize, } #[derive(Debug)] pub struct Conv1D { weight: Tensor, bias: Option, config: ConvConfig, } impl Conv1D { // Applies weight norm for inference by recomputing the weight tensor. This // does not apply to training. // https://pytorch.org/docs/stable/generated/torch.nn.utils.weight_norm.html pub fn load_weight_norm( in_c: usize, out_c: usize, kernel_size: usize, config: ConvConfig, p: &str, vb: &VarBuilder, ) -> Result { let weight_g = vb.get((out_c, 1, 1), &format!("{p}.weight_g"))?; let weight_v = vb.get((out_c, in_c, kernel_size), &format!("{p}.weight_v"))?; let norm_v = (&weight_v * &weight_v)?.sum(&[1, 2])?.sqrt()?; let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?; let bias = vb.get(out_c, &format!("{p}.bias"))?; Ok(Self { weight, bias: Some(bias), config, }) } pub fn load( in_c: usize, out_c: usize, kernel_size: usize, config: ConvConfig, p: &str, vb: &VarBuilder, ) -> Result { let weight = vb.get((out_c, in_c, kernel_size), &format!("{p}.weight"))?; let bias = vb.get(out_c, &format!("{p}.bias"))?; Ok(Self { weight, bias: Some(bias), config, }) } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum HiddenAct { Gelu, Relu, } impl HiddenAct { pub fn forward(&self, xs: &Tensor) -> candle::Result { match self { Self::Gelu => xs.gelu(), Self::Relu => xs.relu(), } } }