mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
91 lines
2.7 KiB
Rust
91 lines
2.7 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use candle::{DType, IndexOp, D};
|
|
use candle_nn::{Module, VarBuilder};
|
|
use candle_transformers::models::resnet;
|
|
use clap::{Parser, ValueEnum};
|
|
|
|
#[derive(Clone, Copy, Debug, ValueEnum)]
|
|
enum Which {
|
|
#[value(name = "18")]
|
|
Resnet18,
|
|
#[value(name = "34")]
|
|
Resnet34,
|
|
#[value(name = "50")]
|
|
Resnet50,
|
|
#[value(name = "101")]
|
|
Resnet101,
|
|
#[value(name = "152")]
|
|
Resnet152,
|
|
}
|
|
|
|
#[derive(Parser)]
|
|
struct Args {
|
|
#[arg(long)]
|
|
model: Option<String>,
|
|
|
|
#[arg(long)]
|
|
image: String,
|
|
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Variant of the model to use.
|
|
#[arg(value_enum, long, default_value_t = Which::Resnet18)]
|
|
which: Which,
|
|
}
|
|
|
|
pub fn main() -> anyhow::Result<()> {
|
|
let args = Args::parse();
|
|
|
|
let device = candle_examples::device(args.cpu)?;
|
|
|
|
let image = candle_examples::imagenet::load_image224(args.image)?.to_device(&device)?;
|
|
println!("loaded image {image:?}");
|
|
|
|
let model_file = match args.model {
|
|
None => {
|
|
let api = hf_hub::api::sync::Api::new()?;
|
|
let api = api.model("lmz/candle-resnet".into());
|
|
let filename = match args.which {
|
|
Which::Resnet18 => "resnet18.safetensors",
|
|
Which::Resnet34 => "resnet34.safetensors",
|
|
Which::Resnet50 => "resnet50.safetensors",
|
|
Which::Resnet101 => "resnet101.safetensors",
|
|
Which::Resnet152 => "resnet152.safetensors",
|
|
};
|
|
api.get(filename)?
|
|
}
|
|
Some(model) => model.into(),
|
|
};
|
|
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
|
|
let class_count = candle_examples::imagenet::CLASS_COUNT as usize;
|
|
let model = match args.which {
|
|
Which::Resnet18 => resnet::resnet18(class_count, vb)?,
|
|
Which::Resnet34 => resnet::resnet34(class_count, vb)?,
|
|
Which::Resnet50 => resnet::resnet50(class_count, vb)?,
|
|
Which::Resnet101 => resnet::resnet101(class_count, vb)?,
|
|
Which::Resnet152 => resnet::resnet152(class_count, vb)?,
|
|
};
|
|
println!("model built");
|
|
let logits = model.forward(&image.unsqueeze(0)?)?;
|
|
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
|
|
.i(0)?
|
|
.to_vec1::<f32>()?;
|
|
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
|
|
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
|
|
for &(category_idx, pr) in prs.iter().take(5) {
|
|
println!(
|
|
"{:24}: {:.2}%",
|
|
candle_examples::imagenet::CLASSES[category_idx],
|
|
100. * pr
|
|
);
|
|
}
|
|
Ok(())
|
|
}
|