mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00
637 lines
22 KiB
Rust
637 lines
22 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use clap::{Parser, ValueEnum};
|
|
use std::io::Write;
|
|
use tokenizers::Tokenizer;
|
|
|
|
use candle::quantized::{ggml_file, gguf_file};
|
|
use candle::Tensor;
|
|
use candle_transformers::generation::{LogitsProcessor, Sampling};
|
|
|
|
use candle_examples::token_output_stream::TokenOutputStream;
|
|
use candle_transformers::models::quantized_llama as model;
|
|
use model::ModelWeights;
|
|
|
|
const DEFAULT_PROMPT: &str = "My favorite theorem is ";
|
|
|
|
#[derive(Debug)]
|
|
enum Prompt {
|
|
Interactive,
|
|
Chat,
|
|
One(String),
|
|
}
|
|
|
|
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
|
|
enum Which {
|
|
#[value(name = "7b")]
|
|
L7b,
|
|
#[value(name = "13b")]
|
|
L13b,
|
|
#[value(name = "70b")]
|
|
L70b,
|
|
#[value(name = "7b-chat")]
|
|
L7bChat,
|
|
#[value(name = "13b-chat")]
|
|
L13bChat,
|
|
#[value(name = "70b-chat")]
|
|
L70bChat,
|
|
#[value(name = "7b-code")]
|
|
L7bCode,
|
|
#[value(name = "13b-code")]
|
|
L13bCode,
|
|
#[value(name = "32b-code")]
|
|
L34bCode,
|
|
#[value(name = "7b-leo")]
|
|
Leo7b,
|
|
#[value(name = "13b-leo")]
|
|
Leo13b,
|
|
#[value(name = "7b-mistral")]
|
|
Mistral7b,
|
|
#[value(name = "7b-mistral-instruct")]
|
|
Mistral7bInstruct,
|
|
#[value(name = "7b-mistral-instruct-v0.2")]
|
|
Mistral7bInstructV02,
|
|
#[value(name = "7b-zephyr-a")]
|
|
Zephyr7bAlpha,
|
|
#[value(name = "7b-zephyr-b")]
|
|
Zephyr7bBeta,
|
|
#[value(name = "7b-open-chat-3.5")]
|
|
OpenChat35,
|
|
#[value(name = "7b-starling-a")]
|
|
Starling7bAlpha,
|
|
#[value(name = "mixtral")]
|
|
Mixtral,
|
|
#[value(name = "mixtral-instruct")]
|
|
MixtralInstruct,
|
|
#[value(name = "llama3-8b")]
|
|
L8b,
|
|
#[value(name = "phi3")]
|
|
Phi3,
|
|
}
|
|
|
|
impl Which {
|
|
fn is_mistral(&self) -> bool {
|
|
match self {
|
|
Self::L7b
|
|
| Self::L13b
|
|
| Self::L70b
|
|
| Self::L7bChat
|
|
| Self::L13bChat
|
|
| Self::L70bChat
|
|
| Self::L7bCode
|
|
| Self::L13bCode
|
|
| Self::L34bCode
|
|
| Self::Leo7b
|
|
| Self::Leo13b
|
|
| Self::L8b
|
|
| Self::Phi3 => false,
|
|
// Zephyr and OpenChat are fine tuned versions of mistral and should be treated in the
|
|
// same way. Starling is a fine tuned version of OpenChat.
|
|
Self::OpenChat35
|
|
| Self::Starling7bAlpha
|
|
| Self::Zephyr7bAlpha
|
|
| Self::Zephyr7bBeta
|
|
| Self::Mixtral
|
|
| Self::MixtralInstruct
|
|
| Self::Mistral7b
|
|
| Self::Mistral7bInstruct
|
|
| Self::Mistral7bInstructV02 => true,
|
|
}
|
|
}
|
|
|
|
fn is_zephyr(&self) -> bool {
|
|
match self {
|
|
Self::L7b
|
|
| Self::L13b
|
|
| Self::L70b
|
|
| Self::L7bChat
|
|
| Self::L13bChat
|
|
| Self::L70bChat
|
|
| Self::L7bCode
|
|
| Self::L13bCode
|
|
| Self::L34bCode
|
|
| Self::Leo7b
|
|
| Self::Leo13b
|
|
| Self::Mixtral
|
|
| Self::MixtralInstruct
|
|
| Self::Mistral7b
|
|
| Self::Mistral7bInstruct
|
|
| Self::Mistral7bInstructV02
|
|
| Self::OpenChat35
|
|
| Self::Starling7bAlpha
|
|
| Self::L8b
|
|
| Self::Phi3 => false,
|
|
Self::Zephyr7bAlpha | Self::Zephyr7bBeta => true,
|
|
}
|
|
}
|
|
|
|
fn is_open_chat(&self) -> bool {
|
|
match self {
|
|
Self::L7b
|
|
| Self::L13b
|
|
| Self::L70b
|
|
| Self::L7bChat
|
|
| Self::L13bChat
|
|
| Self::L70bChat
|
|
| Self::L7bCode
|
|
| Self::L13bCode
|
|
| Self::L34bCode
|
|
| Self::Leo7b
|
|
| Self::Leo13b
|
|
| Self::Mixtral
|
|
| Self::MixtralInstruct
|
|
| Self::Mistral7b
|
|
| Self::Mistral7bInstruct
|
|
| Self::Mistral7bInstructV02
|
|
| Self::Zephyr7bAlpha
|
|
| Self::Zephyr7bBeta
|
|
| Self::L8b
|
|
| Self::Phi3 => false,
|
|
Self::OpenChat35 | Self::Starling7bAlpha => true,
|
|
}
|
|
}
|
|
|
|
fn tokenizer_repo(&self) -> &'static str {
|
|
match self {
|
|
Self::L7b
|
|
| Self::L13b
|
|
| Self::L70b
|
|
| Self::L7bChat
|
|
| Self::L13bChat
|
|
| Self::L70bChat
|
|
| Self::L7bCode
|
|
| Self::L13bCode
|
|
| Self::L34bCode => "hf-internal-testing/llama-tokenizer",
|
|
Self::Leo7b => "LeoLM/leo-hessianai-7b",
|
|
Self::Leo13b => "LeoLM/leo-hessianai-13b",
|
|
Self::Mixtral => "mistralai/Mixtral-8x7B-v0.1",
|
|
Self::MixtralInstruct => "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
|
Self::Mistral7b
|
|
| Self::Mistral7bInstruct
|
|
| Self::Mistral7bInstructV02
|
|
| Self::Zephyr7bAlpha
|
|
| Self::Zephyr7bBeta => "mistralai/Mistral-7B-v0.1",
|
|
Self::OpenChat35 => "openchat/openchat_3.5",
|
|
Self::Starling7bAlpha => "berkeley-nest/Starling-LM-7B-alpha",
|
|
Self::L8b => "meta-llama/Meta-Llama-3-8B",
|
|
Self::Phi3 => "microsoft/Phi-3-mini-4k-instruct",
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// GGML/GGUF file to load, typically a .bin/.gguf file generated by the quantize command from llama.cpp
|
|
#[arg(long)]
|
|
model: Option<String>,
|
|
|
|
/// The initial prompt, use 'interactive' for entering multiple prompts in an interactive way
|
|
/// and 'chat' for an interactive model where history of previous prompts and generated tokens
|
|
/// is preserved.
|
|
#[arg(long)]
|
|
prompt: Option<String>,
|
|
|
|
/// The length of the sample to generate (in tokens).
|
|
#[arg(short = 'n', long, default_value_t = 1000)]
|
|
sample_len: usize,
|
|
|
|
/// The tokenizer config in json format.
|
|
#[arg(long)]
|
|
tokenizer: Option<String>,
|
|
|
|
/// The temperature used to generate samples, use 0 for greedy sampling.
|
|
#[arg(long, default_value_t = 0.8)]
|
|
temperature: f64,
|
|
|
|
/// Nucleus sampling probability cutoff.
|
|
#[arg(long)]
|
|
top_p: Option<f64>,
|
|
|
|
/// Only sample among the top K samples.
|
|
#[arg(long)]
|
|
top_k: Option<usize>,
|
|
|
|
/// The seed to use when generating random samples.
|
|
#[arg(long, default_value_t = 299792458)]
|
|
seed: u64,
|
|
|
|
/// Enable tracing (generates a trace-timestamp.json file).
|
|
#[arg(long)]
|
|
tracing: bool,
|
|
|
|
/// Display the token for the specified prompt.
|
|
#[arg(long)]
|
|
verbose_prompt: bool,
|
|
|
|
/// Process prompt elements separately.
|
|
#[arg(long)]
|
|
split_prompt: bool,
|
|
|
|
/// Run on CPU rather than GPU even if a GPU is available.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
|
#[arg(long, default_value_t = 1.1)]
|
|
repeat_penalty: f32,
|
|
|
|
/// The context size to consider for the repeat penalty.
|
|
#[arg(long, default_value_t = 64)]
|
|
repeat_last_n: usize,
|
|
|
|
/// The model size to use.
|
|
#[arg(long, default_value = "7b")]
|
|
which: Which,
|
|
|
|
/// Group-Query Attention, use 8 for the 70B version of LLaMAv2.
|
|
#[arg(long)]
|
|
gqa: Option<usize>,
|
|
|
|
/// Use the slower dmmv cuda kernel.
|
|
#[arg(long)]
|
|
force_dmmv: bool,
|
|
}
|
|
|
|
impl Args {
|
|
fn tokenizer(&self) -> anyhow::Result<Tokenizer> {
|
|
let tokenizer_path = match &self.tokenizer {
|
|
Some(config) => std::path::PathBuf::from(config),
|
|
None => {
|
|
let api = hf_hub::api::sync::Api::new()?;
|
|
let repo = self.which.tokenizer_repo();
|
|
let api = api.model(repo.to_string());
|
|
api.get("tokenizer.json")?
|
|
}
|
|
};
|
|
Tokenizer::from_file(tokenizer_path).map_err(anyhow::Error::msg)
|
|
}
|
|
|
|
fn model(&self) -> anyhow::Result<std::path::PathBuf> {
|
|
let model_path = match &self.model {
|
|
Some(config) => std::path::PathBuf::from(config),
|
|
None => {
|
|
let (repo, filename) = match self.which {
|
|
Which::L7b => ("TheBloke/Llama-2-7B-GGML", "llama-2-7b.ggmlv3.q4_0.bin"),
|
|
Which::L13b => ("TheBloke/Llama-2-13B-GGML", "llama-2-13b.ggmlv3.q4_0.bin"),
|
|
Which::L70b => ("TheBloke/Llama-2-70B-GGML", "llama-2-70b.ggmlv3.q4_0.bin"),
|
|
Which::L7bChat => (
|
|
"TheBloke/Llama-2-7B-Chat-GGML",
|
|
"llama-2-7b-chat.ggmlv3.q4_0.bin",
|
|
),
|
|
Which::L13bChat => (
|
|
"TheBloke/Llama-2-13B-Chat-GGML",
|
|
"llama-2-13b-chat.ggmlv3.q4_0.bin",
|
|
),
|
|
Which::L70bChat => (
|
|
"TheBloke/Llama-2-70B-Chat-GGML",
|
|
"llama-2-70b-chat.ggmlv3.q4_0.bin",
|
|
),
|
|
Which::L7bCode => ("TheBloke/CodeLlama-7B-GGUF", "codellama-7b.Q8_0.gguf"),
|
|
Which::L13bCode => ("TheBloke/CodeLlama-13B-GGUF", "codellama-13b.Q8_0.gguf"),
|
|
Which::L34bCode => ("TheBloke/CodeLlama-34B-GGUF", "codellama-34b.Q8_0.gguf"),
|
|
Which::Leo7b => (
|
|
"TheBloke/leo-hessianai-7B-GGUF",
|
|
"leo-hessianai-7b.Q4_K_M.gguf",
|
|
),
|
|
Which::Leo13b => (
|
|
"TheBloke/leo-hessianai-13B-GGUF",
|
|
"leo-hessianai-13b.Q4_K_M.gguf",
|
|
),
|
|
Which::Mixtral => (
|
|
"TheBloke/Mixtral-8x7B-v0.1-GGUF",
|
|
"mixtral-8x7b-v0.1.Q4_K_M.gguf",
|
|
),
|
|
Which::MixtralInstruct => (
|
|
"TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF",
|
|
"mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf",
|
|
),
|
|
Which::Mistral7b => (
|
|
"TheBloke/Mistral-7B-v0.1-GGUF",
|
|
"mistral-7b-v0.1.Q4_K_S.gguf",
|
|
),
|
|
Which::Mistral7bInstruct => (
|
|
"TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
|
|
"mistral-7b-instruct-v0.1.Q4_K_S.gguf",
|
|
),
|
|
Which::Mistral7bInstructV02 => (
|
|
"TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
|
|
"mistral-7b-instruct-v0.2.Q4_K_S.gguf",
|
|
),
|
|
Which::Zephyr7bAlpha => (
|
|
"TheBloke/zephyr-7B-alpha-GGUF",
|
|
"zephyr-7b-alpha.Q4_K_M.gguf",
|
|
),
|
|
Which::Zephyr7bBeta => {
|
|
("TheBloke/zephyr-7B-beta-GGUF", "zephyr-7b-beta.Q4_K_M.gguf")
|
|
}
|
|
Which::OpenChat35 => ("TheBloke/openchat_3.5-GGUF", "openchat_3.5.Q4_K_M.gguf"),
|
|
Which::Starling7bAlpha => (
|
|
"TheBloke/Starling-LM-7B-alpha-GGUF",
|
|
"starling-lm-7b-alpha.Q4_K_M.gguf",
|
|
),
|
|
// TODO: swap to TheBloke model when available
|
|
Which::L8b => (
|
|
"QuantFactory/Meta-Llama-3-8B-GGUF",
|
|
"Meta-Llama-3-8B.Q4_K_S.gguf",
|
|
),
|
|
Which::Phi3 => (
|
|
"microsoft/Phi-3-mini-4k-instruct-gguf",
|
|
"Phi-3-mini-4k-instruct-q4.gguf",
|
|
),
|
|
};
|
|
let revision = if self.which == Which::Phi3 {
|
|
"5eef2ce24766d31909c0b269fe90c817a8f263fb"
|
|
} else {
|
|
"main"
|
|
};
|
|
let api = hf_hub::api::sync::Api::new()?;
|
|
api.repo(hf_hub::Repo::with_revision(
|
|
repo.to_string(),
|
|
hf_hub::RepoType::Model,
|
|
revision.to_string(),
|
|
))
|
|
.get(filename)?
|
|
}
|
|
};
|
|
Ok(model_path)
|
|
}
|
|
}
|
|
|
|
fn format_size(size_in_bytes: usize) -> String {
|
|
if size_in_bytes < 1_000 {
|
|
format!("{}B", size_in_bytes)
|
|
} else if size_in_bytes < 1_000_000 {
|
|
format!("{:.2}KB", size_in_bytes as f64 / 1e3)
|
|
} else if size_in_bytes < 1_000_000_000 {
|
|
format!("{:.2}MB", size_in_bytes as f64 / 1e6)
|
|
} else {
|
|
format!("{:.2}GB", size_in_bytes as f64 / 1e9)
|
|
}
|
|
}
|
|
|
|
fn main() -> anyhow::Result<()> {
|
|
use tracing_chrome::ChromeLayerBuilder;
|
|
use tracing_subscriber::prelude::*;
|
|
|
|
let args = Args::parse();
|
|
|
|
#[cfg(feature = "cuda")]
|
|
candle::quantized::cuda::set_force_dmmv(args.force_dmmv);
|
|
|
|
candle::cuda::set_gemm_reduced_precision_f16(true);
|
|
candle::cuda::set_gemm_reduced_precision_bf16(true);
|
|
|
|
let _guard = if args.tracing {
|
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
|
tracing_subscriber::registry().with(chrome_layer).init();
|
|
Some(guard)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
println!(
|
|
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
|
candle::utils::with_avx(),
|
|
candle::utils::with_neon(),
|
|
candle::utils::with_simd128(),
|
|
candle::utils::with_f16c()
|
|
);
|
|
println!(
|
|
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
|
args.temperature, args.repeat_penalty, args.repeat_last_n
|
|
);
|
|
|
|
let model_path = args.model()?;
|
|
let mut file = std::fs::File::open(&model_path)?;
|
|
let start = std::time::Instant::now();
|
|
let device = candle_examples::device(args.cpu)?;
|
|
|
|
let mut model = match model_path.extension().and_then(|v| v.to_str()) {
|
|
Some("gguf") => {
|
|
let model = gguf_file::Content::read(&mut file).map_err(|e| e.with_path(model_path))?;
|
|
let mut total_size_in_bytes = 0;
|
|
for (_, tensor) in model.tensor_infos.iter() {
|
|
let elem_count = tensor.shape.elem_count();
|
|
total_size_in_bytes +=
|
|
elem_count * tensor.ggml_dtype.type_size() / tensor.ggml_dtype.block_size();
|
|
}
|
|
println!(
|
|
"loaded {:?} tensors ({}) in {:.2}s",
|
|
model.tensor_infos.len(),
|
|
&format_size(total_size_in_bytes),
|
|
start.elapsed().as_secs_f32(),
|
|
);
|
|
ModelWeights::from_gguf(model, &mut file, &device)?
|
|
}
|
|
Some("ggml" | "bin") | Some(_) | None => {
|
|
let model = ggml_file::Content::read(&mut file, &device)
|
|
.map_err(|e| e.with_path(model_path))?;
|
|
let mut total_size_in_bytes = 0;
|
|
for (_, tensor) in model.tensors.iter() {
|
|
let elem_count = tensor.shape().elem_count();
|
|
total_size_in_bytes +=
|
|
elem_count * tensor.dtype().type_size() / tensor.dtype().block_size();
|
|
}
|
|
println!(
|
|
"loaded {:?} tensors ({}) in {:.2}s",
|
|
model.tensors.len(),
|
|
&format_size(total_size_in_bytes),
|
|
start.elapsed().as_secs_f32(),
|
|
);
|
|
println!("params: {:?}", model.hparams);
|
|
let default_gqa = match args.which {
|
|
Which::L7b
|
|
| Which::L13b
|
|
| Which::L7bChat
|
|
| Which::L13bChat
|
|
| Which::L7bCode
|
|
| Which::L13bCode
|
|
| Which::L34bCode
|
|
| Which::Leo7b
|
|
| Which::Leo13b
|
|
| Which::L8b
|
|
| Which::Phi3 => 1,
|
|
Which::Mixtral
|
|
| Which::MixtralInstruct
|
|
| Which::Mistral7b
|
|
| Which::Mistral7bInstruct
|
|
| Which::Mistral7bInstructV02
|
|
| Which::Zephyr7bAlpha
|
|
| Which::Zephyr7bBeta
|
|
| Which::L70b
|
|
| Which::L70bChat
|
|
| Which::OpenChat35
|
|
| Which::Starling7bAlpha => 8,
|
|
};
|
|
ModelWeights::from_ggml(model, args.gqa.unwrap_or(default_gqa))?
|
|
}
|
|
};
|
|
println!("model built");
|
|
|
|
let tokenizer = args.tokenizer()?;
|
|
let mut tos = TokenOutputStream::new(tokenizer);
|
|
let prompt = match args.prompt.as_deref() {
|
|
Some("chat") => Prompt::Chat,
|
|
Some("interactive") => Prompt::Interactive,
|
|
Some(s) => Prompt::One(s.to_string()),
|
|
None => Prompt::One(DEFAULT_PROMPT.to_string()),
|
|
};
|
|
|
|
let mut pre_prompt_tokens = vec![];
|
|
for prompt_index in 0.. {
|
|
let prompt_str = match &prompt {
|
|
Prompt::One(prompt) => prompt.clone(),
|
|
Prompt::Interactive | Prompt::Chat => {
|
|
let is_interactive = matches!(prompt, Prompt::Interactive);
|
|
print!("> ");
|
|
std::io::stdout().flush()?;
|
|
let mut prompt = String::new();
|
|
std::io::stdin().read_line(&mut prompt)?;
|
|
if prompt.ends_with('\n') {
|
|
prompt.pop();
|
|
if prompt.ends_with('\r') {
|
|
prompt.pop();
|
|
}
|
|
}
|
|
if args.which.is_open_chat() {
|
|
format!("GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:")
|
|
} else if args.which.is_zephyr() {
|
|
if prompt_index == 0 || is_interactive {
|
|
format!("<|system|>\n</s>\n<|user|>\n{prompt}</s>\n<|assistant|>",)
|
|
} else {
|
|
format!("<|user|>\n{prompt}</s>\n<|assistant|>")
|
|
}
|
|
} else if args.which.is_mistral() {
|
|
format!("[INST] {prompt} [/INST]")
|
|
} else {
|
|
prompt
|
|
}
|
|
}
|
|
};
|
|
print!("{}", &prompt_str);
|
|
let tokens = tos
|
|
.tokenizer()
|
|
.encode(prompt_str, true)
|
|
.map_err(anyhow::Error::msg)?;
|
|
if args.verbose_prompt {
|
|
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
|
|
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
|
|
println!("{id:7} -> '{token}'");
|
|
}
|
|
}
|
|
|
|
let prompt_tokens = [&pre_prompt_tokens, tokens.get_ids()].concat();
|
|
let to_sample = args.sample_len.saturating_sub(1);
|
|
let prompt_tokens = if prompt_tokens.len() + to_sample > model::MAX_SEQ_LEN - 10 {
|
|
let to_remove = prompt_tokens.len() + to_sample + 10 - model::MAX_SEQ_LEN;
|
|
prompt_tokens[prompt_tokens.len().saturating_sub(to_remove)..].to_vec()
|
|
} else {
|
|
prompt_tokens
|
|
};
|
|
let mut all_tokens = vec![];
|
|
let mut logits_processor = {
|
|
let temperature = args.temperature;
|
|
let sampling = if temperature <= 0. {
|
|
Sampling::ArgMax
|
|
} else {
|
|
match (args.top_k, args.top_p) {
|
|
(None, None) => Sampling::All { temperature },
|
|
(Some(k), None) => Sampling::TopK { k, temperature },
|
|
(None, Some(p)) => Sampling::TopP { p, temperature },
|
|
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
|
|
}
|
|
};
|
|
LogitsProcessor::from_sampling(args.seed, sampling)
|
|
};
|
|
|
|
let start_prompt_processing = std::time::Instant::now();
|
|
let mut next_token = if !args.split_prompt {
|
|
let input = Tensor::new(prompt_tokens.as_slice(), &device)?.unsqueeze(0)?;
|
|
let logits = model.forward(&input, 0)?;
|
|
let logits = logits.squeeze(0)?;
|
|
logits_processor.sample(&logits)?
|
|
} else {
|
|
let mut next_token = 0;
|
|
for (pos, token) in prompt_tokens.iter().enumerate() {
|
|
let input = Tensor::new(&[*token], &device)?.unsqueeze(0)?;
|
|
let logits = model.forward(&input, pos)?;
|
|
let logits = logits.squeeze(0)?;
|
|
next_token = logits_processor.sample(&logits)?
|
|
}
|
|
next_token
|
|
};
|
|
let prompt_dt = start_prompt_processing.elapsed();
|
|
all_tokens.push(next_token);
|
|
if let Some(t) = tos.next_token(next_token)? {
|
|
print!("{t}");
|
|
std::io::stdout().flush()?;
|
|
}
|
|
|
|
let eos_token = match args.which {
|
|
Which::L8b => "<|end_of_text|>",
|
|
_ => match args.which.is_open_chat() {
|
|
true => "<|end_of_turn|>",
|
|
false => "</s>",
|
|
},
|
|
};
|
|
|
|
let eos_token = *tos.tokenizer().get_vocab(true).get(eos_token).unwrap();
|
|
let start_post_prompt = std::time::Instant::now();
|
|
let mut sampled = 0;
|
|
for index in 0..to_sample {
|
|
let input = Tensor::new(&[next_token], &device)?.unsqueeze(0)?;
|
|
let logits = model.forward(&input, prompt_tokens.len() + index)?;
|
|
let logits = logits.squeeze(0)?;
|
|
let logits = if args.repeat_penalty == 1. {
|
|
logits
|
|
} else {
|
|
let start_at = all_tokens.len().saturating_sub(args.repeat_last_n);
|
|
candle_transformers::utils::apply_repeat_penalty(
|
|
&logits,
|
|
args.repeat_penalty,
|
|
&all_tokens[start_at..],
|
|
)?
|
|
};
|
|
next_token = logits_processor.sample(&logits)?;
|
|
all_tokens.push(next_token);
|
|
if let Some(t) = tos.next_token(next_token)? {
|
|
print!("{t}");
|
|
std::io::stdout().flush()?;
|
|
}
|
|
sampled += 1;
|
|
if next_token == eos_token {
|
|
break;
|
|
};
|
|
}
|
|
if let Some(rest) = tos.decode_rest().map_err(candle::Error::msg)? {
|
|
print!("{rest}");
|
|
}
|
|
std::io::stdout().flush()?;
|
|
let dt = start_post_prompt.elapsed();
|
|
println!(
|
|
"\n\n{:4} prompt tokens processed: {:.2} token/s",
|
|
prompt_tokens.len(),
|
|
prompt_tokens.len() as f64 / prompt_dt.as_secs_f64(),
|
|
);
|
|
println!(
|
|
"{sampled:4} tokens generated: {:.2} token/s",
|
|
sampled as f64 / dt.as_secs_f64(),
|
|
);
|
|
|
|
match prompt {
|
|
Prompt::One(_) => break,
|
|
Prompt::Interactive => {}
|
|
Prompt::Chat => {
|
|
pre_prompt_tokens = [prompt_tokens.as_slice(), all_tokens.as_slice()].concat()
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|