mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00
331 lines
9.8 KiB
Rust
331 lines
9.8 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use anyhow::Result;
|
|
use clap::{Parser, ValueEnum};
|
|
|
|
use candle_transformers::models::quantized_rwkv_v5::Model as Q5;
|
|
use candle_transformers::models::quantized_rwkv_v6::Model as Q6;
|
|
use candle_transformers::models::rwkv_v5::{Config, Model as M5, State, Tokenizer};
|
|
use candle_transformers::models::rwkv_v6::Model as M6;
|
|
|
|
use candle::{DType, Device, Tensor};
|
|
use candle_nn::VarBuilder;
|
|
use candle_transformers::generation::LogitsProcessor;
|
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
|
|
|
const EOS_TOKEN_ID: u32 = 261;
|
|
|
|
enum Model {
|
|
M5(M5),
|
|
Q5(Q5),
|
|
M6(M6),
|
|
Q6(Q6),
|
|
}
|
|
|
|
impl Model {
|
|
fn forward(&self, xs: &Tensor, state: &mut State) -> candle::Result<Tensor> {
|
|
match self {
|
|
Self::M5(m) => m.forward(xs, state),
|
|
Self::Q5(m) => m.forward(xs, state),
|
|
Self::M6(m) => m.forward(xs, state),
|
|
Self::Q6(m) => m.forward(xs, state),
|
|
}
|
|
}
|
|
}
|
|
|
|
struct TextGeneration {
|
|
model: Model,
|
|
config: Config,
|
|
device: Device,
|
|
tokenizer: Tokenizer,
|
|
logits_processor: LogitsProcessor,
|
|
repeat_penalty: f32,
|
|
repeat_last_n: usize,
|
|
}
|
|
|
|
impl TextGeneration {
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn new(
|
|
model: Model,
|
|
config: Config,
|
|
tokenizer: Tokenizer,
|
|
seed: u64,
|
|
temp: Option<f64>,
|
|
top_p: Option<f64>,
|
|
repeat_penalty: f32,
|
|
repeat_last_n: usize,
|
|
device: &Device,
|
|
) -> Self {
|
|
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
|
Self {
|
|
model,
|
|
config,
|
|
tokenizer,
|
|
logits_processor,
|
|
repeat_penalty,
|
|
repeat_last_n,
|
|
device: device.clone(),
|
|
}
|
|
}
|
|
|
|
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
|
use std::io::Write;
|
|
let mut tokens = self.tokenizer.encode(prompt)?;
|
|
let mut generated_tokens = 0usize;
|
|
let mut state = State::new(1, &self.config, &self.device)?;
|
|
let mut next_logits = None;
|
|
for &t in tokens.iter() {
|
|
let input = Tensor::new(&[[t]], &self.device)?;
|
|
let logits = self.model.forward(&input, &mut state)?;
|
|
next_logits = Some(logits);
|
|
print!("{}", self.tokenizer.decode(&[t])?)
|
|
}
|
|
std::io::stdout().flush()?;
|
|
|
|
let start_gen = std::time::Instant::now();
|
|
for _ in 0..sample_len {
|
|
let logits = match next_logits.as_ref() {
|
|
Some(logits) => logits,
|
|
None => anyhow::bail!("cannot work on an empty prompt"),
|
|
};
|
|
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
|
let logits = if self.repeat_penalty == 1. {
|
|
logits
|
|
} else {
|
|
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
|
candle_transformers::utils::apply_repeat_penalty(
|
|
&logits,
|
|
self.repeat_penalty,
|
|
&tokens[start_at..],
|
|
)?
|
|
};
|
|
let next_token = self.logits_processor.sample(&logits)?;
|
|
tokens.push(next_token);
|
|
generated_tokens += 1;
|
|
if next_token == EOS_TOKEN_ID || next_token == 0 {
|
|
break;
|
|
}
|
|
print!("{}", self.tokenizer.decode(&[next_token])?);
|
|
std::io::stdout().flush()?;
|
|
|
|
let input = Tensor::new(&[[next_token]], &self.device)?;
|
|
next_logits = Some(self.model.forward(&input, &mut state)?)
|
|
}
|
|
let dt = start_gen.elapsed();
|
|
println!(
|
|
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
|
generated_tokens as f64 / dt.as_secs_f64(),
|
|
);
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[derive(Parser, ValueEnum, Clone, Copy, PartialEq, Eq, Debug)]
|
|
enum Which {
|
|
Eagle7b,
|
|
World1b5,
|
|
World3b,
|
|
World6_1b6,
|
|
}
|
|
|
|
impl std::fmt::Display for Which {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
write!(f, "{:?}", self)
|
|
}
|
|
}
|
|
|
|
impl Which {
|
|
fn model_id(&self) -> &'static str {
|
|
match self {
|
|
Self::Eagle7b => "RWKV/v5-Eagle-7B-HF",
|
|
Self::World1b5 => "RWKV/rwkv-5-world-1b5",
|
|
Self::World3b => "RWKV/rwkv-5-world-3b",
|
|
Self::World6_1b6 => "paperfun/rwkv",
|
|
}
|
|
}
|
|
|
|
fn revision(&self) -> &'static str {
|
|
match self {
|
|
Self::Eagle7b => "refs/pr/1",
|
|
Self::World1b5 | Self::World3b => "refs/pr/2",
|
|
Self::World6_1b6 => "main",
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Enable tracing (generates a trace-timestamp.json file).
|
|
#[arg(long)]
|
|
tracing: bool,
|
|
|
|
#[arg(long)]
|
|
prompt: String,
|
|
|
|
/// The temperature used to generate samples.
|
|
#[arg(long)]
|
|
temperature: Option<f64>,
|
|
|
|
/// Nucleus sampling probability cutoff.
|
|
#[arg(long)]
|
|
top_p: Option<f64>,
|
|
|
|
/// The seed to use when generating random samples.
|
|
#[arg(long, default_value_t = 299792458)]
|
|
seed: u64,
|
|
|
|
/// The length of the sample to generate (in tokens).
|
|
#[arg(long, short = 'n', default_value_t = 5000)]
|
|
sample_len: usize,
|
|
|
|
#[arg(long, default_value = "world1b5")]
|
|
which: Which,
|
|
|
|
#[arg(long)]
|
|
model_id: Option<String>,
|
|
|
|
#[arg(long)]
|
|
revision: Option<String>,
|
|
|
|
#[arg(long)]
|
|
tokenizer: Option<String>,
|
|
|
|
#[arg(long)]
|
|
weight_files: Option<String>,
|
|
|
|
#[arg(long)]
|
|
config_file: Option<String>,
|
|
|
|
#[arg(long)]
|
|
quantized: bool,
|
|
|
|
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
|
#[arg(long, default_value_t = 1.1)]
|
|
repeat_penalty: f32,
|
|
|
|
/// The context size to consider for the repeat penalty.
|
|
#[arg(long, default_value_t = 64)]
|
|
repeat_last_n: usize,
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
use tracing_chrome::ChromeLayerBuilder;
|
|
use tracing_subscriber::prelude::*;
|
|
|
|
let args = Args::parse();
|
|
let _guard = if args.tracing {
|
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
|
tracing_subscriber::registry().with(chrome_layer).init();
|
|
Some(guard)
|
|
} else {
|
|
None
|
|
};
|
|
println!(
|
|
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
|
candle::utils::with_avx(),
|
|
candle::utils::with_neon(),
|
|
candle::utils::with_simd128(),
|
|
candle::utils::with_f16c()
|
|
);
|
|
println!(
|
|
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
|
args.temperature.unwrap_or(0.),
|
|
args.repeat_penalty,
|
|
args.repeat_last_n
|
|
);
|
|
|
|
let start = std::time::Instant::now();
|
|
let api = Api::new()?;
|
|
let repo = api.repo(Repo::with_revision(
|
|
args.model_id
|
|
.unwrap_or_else(|| args.which.model_id().to_string()),
|
|
RepoType::Model,
|
|
args.revision
|
|
.unwrap_or_else(|| args.which.revision().to_string()),
|
|
));
|
|
let tokenizer = match args.tokenizer {
|
|
Some(file) => std::path::PathBuf::from(file),
|
|
None => api
|
|
.model("lmz/candle-rwkv".to_string())
|
|
.get("rwkv_vocab_v20230424.json")?,
|
|
};
|
|
let config_filename = match args.config_file {
|
|
Some(file) => std::path::PathBuf::from(file),
|
|
None => repo.get("config.json")?,
|
|
};
|
|
let filenames = match args.weight_files {
|
|
Some(files) => files
|
|
.split(',')
|
|
.map(std::path::PathBuf::from)
|
|
.collect::<Vec<_>>(),
|
|
None => {
|
|
if args.quantized {
|
|
vec![match args.which {
|
|
Which::World1b5 => api
|
|
.model("lmz/candle-rwkv".to_string())
|
|
.get("world1b5-q4k.gguf")?,
|
|
Which::World3b => api
|
|
.model("lmz/candle-rwkv".to_string())
|
|
.get("world3b-q4k.gguf")?,
|
|
Which::Eagle7b => api
|
|
.model("lmz/candle-rwkv".to_string())
|
|
.get("eagle7b-q4k.gguf")?,
|
|
Which::World6_1b6 => repo.get("rwkv-6-world-1b6-q4k.gguf")?,
|
|
}]
|
|
} else {
|
|
vec![match args.which {
|
|
Which::World1b5 | Which::World3b | Which::Eagle7b => {
|
|
repo.get("model.safetensors")?
|
|
}
|
|
Which::World6_1b6 => repo.get("rwkv-6-world-1b6.safetensors")?,
|
|
}]
|
|
}
|
|
}
|
|
};
|
|
println!("retrieved the files in {:?}", start.elapsed());
|
|
let tokenizer = Tokenizer::new(tokenizer)?;
|
|
|
|
let start = std::time::Instant::now();
|
|
let config: Config = serde_json::from_slice(&std::fs::read(config_filename)?)?;
|
|
let device = candle_examples::device(args.cpu)?;
|
|
let model = if args.quantized {
|
|
let filename = &filenames[0];
|
|
let vb =
|
|
candle_transformers::quantized_var_builder::VarBuilder::from_gguf(filename, &device)?;
|
|
match args.which {
|
|
Which::World1b5 | Which::World3b | Which::Eagle7b => Model::Q5(Q5::new(&config, vb)?),
|
|
Which::World6_1b6 => Model::Q6(Q6::new(&config, vb)?),
|
|
}
|
|
} else {
|
|
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
|
|
match args.which {
|
|
Which::World1b5 | Which::World3b | Which::Eagle7b => Model::M5(M5::new(&config, vb)?),
|
|
Which::World6_1b6 => Model::M6(M6::new(&config, vb)?),
|
|
}
|
|
};
|
|
println!("loaded the model in {:?}", start.elapsed());
|
|
|
|
let mut pipeline = TextGeneration::new(
|
|
model,
|
|
config,
|
|
tokenizer,
|
|
args.seed,
|
|
args.temperature,
|
|
args.top_p,
|
|
args.repeat_penalty,
|
|
args.repeat_last_n,
|
|
&device,
|
|
);
|
|
pipeline.run(&args.prompt, args.sample_len)?;
|
|
Ok(())
|
|
}
|