mirror of
https://github.com/huggingface/candle.git
synced 2025-06-14 01:48:08 +00:00

* onnx: fix pad, unsqueeze both implementations have off-by-one errors: - Pad 'reflect' cycle for eg `dim==3` is `[0,1,2,1]` which has length of 4 (or `dim*2 - 2`) not 5 (current code `dim*2 - 1`) - Unsqueeze(-1) for tensor with `dim==3` should be 3 (ie `dim+index+1`) not 2 (ie currently `dim+index`) in addition, Pad is incorrectly calculating the starting padding. If we want to pad out 2 elements to the start, and we have this cycle of indices of length 6, then we should skip 4 elements, but currently we skip 2. A more visual representation of what's going on is below: ``` pad_start: 2 data: [a,b,c,d] indices: [0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, ..] // zigzag between 0..4 actual: skip [ c d| c b a b] expected: ~ skip ~ [ c b| a b c d] ``` The values between `[` and `|` are padding and the values between `|` and `]` in the example should match the original data being padded. * Fix clippy lints. --------- Co-authored-by: Laurent <laurent.mazare@gmail.com>
candle-blip
The blip-image-captioning model can generate captions for an input image.
Running on an example
cargo run --example blip --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg
Running on CPU, to run on GPU, build this example with `--features cuda`
loaded image Tensor[dims 3, 384, 384; f32]
model built
several cyclists are riding down a road with cars behind them%